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Ground-state wave functions and maximum entropy

N. Canosa, A. Plastino, and R. Rossignoli
Department ofPhysics, National University La Plata, 1900La Plata, Argentina
(Received 14 September 1988; revised manuscript received 23 February 1989)

A modified version of the maximum-entropy principle is applied to distributions associated with
special quantum states. In this way, it becomes feasible to make statistical inferences concerning
the ground-state wave function and the associated potential from the sole knowledge of a few
relevant mean values. The scheme is illustrated for the case of anharrnonic and Morse potentials
and yields excellent results.

I. INTRODUCTION function

The use of just a sma11 set of relevant mean values to
describe a physical system is the essential feature of sta-
tistical mechanics. In recent developments based on in-
formation theory, ' a statistical operator is constructed
via the maximum-entropy principle, which provides the
least biased description consistent with the available
relevant information. The extended formalism is apt for
dealing with quite a broad range of situations (including
off-equilibrium statistical descriptions ").

The aim of this work is to apply some concomitant
ideas to probability distributions associated with pure
quantum states. In this way, statistical inference of a
wave function (WF), based on diverse expectation values
concerning the system, is made possible, provided the
system is guaranteed to be in a pure state. In many phys-
ical problems, this constitutes a common occurrence.
Quite often, expectation values of simple observables (for
the ground state) are available, but there is no detailed
knowledge of the pertinent effective Hamiltonian and
WF.

Under such circumstances, the standard procedure is
to make an intuitive choice concerning these objects, and
then verify if the predictions are consistent with the
available information. A great deal of "coupling constant
fitting" is afterwards required.

We shall propose a scheme, however, that is both sys-
tematic and self-consistent, in the sense that it provides a
"best" WF criterion that becomes exact in the case of
complete information. Besides, the method provides very
suitable functional forms for trial WF, so as to be in a po-
sition to approximate the ground-state WF (GSWF) in
that case in which the Hamiltonian is known.

As we shall be dealing with statistical inference, one
should keep in mind the fact that the concomitant ap-
proaches become the more powerful the less input infor-
mation they require. Our goal shall thus be that of devis-
ing a technique that is able to yield predictions on the
basis of a limited amount of information.

II. GENERAL SCHEME

Let us consider a quantum state l1lj) represented in a
given complete orthonormal basis I l

E ) } by the wave

(2.1)

(2.2)

We assume now that the set is undercomplete, so that
the constraints (2.2) do not suffice to determine P(c).
Several wave functions will, in general, exist, which com-
ply with the constraints (2.2). Let us define a quantal en-
tropy' associated with the distribution p(c, ),

S= —fp(c. ) ln[p(c, )]de

2 c ln c. dc. (2.3)

S measures the lack of information concerning the dis-
tribution in "c space. " It is thus explicitly "basis depen-
dent, " as opposed to the entropy —Tr[p ln(p)] of a prop-
er statistical operator p (which vanishes for pure states).
This is due to the fact that p(s)=(ElPlE), so that only
the diagona1 information in the chosen basis is taken into
account in (2.3). An infinite irrelevant constant [indepen-
dent of p(E)] should be added to (2.3) in the continuous
case. Our S may be termed a "subjective" entropy.

Our proposal for the wave function will be based on
the maximum-entropy criterion. We shall choose that
wave function which extremalizes (2.3) subject to the con-
straints (2.2). In this way the least biased and smoothest
distribution in "E space" is obtained. The solution can be
attained by introducing n Lagrange multipliers k, and ex-
tremalizing the magnitude

which we assume to be positive definite, i.e., without
nodes. The corresponding density or probability distribu-
tion p(E) in "s space" is thus directly related to (2.1) by
g(E)=[p(s)]' . Examples are GSWF in the coordinate
representation of a single particle in a given potential,
many-body GSWF in boson systems, and also certain
ground states in specific fermion model Hamiltoni-

12, 13

Let us suppose now that the available information con-
cerning the system, assumed to be in its ground state,
consists of the expectation values 0, of a set of linearly
independent observables I 0, , i = 1, . . . , n ),
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S'=S —g A.;0;

= —f f g(c) 21n[v'(c)]5(c —c') (2.4)

+ gA, ;&c~O, ~c') g(c')dcdc'.

(2.5)

The ensuing equation for g(c) resulting from 5S'=0 is

0=21( ln(g)+g+ g k; fg;(c, c')g(c')dc',

where

g, (c,c')=-,'(&c', O, ~c'&+&c'~O, ~c&) . (2.6)

If 0, is a Hermitic operator, (2.5) is a real equation.
The normalization of p(c) should be included as an ad-

ditional constraint in (2.4), and can be represented by the
operator 00, & c

~ 00 ~

c') =5(c,—c, '), and the corresponding
multiplier k0.

