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We consider quantum-mechanically partially polarized light propagating through a Kerr-like
medium. Using the usual form of the induced polarization P= A I E E )E+B{E-E)E,the theory
is formulated in terms of an effective Hamiltonian which is quartic in terms of the operators for two
orthogonally polarized modes. Exact solutions in closed form for the Heisenberg equations of
motion are obtained. These solutions are used to evaluate the physical behavior of various observ-
ables as the field propagates through a nonlinear medium. We also present explicit results for the
time evolution of the input coherent and Fock states of the field. We show the generation of states
that are macroscopic superposition of coherent states. We also find that if the input field is com-
pletely polarized, then due to quantum effects the output field becomes partially polarized. This is
in contrast to the classical prediction and can have an important bearing on questions like topologi-
cal phases of light propagating through a nonlinear medium. Numerical results for the energy in
each mode, the correlation between two modes, and the higher-order correlations are presented.
The input photon statistics is found to make a considerable difference in the dynamics.

I. INTRODUCTION

Propagation of light through a Kerr medium has been
very extensively studied. Most of the work concerns the
classical behavior of the field amplitudes as the light
propagates through the nonlinear medium. The quantum
fluctuations in the field amplitude have also been exam-
ined' in the context of the generation of squeezed light.
What one does is, first, obtain the classical solution and
then study small quantum-mechanical fluctuations
around classical solutions. It is, of course, desirable to
have a fully quantized theory so that one need not consid-
er the limit of small fluctuations. This is, in fact, the pur-
pose of this paper. We show that one-dimensional propa-
gation can be formulated in terms of an effective Hamil-
tonian involving the two polarization modes. We further
show that this Hamiltonian can be solved exactly to ob-
tain field dynamics. It may be added that the case of a
single mode through a Kerr medium has been analyzed
quantum mechanically. Our analysis differs from the
existing one since we properly treat the changes in the
polarization characteristics as the field propagates
through the Kerr medium. The outline of this paper is as
follows. In Sec. II we consider classically one-
dimensional propagation of elliptically polarized light
through a Kerr medium. If the field is written as a super-
position of two circular components, then classically each
circular component acquires an intensity dependent
phase which is different for the two components. In Sec.
III, we quantize the field and find an effective Hamiltoni-
an that characterizes the interaction between two polar-
ization modes a and b. Explicit time-dependent solutions
for Heisenberg operators a and b are given. In Sec. IV
we present the time-dependent states of the field for two

II. SUMMARY GF CLASSICAL RESULTS
FOR LIGHT PROPAGATION THROUGH FIBER

The induced polarization in a Kerr medium can be
written in the form

P=yE+ A(E E*)E+8(E.E)E', (2.1)

where g is the linear susceptibility of the medium and 2
and 8 characterize the nonlinearity of the medium. We
consider one-dimensional propagation and thus express
the electric field in the form

E=(e,x+e2y)e' ' "", k =(co/c)&1+4m.g, (2.2)

where c, and c2 are the components of the field envelope.
The Maxwell equations in slowly varying approximation
lead to the following system of coupled differentia1 equa-
tions.

C)C]
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BF2

az

l: ~(IE, I
+ l~~l )E, +&(E,+Ep~f],c k

I [A(lE&l +lc2l )e2+B(e, +ez)ez] .
c k

(2.3)

(2.4)

In order to solve these equations, it is convenient to go to

different initial states of the field. In Sec. V we evaluate
various physical observables and several aspects of pho-
ton statistics. We present numerical results for (i) the
mean number of photons in the two modes and (ii) fluc-
tuations in photon numbers. Finally in Sec. VI we exam-
ine the changes in the degree of polarization of light as it
propagates through the Kerr medium.
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a circular basis

E)+1C2

v'2

az
=iP[&(le+ I'+ IE I')+2B IE+ I']e

27TCd

kc
(2.7)

IE, I'+ E21'= le+ I'+ le- I'

2~+8 =~]+~z .

