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We consider quantum-mechanically partially polarized light propagating through a Kerr-like
medium. Using the usual form of the induced polarization P= 4 (E-E*)E+ B (E-E)E*, the theory
is formulated in terms of an effective Hamiltonian which is quartic in terms of the operators for two

orthogonally polarized modes.

Exact solutions in closed form for the Heisenberg equations of

motion are obtained. These solutions are used to evaluate the physical behavior of various observ-
ables as the field propagates through a nonlinear medium. We also present explicit results for the
time evolution of the input coherent and Fock states of the field. We show the generation of states
that are macroscopic superposition of coherent states. We also find that if the input field is com-
pletely polarized, then due to quantum effects the output field becomes partially polarized. This is
in contrast to the classical prediction and can have an important bearing on questions like topologi-
cal phases of light propagating through a nonlinear medium. Numerical results for the energy in
each mode, the correlation between two modes, and the higher-order correlations are presented.
The input photon statistics is found to make a considerable difference in the dynamics.

I. INTRODUCTION

Propagation of light through a Kerr medium has been
very extensively studied. Most of the work concerns the
classical behavior of the field amplitudes as the light
propagates through the nonlinear medium. The quantum
fluctuations in the field amplitude have also been exam-
ined! in the context of the generation of squeezed light.
What one does is, first, obtain the classical solution and
then study small quantum-mechanical fluctuations
around classical solutions. It is, of course, desirable to
have a fully quantized theory so that one need not consid-
er the limit of small fluctuations. This is, in fact, the pur-
pose of this paper. We show that one-dimensional propa-
gation can be formulated in terms of an effective Hamil-
tonian involving the two polarization modes. We further
show that this Hamiltonian can be solved exactly to ob-
tain field dynamics. It may be added that the case of a
single mode through a Kerr medium has been analyzed
quantum mechanically.?”® Our analysis differs from the
existing one since we properly treat the changes in the
polarization characteristics as the field propagates
through the Kerr medium. The outline of this paper is as
follows. In Sec. II we consider classically one-
dimensional propagation of elliptically polarized light
through a Kerr medium. If the field is written as a super-
position of two circular components, then classically each
circular component acquires an intensity dependent
phase which is different for the two components. In Sec.
III, we quantize the field and find an effective Hamiltoni-
an that characterizes the interaction between two polar-
ization modes a and b. Explicit time-dependent solutions
for Heisenberg operators a and b are given. In Sec. IV
we present the time-dependent states of the field for two
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different initial states of the field. In Sec. V we evaluate
various physical observables and several aspects of pho-
ton statistics. We present numerical results for (i) the
mean number of photons in the two modes and (ii) fluc-
tuations in photon numbers. Finally in Sec. VI we exam-
ine the changes in the degree of polarization of light as it
propagates through the Kerr medium.

II. SUMMARY OF CLASSICAL RESULTS
FOR LIGHT PROPAGATION THROUGH FIBER

The induced polarization in a Kerr medium can be
written in the form’

P=yE+ A(E-E*)E+B(E-E)E* (2.1)

where y is the linear susceptibility of the medium and A4
and B characterize the nonlinearity of the medium. We
consider one-dimensional propagation and thus express
the electric field in the form

itkz —wt)
’

E=(g,X+¢e,5)e k=(w/cWV1+4rmy , (2.2)

where €, and ¢, are the components of the field envelope.
The Maxwell equations in slowly varying approximation
lead to the following system of coupled differential equa-
tions.?

de
azl 2’”‘" [A(e >+ e,)e, +B(e2+e2)et],  (2.3)
de
a—zz 2’”‘" [A(e, 2+ eyl De, +B(2+ed)ed].  (2.4)

In order to solve these equations, it is convenient to go to
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a circular basis

€,tig,
€+ ~ ’

R

le 2+ le 2 =le. [P+ e_|*,

2e,e_=gl+el.

The equations for the amplitudes €. are easily obtained

a;; =iplA(e >+ |e_|))+2Ble_|*Je, , (2.6)

)
£1(2) [1 ,-“‘ P o {1 i | [aO
e(z) |~ (1 —i 0 20 B | |1 —i| |e)0)

ie.,
£1(2) R PR ST |
ex2) |7 2 | (ot git-tBy  idiB ié B

Note that we can rewrite
O, =(A+B)|e > +le_P)FB(e, *—]e_[?) .
It is clear that if z is chosen such that
sin[BBz(|e . |*—]e_|*)]=0,
then
£4(2) €,(0)
£,(0)

=exp[iB(A+B)(le,|*+e_|*)z]

’

£,(2)
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de_ . 2 2 2
- =il A(le P+ |e_|»)+2Ble,|*1le_,
2w
= 2.7)
B ke?
Clearly |e, |> and |e_|? do not change with z and thus
x»:i(z)=eieiﬁz‘1>i ,
(2.8)

&, =A(le ?+|e_[>)+2Ble+|*.