The second variation of (2.4) yields

5 S'= —2 f f 5${c) I 2 in[/(c)]+3I5(c —c')+ g A. , g, (c, c') 5$(c')dc dc', (2.7)

so that a maximum of S' is not guaranteed in every case.
Needless to say, the coordinate E may represent a set of

continuous or discrete labels (the integrals are to be re-
placed by sums in this case), or a mixture of both.

Notice that up to this point, we have considered the
constraints (2.2) to be of a completely arbitrary character.
Equation (2.5) is not easy to solve in the general case, and
represents an integrodifferential equation for f if, for in-
stance,

The maximum entropy acquires the appearance

S = g A, , O;+AD . (3.3)

If the set Ig, (c, ), i =0, . . . , n I [with g0(c) =1] forms a
complete basis of functions in "c space, " P(c) is exactly
determined. In this case we can expand 1t (c) in this
basis,

&c~O; c') ~5 "(c—c')

for some i (i.e. , kth power of the momentum in c space).
However, as pointed out in the last paragraphs of the

preceding section, the method we are here proposing
would not prove to be a useful one if it required a lot of
input information. Contrariwise, we shall endeavor to
show that things work out nicely with just a small
amount of information of a very specific and simple char-
acter. Some special situations will be discussed later.

n

g (c)= g C~g~(c),
j=a

so that

n

0,*= c g,
' c dc= C, D,,j=0

where

D;, = fg;*(c)g,(c.)dc,

(3.4)

(3.5)

(3.6)

III. THE DIAGONAL CASE
is the overlap kernel. Assuming all the 0 s are known,
the C 's are immediately obtained from (3.5),

In the rest of this work we shall concern ourselves just
with diagonal observables in the basis I ~

c ) I, i.e. , C, = QO, *D,, '. (3.7)

&c~O, c') =5(c—c')g;(c) . (3.1)

This represents specific input information that is easily
available. In this case, (2.5) yields the solution for g at
once,

n

f(c)=exp ——AD+ g A, , g, (c)
2

(3.2)

where ko=ka+1. The particular values of the Lagrange
multipliers should be determined from the constraints
(2.2).

We thus regain the rather familiar expression for p,
typical of the information theory approach to statistical
mechanics. Hence, we can avail ourselves of all the gen-
eral theorems on distributions usually employed in this
field. In particular, the solution (3.2) can be proved to be
unique if the mean values 0 s are compatible with all
standard quantum-mechanical rules. One is always led to
a maximum of S' [as is easily seen from (2.7)] for fixed
values of the k, 's, and of S for fixed 0 s.

For an orthonormal set (D, =5," ), C, =0,*.
The expression (3.2) for P(c) represents in this situa-

tion the expansion of in[/ (c)),
n

k, = —g D,,
' f 2 In[a(c)]g*(c)dc .

j=0
(3.8)

In this sense, our scheme can be viewed as an inversion
method for the expansion (3.2) [and hence (3.4)] when not
all 0, 's are available. The maximum-entropy prescrip-
tion yields A, ,

=0 if 0, is unknown.
The entropy (3.3) acquires its lowest value when all

0, 's corresponding to a complete set are known. Other-
wise, it provides obviously an upper bound to this
minimum "exact" entropy.

Notice that since p(c) is not a statistical operator but
rather a probability distribution in "c space, " a smaller
set of observables than that needed in the statistical case
is required to determine p(c) without recourse to the
maximum entropy criterion. The set I 0, , i =0, . . . , n j



GROUND-STATE WAVE FUNCTIONS AND MAXIMUM ENTROPY 521

is not complete in the space of observables (they are diag-
onal), but their expectation values determine g(e) com-
pletely if the corresponding set of functions g, (e) is com-
plete. Moreover, a full quantum statistical operator may
not even be normalizable for such a reduced set (for in-
stance, p=exp( —Ax ) has an infinite trace if x is the
coordinate operator associated with a momentum P ).

IV. STATISTICAL INFERENCE
OF GSWF AND POTENTIAL

g, = (g, (x) ) = f P (x)g, (x)dx .

The least biased wave function is thus

(4.1)

Let us now apply the previous formalism to the case of
the ground state of a single particle system under the ac-
tion of a potential V. We assume that the available infor-
mation deals with the expectation values of n linearly in-
dependent functions of the coordinate x = (x, , x2, x 3 ),

g( r ) =exp [ —
—,
'

( A,o+ kr ) ] .