(2.5) Clearly
I e+ I

and
I
E

I
do not change with z and thus

i Pz++
e+(z) =E~e

The equations for the amplitudes c.+ are easily obtained @ =&(le I'+le I')+2Ble-I'.
(2.8)

' =iP[&(le+I'+ le I')+2Ble I']e+,
Bz

(2.6)

The Cartesian components of the field can be obtained by
combining (2.5) and (2.8) and can be written in the matrix
form as

E,(z)

e2(z)

ized P
e

ized P
e

c, , (0)
1 i —Ez(0) (2.9)

i.e.,

c. , (z)

e2(z)

+zP I4 zP
e + +e

ip+zp ip zp—i e —e

iP+zP iP zP)
' 'e (0)

'

e +eip~zp i $zp 'e (0) (2.10)

Note that we can rewrite

@+=(&+»(le+I'+le I')+B(IE+I'—le I') .

It is clear that if z is chosen such that

sin[PBz( I e+ I

—
I
E

I ) ]=0,
then

(2. 1 1)

(2.12)

E, (z) Ei(0)
=e px[iP(A +B)(I~+I + I& I )z] (2.13)

where z is given by (2.12). Thus, for values of z given by (2.12), the feld distribution returns to the original value except
for an overall phase factor. This overall phase factor is important in considerations of Berry's phase.

In general, when the field is treated classically its intensity at some point in the medium can be obtained from (2. 10),
for example

E, (z)
I

=
—, [ I e, (0) I

+
I e~(0) I +cos(ezp)[ IE,(0) I

—IE~(0) I ]+21e, (0)
I IEz(0) Icos(0)sin(@zp

(2.14)

where @=4Ble,, (0)IIEz(0)lsin(0). Thus, in this case, the
field exhibits simple sinusoidal oscillations except when it
is circularly polarized.

Finally the interaction energy between the polarization
and the electric field can be written as

the form

E i + )( )
. 277flCt7

n V

1/2

(ax+by)e'"'

Ea= —f p.sE . (2.15)
k — = n,CO Q)

U C
(3.1)

This interaction energy enables us to write the eftective
quantum-mechanical Hamiltonian in the next section.

where n is the linear refractive index, V is the quantiza-
tion volume. The localized annihilation and creation
operators obey the commutation relations

[a,a ]=[b,b ]=1, [a,b]=[a,b ]=0. (3.2)

III. QUANTUM THEORY: BASIC HAMILTONIAN
AND SOLUTIONS OF HEISENBERG EQUATIONS

FOR FIELD OPERATORS

In order to describe the light propagation through a
Kerr medium, we express the electric field operator F. in

The interaction Hamiltonian can now be written in the
form

H=R+[(a ) +(b ) ](a +b )+Pi+ (a a+b b) .
2 2

(3.3)
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where:: stand for the normal ordering of operators. The
parameters p(q) are proportional to the coefficient B( 3)
in Eq. (2.1). The Heinsenberg equations of motion for a
and b are easily found

a+ a+, a =o;+ a+, o;

—
1 /2

f
o. + f

—1 /2 j z
fa+, a ) =e

(3.12)

a = —ipa (a +b )
—iq(a a+btb)a,

b = —ipb t(a + b ) —iq(a ta +b b )b .

(3.4)

(3.5)
n+, n

(a+ ) '(a )

}ln+!n !

These equations can be converted to the traveling wave
case by replacing t by —zlu. On comparing (3.1) with
(2.3) we find that

On using (3.12) in (3.10) and the fact that ~n +, n ) is an
eigenstate of both a+a+, a a, we obtain

a+(t) ~a+, a )

47T f167 4' Ado

Vn Vn
p=— (3.6)

—1/2fa+ f

—] /2fa=a+e

In order to solve the Heisenberg equations (3.4) and (3.5)
we introduce the Heisenberg operators analogous to (2.5),

a+ib
v'2

(a+) +(a )
X g (n+ n

-v~n, .n'I

Xexp[ it[q—(n++n )+2pn+ ]], (3.13)

a+a++a a =a a+b b,
2a+a =a +b

Using (3.4), (3.5), and (3.7), we get the equations

(3 7) which can be summed up
—iO+t —iO+ t

a+(t)~a+, a ) =a+~a+e —+,a e ),
where

(3.14)

a+ = —i [(a+a++a a )q+2pa+ a+ ]a+ . (3.8) 8+ =q, 8 =(q+2p) . (3.15)

Since p and q are real it is easily seen that a+a+, a a
are constants of motion

a+(t)a+(t)=a+(0)a+(0) . (3.9)

In view of these conservation laws, the integration of (3.8)
is now straightforward'

a+(t)=exp[ —it[q(a+a++a a )+2pat+a+ ]Ia+ .