The Cartesian components of the field can be obtained by
combining (2.5) and (2.8) and can be written in the matrix
form as

, (2.9)
81(0)

£,(0) (2.10)

(2.11)

(2.12)

(2.13)

where z is given by (2.12). Thus, for values of z given by (2.12), the field distribution returns to the original value except
for an overall phase factor. This overall phase factor is important in considerations of Berry’s phase.’
In general, when the field is treated classically its intensity at some point in the medium can be obtained from (2.10),

for example

le)(2)1*=1{]£,(0)1*+[e,(0)|*+cos(PzB)[ |&,(0)]*>— [e,(0)[*]+2]€,(0)|[e,(0)[cos(B)sin(DzB)}, e =aB*/|allBl ,

where ®=4B]¢e,(0)||e,(0)|sin(8). Thus, in this case, the
field exhibits simple sinusoidal oscillations except when it
is circularly polarized.

Finally the interaction energy between the polarization
and the electric field can be written as

E
H=— ["PSE. (2.15)
This interaction energy enables us to write the effective
quantum-mechanical Hamiltonian in the next section.

III. QUANTUM THEORY: BASIC HAMILTONIAN
AND SOLUTIONS OF HEISENBERG EQUATIONS
FOR FIELD OPERATORS

In order to describe the light propagation through a
Kerr medium, we express the electric field operator E in

(2.14)
[
the form
i 172
EM(z,)=i |52 | (aR+bFleike—en)
nv
k=2=2, 3.1
v c

where n is the linear refractive index, V is the quantiza-
tion volume. The localized annihilation and creation

operators obey the commutation relations
[a,a’1=[b,6"1=1, [a,b]=[a,b']=0. (3.2)

The interaction Hamiltonian can now be written in the
form

H=ﬁ§[(a*)2+(b*)2](a2+b2)+ﬁ4‘2l:<a*a +b7b)2
(3.3)
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where : : stand for the normal ordering of operators. The
parameters p(q) are proportional to the coefficient B( 4)
in Eq. (2.1). The Heinsenberg equations of motion for a
and b are easily found

a= —ipaT(a2+b2)'—iq(aTa +b%b)a ,

b=—ipbT(a?+b2)—igla’a+bTb)b .

(3.4)
(3.5)

These equations can be converted to the traveling wave
case by replacing ¢ by —z /v. On comparing (3.1) with
(2.3) we find that
oA’ o 4o’
vn* vnt
In order to solve the Heisenberg equations (3.4) and (3.5)
we introduce the Heisenberg operators analogous to (2.5),

A, B . (3.6)

a,= ai_ib ’
)
a'a,+ata_=a'a+b" , 3.7)
2a .a_=a’+b?.
Using (3.4), (3.5), and (3.7), we get the equations
a‘tz—i[(aia++ata__ g +2patasla, . (3.8)

. .. . ¥ +
Since p and g are real it is easily seen that a,a ,,a_a_
are constants of motion

a' (ha, (=a’(0)a, (0).

(3.9)

In view of these conservation laws, the integration of (3.8)
is now straightforward!®

a.(t)=exp —it[q(aia+ +a+,a_)+2pat,a¢] a, .
T + t T
(3.10)

For brevity the operators a, will stand for a . (0). The
Heinsenberg operators a(z) and b(z) can be obtained
from (3.7) and (3.10), i.e., from

a,(t)+a_(1)
a(t)=——F+—, b(t)=

V2

a (t)y—a_(t)
V72i
The action of Heisenberg operator a, (¢) on a coherent

state |a,,a_) is quite illuminating and useful in the
computation of the expectation values

(3.11)

a,,a_ )[ :e*th/ﬁ|\P(0)>:e~iHl/ﬁ‘a+,a7)
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aila,a y=aila,,a ),
— | 12 ' 2
lay,a_y=e ‘a1
(3.12)
(a+)"*(a*)"*
X ¥ ————=—lnin_).
nyan_ Vingln_!