Therefore, it is exactly reconstructed with the sole infor-
mation of the mean radius r = 3/k. The one-dimensional
harmonic-oscillator GSWF is exactly derived with just
the mean value of (x, ) ((x, ) and (x, ) in the case of a
displaced potential). In these examples, the information
saturates (i.e., the A, s become stable) with just one mo-
ment.

The corresponding entropies are

S =Ao+Ar =C, +3 ln(r ), (4.7)

ed). When the A. s become stable (up to a given accura-
cy) convergence is reached.

Usually, the available information is just that corre-
sponding to the averages of moments x', x2x3' (i.e., aver-
ages of multipole moments) or directly r' in case of radi-
ally symmetric systems (r is the radius to the origin). For
example, the GSWF in the Coulomb potential is of the
form

1
n

P(x ) =exp ——
A,o+ g A. , g, (x )

2
(4.2) for the Coulomb potential [with C, =in(8m. /27)+3], and

S =C„+ln(o ), (4.8)
where the normalization constant A.o is given by

A,o=ln f exp —g A. , g, (x) dx
i =1

(3XO

ak;

(4.3)

(4.4)

,' f f V—[1n(g)]dx, (4.5)

and of the associated potential and ground-state energy E
(we assume a unit mass)

g2
V(x ) E=—

2

—g k;V'g;(x)+ —g k, V'g;(x)
l I

(4.6)

as obtained from the stationary Schrodinger equation (V'

denotes the Laplacian while V the gradient vector).
Thus, an approximate prediction of both the ground-

state energy (measured from the bottom of the potential)
and of the potential function is possible with just a few
relevant mean values. Our inferred quantities will con-
verge towards the exact values as additional constraints
of the type (4.1) are included (i.e. , new information is add-

With this choice of g, one is in a position to make sta-
tistical inferences concerning any quantity of interest. In
addition to the standard trace predictions, represented
here by inferred mean values of known functions of the
coordinates, other types of inferences are feasible within
the present, new context.

Of particular interest are the inferred values of the
mean square momentum (we set herefrom Pi= 1)

(p ) = —f fV (g)dx

for the harmonic oscillator, where cr =((x, ) —(x, ) )'
and Ch = [ln(2vr)+ 1]/2. The entropy obviously in-
creases with the dispersion.

The inferred WF (4.2) possesses an attractive and suit-
able functional form if the functions g, (x) are polynomi-
als. In fact, it can be used as a trial WF for approximat-
ing the exact GS if the Hamiltonian A' of the system is
known. Moreover, in this case the available information
can be used together with the minimization of (H) to
determine the best parameters A,

V. APPLICATION

Let us consider first a one-dimensional quartic anhar-
monic oscillator. The corresponding Hamiltonian can be
generally written as

H=(P +aX )/2+PX +yX (5.1)

1
n

g(x)=exp ——ko+ g k,x'
}t =1

(5.2)

where the parameters k& can be obtained by means of a
standard Newton-Raphson procedure.

If n =2, (5.2) is a Gaussian, and the inferred potential
(4.6) is thus that of a harmonic oscillator. Our approach
is, in this case, equivalent to a mean-field approximation
(in the boson representation' ). For n ) 2, we are thus
in a position to go beyond mean-field treatments.

with [X,P]=i This ty.pe of potential has been the sub-
ject of a great deal of work during the past years, '

due to its relevance in the study of molecular vibrations
and to its role in the modeling of nonlinear quantum field
theories. Our aim is to approximately reconstruct the
GSWF of (5.1) with the sole knowledge of a few expecta-
tion values j (x'), l = l, . . . , n ]. The corresponding ap-
proximate WF is
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Case

tro and the overlap with the exac
ithP=O. C () o o d to5.1) ( uartic oscillator, wi

= n /2 denotes the num er o=1 (b bl ) Thand (c) to o:=—1.5a„y= 1 (bista e cas
moments use in e cons rucd

'
the approximate recons ruc

'

S Overlap

(a) Exact
m=1
m =2
m=4

0.985 978
0.972 196
0.986 032
0.985 978

0.803 771
0.813051
0.803 798
0.803 771

0.972 196
0.816 305
0.804 183

0.738 300
0.739 890
0.738 304
0.738 300

0.999 570
0.999 999
1

(b) Exact
m =1
m =2
m=4

1.963 289
1.922 751
1.963 494
1.963 289

1.504 972
1.533 558
1.505 075
1 ~ 504 972

1.922 751
1.540 536
1.506 419

0.396 591
0.398 913
0.396 597
0.396 591

0.999 367
0.999 998
1

(c) Exact
m =1
m=2
m=4

1.220 330
0.173 477
1.310386
1.225 705

—1.761 382
0.963 904

—1.716 354
—1.758 694

0.173 477
—0.869 993
—1.396 386

1.254 676
1.601 647
1.263 924
1.254 953

0.899 541
0.997 804
0.999 932
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'
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is also quote, or