(3.10)

Thus, the Heisenberg operators a+(t) transform the ini-
tial coherent states into new coherent states whose ampli-
tudes are related to the old amplitudes Uia the phase fac
tors.

IV. QUANTUM THEORY: EVOLUTION
OF THE STATES OF THE FIELD

AND THE GENERATION
OF MACROSCOPIC SUPERPOSITION OF STATES

For brevity the operators a+ will stand for a+(0). The
Heinsenberg operators a(t) and b(t) can be obtained
from (3.7) and (3.10), i.e., from

In this section we examine the dynamical evolution of
the states of the system. The Hamiltonian (3.3) can be
written in terms of the operator a+ ..

a+(t)+a (t) a+(t) —a (t)a(t)=, b(t)=
2 21

(3.11) 0=—
q (a~+a+ +a a ):+2fipa+a a+a . (4 1)

2

The action of Heisenberg operator a+(t) on a coherent
state ~a+, a ) is quite illuminating and useful in the
computation of the expectation values

If, at t =0, the field is in a coherent state ~a+, a ), then
the 6eld at time t can be obtained by using the expansion
(3.12):

~a+, a ) =e ' " ~%(0))=e ' ' ~a+, a )

—1/2fo. + f-' —1/2 fa=e '' e
n+, n

(a+) (a )
n+, n

Qn+!n !

—1/2fo.'—1/2, a=e +

n+, n

(a+ ) '(a )
n+, n

Qn+!n !

&&exp 2iptn+n — (n—++n ) + (n++n ) ~n+, n ) .iqt 2 iqt
2 + 2

(4.2)
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The series (4.2) cannot be summed up except for certain
special values of t. For pt =qt =~ it turns out that

—ti)/4
~'II(t)) = — (!ia+,ia )+i

~

—ia+, —ia )) . (4.3)
v'2

Thus the state of the system at time t given by pt =qt =~
is a macroscopic superposition of two coherent states. "
The detailed derivation of (4.3) is rather complicated.
However, one can see the form (4.3) from (3.14) which for
pt =qt =~ leads to

where P is a phase factor. Using (4.8) it is clear that
~a+, a ), must have the form

~a+, a ), =IV(~ia+, ia )+e'~~ —ia+, —ia ) ), (4.9)

where JV is a normalized constant. The phase factpr P
can be fixed by the condition (4.6b).

Note further that the state of the mode a+ is not a
pure superposition state. In fact, using (4.3) the density
matrix for mode a + can be written as

a+(t)l a+a ) =a+I~a~ a )

a (t)~a+, a ) =a
~

—a+, —a ), (4.4)
p (t) =

—,
' [ li a+ & & ia+ I+

I a, & &
—ia+ I

ie— (~ia+ &( —ia+~ —c.c. )] . (4.10)

and, hence,

0+(t)~a+, a ) = a+~a+, a )

a' (t)~a, a ) = —a' ~a, a

a (t)a+(t)~!a,a &= —a a ~a„,a ) .

(4.5)

Next we find the state of the field at time t given that at
t=0, the two modes a and b are in the Fock state
!n, , nt, ). Note that the time evolution of the initial Fock
state ~!n+, n ) (a+a+ ~n+, n ) =n+ ~!n+, n ) ) is simple
as the large parentheses in (4.2) already show

These equations can also be written in terms of ~a+, a ),
as ~n+, n ), =exp —2iptn+n —it (n, +—n )'-q

2
a+ a+,I2, = —n~ &+,

a+ 0'+, n
&
=a+ a+, a

a a+ ~a+a ), = —a+a ~a+a

(4.6a)

(4.6b)
+it (n++—n ) n, , n ) .

2
{4.11)

Equation (4.6) shows that ~!'41(t) ) is an eigenstate of a+
with eigenvalues —a~. It is known that if ~a) is an
eigenstate of the boson operator a

In order to obtain n„ni, ), we will relate n, , nb ) to
!,n+, n ). Note that since

a a =ao.
then the eigenstates of a can be written as

~-'(la)+e'~i —a) ) =a'(la)+e'
I

—a) ),

(4.7)

(4.8)

a a+6 b =a+a+ +a af

it is clear that the states involved must be such that
n, + nI, = n + + n . Such a relation can be obtained from
the defining relations' between a, b, and a

„(m —1)!(N—m)!(1—m +n )!(m —n)!