On using (3.12) in (3.10) and the fact that [n,,n_ ) is an
eigenstate of both a La 4+, a_a_,weobtain

a(a,,a_)

—1/2la, P=172]a_|?

=a.e
(ay) " (a_)"”
2 e
Xexp{—it[g(n,+n_)+2pns]}, (3.13)
which can be summed up
ai(t)la+,a_)=ai|a+eﬁi6it,aﬁenioil) ,  (3.14)
where
0,=q, 6_=(g+2p). (3.15)

Thus, the Heisenberg operators a (¢) transform the ini-
tial coherent states into new coherent states whose ampli-
tudes are related to the old amplitudes via the phase fac-
tors.

IV. QUANTUM THEORY: EVOLUTION
OF THE STATES OF THE FIELD
AND THE GENERATION
OF MACROSCOPIC SUPERPOSITION OF STATES

In this section we examine the dynamical evolution of
the states of the system. The Hamiltonian (3.3) can be
written in terms of the operator a , :

H=§q:(01a+ +a'a_ )2:+2ﬁpatra+_a+a_ . (4.1
If, at t =0, the field is in a coherent state |a,a_), then

the field at time ¢ can be obtained by using the expansion
(3.12):

n

n
N i}
— —itiryh, —1/2la Po120a | (ay) "(a)
=e e ———\|n,,n_)
noon Viniin_!
n, n_
=172l P~ 172]a_|? (ay) "(a-)
=e ——|n,,n_)

n Vin ln_!

ny

X exp -2iptn+n_—ig£(n++n_)2+igi(n++n_) lny,n_).

(4.2)
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The series (4.2) cannot be summed up except for certain
special values of t. For pt =gt = it turns out that

e i
Y(t))= =
|w(r)) 75
Thus the state of the system at time ¢ given by pt =gt =17
is a macroscopic superposition of two coherent states.!!
The detailed derivation of (4.3) is rather complicated.
However, one can see the form (4.3) from (3.14) which for
pt =qt =1 leads to

(liay,ia_ Y+il—ia,,—ia_)). (4.3)

a,(Dag,a dY=a |—a,,—a_),

a_(a,a_)=a_|—a,—a_), @4
and, hence,

a’t (Ola,a_)=—d%|as,a ),

a* (la,,a Y=—ala,,a_ ), (4.5)

a_(tayWlas,a_)=—a_ala,,a_) .

These equations can also be written in terms of |a,,a_ ),
as

atla,,a_),=—adtla,,a_),,
ala,a ), =ail—a,,—a_),, (4.6a)
a_a, la,,a_),=—a,a_la,,a_),. (4.6b)

Equation (4.6) shows that |W(¢)) is an eigenstate of a?
with eigenvalues —a?. It is known that if |a) is an

eigenstate of the boson operator a

ala)=ala) , 4.7
then the eigenstates of a? can be written as
al(la)+edl—a))=aXla)+ell—a)), (4.8)
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where ¢ is a phase factor. Using (4.8) it is clear that
le,,a_ ), must have the form

la,a_),=Nlia ,ia_Y+e|—ia,,—ia_)), 4.9

where N is a normalized constant. The phase factpr ¢
can be fixed by the condition (4.6b).

Note further that the state of the mode a_ is not a
pure superposition state. In fact, using (4.3) the density
matrix for mode a . can be written as

pr()=Llia Yia |+|—ia Y —ia,]

. —2la_|?
—le

(liap Y —ia ] —c.c.)]. (4.10)

Next we find the state of the field at time ¢ given that at
t=0, the two modes a and b are in the Fock state
ln‘,,nl7 ). Note that the time evolution of the initial Fock
state [n,n_) (ata ln,,n_Y=n_|n,,n_))is simple
as the large parentheses in (4.2) already show

[n_,n_) =exp |—2iptn_ . n_ —it%(n,: +n_)?

+iz%(n++n,) n.,n_). (@11

In order to obtain |n,,n,), we will relate |n,,n,) to
[n,,n_). Note that since

T + + +
aa+bb=a,a,+a a_,

it is clear that the states involved must be such that
n,+n,=n_ +n_. Such a relation can be obtained from
the defining relations'? between a, b, and a . :

(—iW "™ (N—n)nWV(N—=D

N m
In,N—n)a,b=2_N/22 3

m=nl=m¥n

(m =N —m)(l—m +n)l(m —n)!