WF. The relative entropy 5 p,„p
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u te
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Case Overlap

TABLE II. Same quanti i qo d Ta, r po
d ol d

we, while (b)

n sto

d() tot}1 Me Morse

(P')

M e potential (5.3

)

M e . ) with

(a) Exact
m —2
m=4
m=8

2.038 384
1.971 266
2.038 781
2.038 384

—5.222 045
—5.189 709
—5.221 846
—5.222 045

2.149 228
1.971 267
2.139 804
2.149 490

0.380 544
0.386 453
0.380 555
0.380 544

0.998 622
0.999 977
1

(b) Exact
m —2
m=4

0.457 107
0.346 084
0.446 454

0.582 107
0.772 470
0.584 565

0.217 030
0.546 476

1.206 731
1.256 329
1.207 711

0.987 721
0.999 788

(c) Exact
m 2

1.986 068
1.863 853
1.985 223

2.111068
2.190 178
2.111 170

1.631 635
2.109014

0.403 670
0.414 468
0.403 681

0.997 321
0.999997
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TABLE III. Exact and approximate Lagrange multipliers for a symmetric [case (a)] and an asym-
metric [case (b)] potential. (a) corresponds to the quartic oscillator {5.1), with a=) =1, P=O, whereas
(b) to the Morse potential (5.3), with 3 =10.

Case (a)
A 4

Exact
m=1
m =2
m=4

Exact
m =2
m=4

1.607 541
1.944 392
1.632 609
1.608 366

—1.000 000
—1.362 991
—1.008 181

0.264 032
0.0
0.220 010
0.261 001

Case (b)

k2

4.472 136
3.727 707
4.528 170

—0.020 149
0.0
0.0

—0.016422

—1.490 712
0.0

—1.487 683

0.001 025
0.0
0.0
0.003 019

0.372 678
0.0
0.256 839

In this case, the exact GSWF possesses an analytic ex-
pression,

g,„(x)cc expI —[C exp( —x)+(C —
—,
' )x]I, (5.4)

where C = (2 A )
' . The exact multipliers

At =2( —I )'C/l! (I & I ) decrease thus rapidly with l. Re-
sults corresponding to a finite number of moments (see
Tables II and III) are in excellent agreement with the ex-
act figures, as are the inferred potentials (for n ) 2) in the
region close to the bottom of the potential well (see Fig.
4).

VI. DISCUSSION AND CONCLUSIONS

We have presented a general method of statistical
inference based on information theory, that allows for the
"reconstruction" of a node free quantal WF and the cor-
responding effective potential, from an incomplete set of
expectation values.

The formalism is very easy to apply in the case of ex-
pectation values concerning diagonal observables (in the
"unbiased" basis), and is specially suitable for the recon-
struction of single particle eftective GSWF. The numeri-
cal results shown in Sec. V indicate that excellent agree-
ment with the exact WF can be attained with just a few
relevant mean values of diagonal observables.

The proposed scheme yields the least biased, most Hat
distribution, consistent with the available information.
Whether this choice of WF is appropriate or not, can be
self-consistently ascertained from the stability of the
physical quantities of interest. If by adding new available
data our former predictions do not change beyond our

desired precision, no new relevant information is ob-
tained. The information is concentrated only on the
former expectation values and hence, predictions with ac-
ceptable accuracy can be made.

Important physical quantities become stable with a
rather small amount of information (for instance, S, (H )
and the overlap, as numerical results depict), suggesting
that they depend rather weakly on the detailed values of
the Lagrange parameters. On the other hand, quantities
involving derivatives of the inferred WF are more sensi-
ble and their inference requires, correspondingly, a larger
informational input.

One might perhaps argue that the (subjective)
maximum-entropy criterion is in philosophical agreement
with the Copenhagen interpretation of a quantal WF, in
the sense that ~Ill~ describes the observer's knowledge of
the particle position (or state), although it is not our in-
tention here to delve into philosophical subjects.

Summing up, we have shown that a modified version of
the maximum-entropy principle, involving only diagonal
elements of the density operator, allows for a quite suc-
cessful inference approach regarding ground-state prop-
erties. The method should be also of some value in those
situations in which the ground-state wave function is too
complicated to be dealt with, and one must make do with
just some of its most salient features.
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