On combining (4.11) and (4.12), we obtain the time evolution of the field initially in a Fock state

!n,N —n ), t, , =2 exp( iqtN /2+iqtN—/2)

( i ) "&(N —n)!n!&1—!(N —1)!X g g ' ' '
exp[ 2ipt(N —/)l]—

~
N—1, 1)+. .

(4.12)

(4.13)

Thus, whenever pt is an integral multiple of m, the state at
time t is same as the initial Fock state except for a phase
factor.

V. DYNAMICAL EVOLUTION OF OBSERVABLES
AND PHOTON STATISTICS

The evolution of photon statistics p(n, , nI, ) can be
studied by using the relation (3.14) if the input state of

the field is a coherent state
~
a,P ):

a ~a, /3) =a~a, /3), b a, /3) =/3~!a, /3),

which, in turn, implies that

a+ a+, a =a+ o.+,a, a+ =
&'2

From (3.14) it is clear that

(5.2)



a+,a la~(t)a~(t)la+, a ) = la~I' 7

)
!8+2 l8j ++, a+e, a e + )

+ i[6)+ — l(8 8~ )t—e )],=a+a exp[ —la+I'(1 —e

a+,a Ia'+(t)Ia+, a ) =a' e+, =a+e y a+, a a+e
—2i 9+t

, A 8
—2i8

—i 8+t=a+8 ' exp[ —la+ I'(1 —e —a '(1 —e )].
Note that
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(5.3)

(5.4)

(5.5)

8 —8+=2p .

I (1 e +c.c.

=-,'(lal'+ IPI'+ [(lal' —IPI')cos[x t —2 a cocos x t —2lallplcos(8}sin[x (t)]]exp[ —2(lal + IPI )sin (pt)]),

On using (3.11), (5.4), and (5.6

&. «)«t»=lal'+lpl' —
&

'
n . ) we find that mean numb f hn . ero p otonsinthetw
—&b (t)b(t))

e two Cartesian modes

=-,'( Ia+ I'+ ~a ~'++, , + [a+a exp[ —la+I'(1 —e

(5.6)

(5 7)

where

x ( t) =2
I
a

I I pl sin8sin(2pt),

exp(i8)=aP*/IallPI .
(5.8)

Th is shows that the nutnber of hoton
e average

t ese oscillations are centered at t =nm
y approximately a Gaussian of width

tr = 2/[p[lal + Ipl )]' I

Thus durin, during the quiscent period, there is an
ber of photons in th t

io, ere is an equal num-

and also for Ial or IPI =0, the fre uenc

e c..aracteristics are
ren in igs. 1 —3 where we have plotted &a a) as a

I
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an a = 'Pl ), then its intensit does n
as it propagate th hs roug the medium.

in e ig t propagation can
'

on o t ese figures with the beh
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from (2.14). F
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or example, for 0=0 th
ho tht th 1' he ig t intensity in the m
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'od ol t'o F
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th"' 'h ''" 1 d
u ion. or other values of 8 the

simp e periodic evolutio

I IPlp sin8, which would b
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Next, the correlation between the tw
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FICs. 2. Same asas Fig. 1 but for lal =10, lpl =5
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(a (t)b(t)) = —.(la+ I

—la I

—[a+a exp[ —la+I (1—e '"') —la I (1 —e 't")]—c.c. I) .
I

(5.9)

The higher-order moments of the field operators can be obtained by repeated application of (3.14). For example, one
has the result

Thus, quantities like Q and I can be computed

((a (t))'a (t)) —(a (t)a(t))
(a (t)a(t))

(&( ')' ')((b')'b'&)'"I=
I &

a'ab'b & I

m
—i&+t(m —&) —im 0+t —im9 t(a+ a . Ia+ (t)la+ a ) =a+e + (a+ a la+e +,a e ) . (5.10)

(5.1 1)

The quantity Q is a measure of the sub-Poissonian (Q (0) or super-Poissonian (Q )0) statistics of the field. The quanti-
ty I is also a measure of the nonclassical nature' of the field. A negative value of I will imply that the underlying P dis-
tribution has nonclassical properties.