N—LI), . (4.12)

On combining (4.11) and (4.12), we obtain the time evolution of the field initially in a Fock state

In,N—n),,, =2 N2exp(—igtN*/2+igtN /2)

(=N " (N —n)nWII(N —I)

Thus, whenever pt is an integral multiple of 7, the state at
time ¢ is same as the initial Fock state except for a phase
factor.

V. DYNAMICAL EVOLUTION OF OBSERVABLES
AND PHOTON STATISTICS

The evolution of photon statistics p(n,,n,) can be
studied by using the relation (3.14) if the input state of

(m —DUN —m)) —m +n)l(m —

"1), exp[ —2ipt(N—=DI]IN—=L1), . (4.13)

f

the field is a coherent state |a,3):
ala,B)=ala,B), bla,B)=Bla,B),

which, in turn, implies that

(5.1

atif

ai‘a+:a— ) =ai—la+7a~ >’ ay = V2

From (3.14) it is clear that
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(ay,a_lal(Dar(Dlay,a_)=lasl?, (5.3)
(ap,a_lat (ha_(D|a,,a_)=a%a_(a,e T e ase T a_e )

=a1a-exp[—|a+l2(1-e+i(6+v9’“)—|a_|2(l~e“9‘v0+")] , (5.4
(a+,a_!aﬁ_(t)|a+,a_)=a2+e_i9+t(a+,a_|a+e_2i0+’,a_e-2i9_')
—ate texp—la,|M1—e P —la_|A1—e Y. (5.5)

Note that
0 —6,=2p . (5.6)

On using (3.11), (5.4), and (5.6) we find that mean number of photons in the two Cartesian modes
(a'(a(n))=lal*+|BI2~ (b (1)b(1)
=%(|a+I2+|a_|2+{a1a_exp[—|a+]2(1—e_2i"‘)-|a-|2(1—e2’p’)]+c.c. })

=L(la|*+ B>+ {(|a|*—B|*)cos[x ()] —2|a||Blcos(8)sin[x ()]} exp[ —2(|a|*+ |B|*)sin’(pt)]) , (5.7)

[
where function of pt for various values of a and B. Also note
_ P that, if the field is initially circularly polarized (.e., if
x(1)=2|a||Blsinbsin(2p1) , (5.8) 0=m/2and |a|=1pB]), then its intensity does not change

exp(i@)=aB* /|al|B| . as it propagates through the medium. The quantum
) ) features in the light propagation can be seen from a com-
This shows that the number of photons in each mode 0s-  parison of these figures with the behavior that follows

cillates with frequency 2p|al ]lf!lsin(()) about the average  from (2.14). For example, for 6=0, the solution (2.14)
of the number of photons in the two modes. For  shows that the light intensity in the mode a does not
6=0, 7 /2 these oscillations are centered at ¢, =nw/p and change as the light propagates through the medium. The

are enveloped by approximately a Gaussian of width quantum theory (curves A in Figs. 1-3) shows a definite
=3 2 2)11/2) periodic evolution. For other values ‘of 0, the classical

by 2/(pllal*+1BIM17) theory shows a simple periodic evolution. However, the
Thus, during the quiscent period, there is an equal num-  quantum theory shows oscillations around pt=nm en-

ber of photons in the two modes. For x =0, i.e., for §=0  veloped approximately by a Gaussian. Note that the
and also for |a| or |B] =0, the frequency of oscillations is  classical limit is obtained by letting p—0 as p is propor-
zero. Hence, in this case, these are pulses of photons of  tional to #. Thus x (£)—4|a||B|pt sin6, which would be
height |al?, centered at t,, having base value independent of # because fi|a||B| is proportional to the
(lal?+|B1%)/2 and width ¢,. These characterlstlcs square roots of the intensities of the beams along two

apparent in Figs. 1-3 where we have plotted (a'a) asa  axes.

Next, the correlation between the two quantized modes
is found to be
| /\ /\ : /\ Y
‘ vl
] 8 B
Jk J& \) K[ W W c W
8 10

0

10

< ata>
7.0

< ata>

10

°
o ptS V

FIG. 1. {a'(t)a(1)) as a function of pt for the two modes in ) 2 4 t I
the coherent state |a,8) with |a|?*=10, |8]>*=1, and 6=0 (curve P
A), 6=17/4 (curve B), and 6=1/2 (curve C). FIG. 2. Same as Fig. 1 but for |a|>=10, |B]*>=5.
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(aT()b(r) 2—217( lay I —la_|>—{a%a_exp[ —lai|X(1—e 2P)—|a_|}(1—e?P)]—c.c.}) . (5.9)

The higher-order moments of the field operators can be obtained by repeated application of (3.14). For example, one
has the result

(ay,a_la?Dlap,a_y=a%e "+ Na,a_lase " a_e ") (5.10)
Thus, quantities like Q and I can be computed
t 2.2 Y | 2 ty2,2 ty25,2yy1/2
0= ((a'(®))Ya*(1))—(a'(t)a(2)) ’ 7= @) (b 1b2))' 2 5.11)

(al(t)a(t)) [{atabb)]

The quantity Q is a measure of the sub-Poissonian (Q <0) or super-Poissonian (Q > 0) statistics of the field. The quanti-
ty I is also a measure of the nonclassical nature!* of the field. A negative value of I will imply that the underlying P dis-
tribution has nonclassical properties.

We can evaluate Q (¢) and I (¢) by using Eq. (5.7) and the following results:

(a'ab’)=L[(|al*+|B*)*+4|al?|Blin%(6)]
—sexp[ —2(lal*+ B [{[(al*—|BI*)* —4|al?|Bl*cos*(6) Jcos(y)
—4|alBlcos(0)(|al®*—IB*)sin[y (D]} , (5.12)
(@"a?)=4+B, ((b"b?)=4-B, (5.13)
where
A=1L[3(lal*+|B1*)>—4|al?|Bl|*in*(0)]
— Lexp[ —2(la|>+|B1%)sin(2pt )] {4]al|Bl(|al>—|BI*)*cos(O)sin[y(1)]
—[al?—=1B1*)?—4|al?|B|*cos*(8) Jcos[y(1)]} , (5.14)
= Lexp[ —2(|al?+|B]2)sin’(p)]((|a|*+B81*)(|a|>—|BI*)cos[x (£)+2pt ]
—2|a||Blcos(0){(|a|?>+ |B|*)sin[x (¢)]cos(2pt)+2|a||Blsin(O)cos(x )sin(2pt )} ) ,
(5.15)
y(1)=2|a||Blsin(O)sin(4pt) . (5.16)

In Fig. 4 we have plotted Q(¢) as a function of pt. We find that Q(7) exhibits antibunching [Q(?) <0] in a small neigh-
borhood of pt =n for 60. This can also be seen by analyzing the analytic expression for Q (¢). We have also numeri-

o
a1 S A
O= 2 \/
o] <«
A —
o] N/ /V -+
©e B —~o
VZ' O~ B8 A
Y
m o |
~ =
o~
\( ¢ ’“‘ M\f : Wﬁ
o el
-0 1.5 3.0 pt4.5 6.0 7.5 0 1 2 pJE3 4 S

FIG. 4. Q(?) as a function of pt for the two modes initially in
the coherent state |a,B) with |a|?=10, |8|*=25, and 6=0
FIG. 3. Same as Fig. 1 but for lal?=10, |B]*=25. (A), m/4(B), and m/2(C).



40 QUANTUM THEORY OF PROPAGATION OF ELLIPTICALLY ...

5185

cally evaluated 7 (¢), which is found to remain positive at least in the range of times shown in Fig. 4.
In the above discussion we have taken the initial state to be a coherent state |a,8). The results for other states can
be obtained by averaging over the initial P distribution of the field. For the initial Fock states the mean value can be

obtained from the relation

e_('a|2+|ﬂ|2) a2nn+2nb

(ng,nylGlng,ny )= "

da"*da" " 3B ap" "

e”"lzﬂmz)(a,BlGla,B)

(5.17)

b
a=a*=p=p%*=0

where G is some operator like number operator. If G is chosen as a'a then, as shown in the Appendix, the mean num-

ber of photons in mode a is

(a'(ta(t))=

ngt+n,+(n,—n,) S

N | —

The evolution of {a'(t)a(¢)) as a function of time is
exhibited in Fig. 5 for n, =25 and for different values of
n,. The photon number oscillates about the average of
the number of photons in the two modes. For n,=0,
there are only “pulses” of photons centered at pt =nm /2.
For n,70, the oscillations develop. These oscillations
are, however, qualitatively different from the ones ob-
served in a field, initially in coherent state.