We can evaluate Q (t) and I (t) by using Eq. (5.7) and the following results:

(a ab b ) = —„' [( lal + IPI-')'+4lal'IPI'sin (0)]
—

—,
' exp[ —2( la I'-+ IPI') ] I [( I

a I' —IPI')' —41a I'IPI'cos'( t) ) ]cos(y)

—41 a IP I
«s(() }(I a I' —IPI'»in[y «) ]I,

&(at}'a') = 2+8, ((b')'b') = A 8—
where

& = -,
' [3( a I'+ IPI')' —41a I'IPI'»n'(() }]
——„' exp[ —2( la I'+ IPI'»in'(2pt )[ I 41a I IPI( I a I' —IPI')'c»( ~ }stn[y «) ]

—[( fa I

—IPI )
—4 la I IPI cos (0)]cos[y(t)]I,

8= —,'exp[ —2( fa I
+ fPI )sin (pt)](( fa I

+ IPI )( faI —IPI )cos[x(t)+2pt]
—21af IPfcos(8)[( laf + IPI )sin[x(t}]cos(2pt)+2faf IPfsin(9)cos(x)sin(2pt)] ),

y(t) =2lal fpf sin(0)sin(4pt ) .

(5.12)

(5.13)

(5.14)

(5.15}

(5.16)

In Fig. 4 we have plotted Q(t) as a function of pt. We find that Q(t) exhibits antibunching [Q(t) (0] in a small neigh-
borhood of pt =nor for t)%0. This can also be seen by analyzing the analytic expression for Q(t). We have also numeri-

C)

C)

C)—0 ] . 5 '3 0 g4 5 6. 0

FICx. 3. Same as Fig. 1 hut for ja I
= 10, jpj =25.

7. 5 0 ] 4 5

FIG. 4. Q(t) as a function of pt for the two modes initially in

the coherent state ja,p) with jaj =10, jpj =25, and 9=0
I ~ ~, ~y4(a), ~nd ~ye(C~.
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(a,PIa'(t}a(t}la,P& =-,'(lal'+ IPI'}

+ —,
'

I [(lal —Ipl ) —i(ap*+a'p)]exp[(a*p —ap')sin(pt)]+c. c. Iexp[ —2(lal + Ipl )sin (qt)] .

(A 1)

2(n +nb )

„[exp(x, lal'+x3 IPI'+x3a "P+x4aP* }]l. .*=~=~*=,
aa" aa* 'ap"'ap*

2 f1 lib

„exp(x, lal')
Ba 'cuba*

exp(x4aP*)(x3P*+x3a*) "I
ap*

"

Next we substitute Eq. (Al) in Eq. (5 11)and evaluate ( n„nb la (t)a(t) In„n& ) by using the following results:

"b (n, !) (nb!) (x3x4)'lal

(n, —I )!(nb —I )!I!I=O

It then follows that

2(n. +nb)

(nb!) (x,x4)'lal 'xz"
„exp(x, lal') g

ag (nb —I)!(I!)
@=a =0

(A2)

„(la I'+ IPI'}exp(x t la I'+x3 IPI'+x 3a'0+x, aP')
I

aa" aa 'ap"'ap'"'

BI Bi
C3X i BX2 j=0

(n, !) (nb!) [(n, —1)x3 (n& —1)x, ]x &' x3" (x3 x4)'

(n, —I )!(n„—I )!I!

2(n„+ nb )

(a'P+aP*)exp(x, lal +x3IPI +x3a*P+x4aP*)I
t)a t)a* t)p "t}p*

1(n, !) (n&!) (x3+x4)(x3 x4) x t x3'

(n, —I)!(nb —I }!I!

Substituting Eqs. (Al), (A3), and (A4) with appropriate values of x; s in Eq. (5.17) we obtain

(A3)

(A4)

1 n, !nb!(—1)'sin '(2pt)[cos(2pt ) ] '
(n.n, la'(t)a(t)ln. , nb) = —n. +n, +(n. n, ) y—

2 o (n, —I )!(nb —I )!(I!}
(A5)

which is Eq. (5.18).
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