VI. QUANTUM-MECHANICAL CHANGES
IN THE DEGREE OF POLARIZATION

In this section we show that the quantum nature of the
field changes the degree of polarization of the field. This
is in contrast to the result in the semiclassical theory.
The degree of polarization P can be defined'® in terms of
the elements of the coherence matrix J

(a'a) (a'b) 4detJ
(bta) (b'b) (T

Let us assume that the initial state of the field is a

(6.1)

’

~™
- A
-«
N &
e}
"rd'\ B
v ™1
c
*
<
o~
v ng T T T )
0 1 2 pJ( 3 4 N

FIG. 5. {a'(t)a(1)) as a function of pt for the two modes ini-
tially in the Fock state |n,,n, ) with n, =25 and n,=0 (curve
A), n, =10 (curve B), and n, =20 (curve O).

" nglnyM(—1)'sin?(2pt )[cos(2pt)]" 2!
=0 (n, — DN, — DIIN? » Mp>Ng . (5.18)
[
coherent state |a,B), then
a*a a*p
= lag* gl P=1- 6.2)

The time dependence of the coherence matrix can be ob-
tained from (5.7) and (5.8). Calculations show that

4|a+ IZ’a— |2
(lapP+la_|??

X(1—exp{—2(la,2+]|a_|?)

PXt)=1—

X[1—cos(2pt)]}) . (6.3)

The degree of polarization is unity when

pt=nm, (6.4)

otherwise |P(t)| <1. Thus, the quantum nature of the
field converts a fully polarized field into a partially polar-
ized field. In general, the degree of polarization remains
unity only if a, or a_ =0, i.e., for input fields which are
circularly polarized one way or the other.

Note added in proof. We have learned that Chandra
and Prakash have also studied the squeezing characteris-
tics of light propagating through the Kerr media.
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APPENDIX: DERIVATION OF EQ. (5.18)

In this appendix we give a derivation of Eq. (5.18), i.e.,
the expression for the mean number of photons in a
Cartesian mode when both the modes are initially in a
Fock state.

Let the initial state of the field be |n,,n,), where
n,(n,) is the number of photons in mode a (b). The aver-
age

(ng,nylat(a()|n,,n,)

is then given by Eq. (5.17) with G=a'(t)a(r). Now, us-
ing Egs. (5.7) and (5.2), we have
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(a,Blat(t)a(t)|a,BY =1(|al*+|BI%)
+%{[(la[z—|B|2)-—i(aB"+a'B)]exp[(a“B—aB" )sin(pt )]1+c.c. Jexp[ —2(|a|?+|B|*)sin(q?)] .
(A1)
Next we substitute Eq. (A1) in Eq. (5.11) and evaluate {n,,n,|a (t)a(t)|n,,n, ) by using the following results:
82("a+"b)
1=— — - [exp(x,|a|2+x2|B|2+x3a*B+x4aB*)](aza*zﬂzﬁ*=0
da “da* 9B *3B*
2n n
- __,,__-TexP(xl lal?) n, exp(x,aB*)(x,B* +x;a* ) |a=a*:B*:0
da “oa* aB*
2n, "y (n !)Z(X x )l|a|21x"h_l
=————a——nexp(xl|a|2)z > 4 > 2
aa"aaat" 1=0 (n, —INIY) w*—0
n, —1
" (1)) (x3x ) a|¥x 5
_ 2 b 34 - 2 (A2)
1=0 (na—l)!(nb—"l)!l!
It then follows that
g2mat )
- P " (]a|2i|B|2)exp(x,|a|2+x2|B|2+x3a‘B+x4aB")|a___a.=B=B,:0
da “da* 9B *oB*
_ar ar | Dy lin, —DxpEny —Dx e e ey
ax, " ax, | & (ng,—IMny, — U2 ’
(A3)
aZ("a+"b)
- . —(a*B+ap* )exp(xl|a|2+x2|[3’12+x3a*/3+x4a[3’*)la=a*:ﬁzﬁ*=o
da “da* ‘3B " 3p*
ar | ar M 1n Dm0yl —x) e Xy
=2 9 . (A4)
ax, | ox, /2 (n, —Dn, — Y
Substituting Eqs. (A1), (A3), and (A4) with appropriate values of x,’s in Eq. (5.17) we obtain
. n +n, —2/—1
1 "a n,lny,(—1)'sin?(2pt)[cos(2pt)]* *
(nynylat(a(t)ng,n,)== |n, +n,+(n,—n,) (AS)
: Ina:mp 2 b P> (ny —INn, —DUIN?

1=0

which is Eq. (5.18).
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