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Nonclassical light beams generated by the degenerate optical parametric oscillator operating
below threshold are analyzed in terms of photoelectron-counting sequences. The positive-P repre-
sentation is used to calculate the generating function for photoelectron statistics in a closed form.
This generating function is used to derive expressions for the photoelectron-counting and waiting-
time distributions. The dependence of these distributions on mean photon number inside the cavity
and e%ciency of detection is studied. The relationship between photoelectron-counting sequence
and the photon emission sequence is used to present a simple physical picture of light beams pro-
duced by the degenerate parametric oscillator.

I. INTRODUCTION

Squeezed states of light have been observed in a variety
of physical systems. ' These states do not admit a posi-
tive nonsingular diagonal representation in terms of
coherent states and are, therefore, an example of nonclas-
sical states of the electromagnetic field. Since squeezing
only refers to the variance of the two quadrature com-
ponents of the electric field, it does not fully characterize
these states. With experimental realization of these
states, increasing attention is being paid to their
quantum-statistical properties. ' These properties for
idealized squeezed states are well known. The systems
in which squeezed states have been observed experimen-
tally are dissipative nonlinear systems, and photon sta-
tistical properties of squeezed states produced by these
systems have received much less attention.

The largest amount of squeezing has been observed in
an optical parametric oscillator (OPO) operating below
threshold. ' This simple dissipative quantum system has
played an important role in recent studies of squeezing.
In an OPO (Ref. 10) a strong pump beam interacts with a
nonlinear crystal and is frequency down-converted into
two beams of smaller frequencies inside an optical cavity.
If the two beams produced in down conversion have the
same frequency, then the oscillator is termed a degen-
erate parametric oscillator (DPO); otherwise it is termed
a nondegenerate parametric oscillator (NDPO). A
quantum-mechanical treatment of the OPQ is of course
essential since it generates light with nonclassical proper-
ties.

For an oscillator a distinction must be made between
intracavity photon statistics and the statistics of photons
emitted by the cavity. Intracavity statistics are not
directly observable. The statistics of photons emitted by
the cavity can be measured in photon-counting experi-
ments. The statistics of the field inside and outside the
cavity are, of course, related. Many recent studies of the
quantum-statistical properties of the DPO have centered
around the calculation of the spectrum of squeezing"'
inside and outside the cavity because of the subtleties in-
volved in the detection of squeezed light. Intracavity

field statistics were discussed by Drummond, McNeil,
and Walls' by using the complex-P representation and
by Graham by using the Wigner function' . More recent-
ly, Wolinsky and Carmichael ' have provided a corn-
plete description of the quantum-statistical properties of
the intracavity field by using the positive-P representa-
tion. For the photons escaping the cavity, the mean and
variance of photon counts have also been calculated by
Collett and Loudon. '

In this paper we discuss the quantum-statistical prop-
erties of photon beams generated by an OPO as measured
by a detector placed outside the cavity. These properties
can be studied in photoelectric-counting and correlation
experiments with low-intensity light beams appropriate
for an OPO below threshold. From the measured photo-
electron statistics, photon statistics of the incident light
beam can be derived. For a detector of unit efficiency
each photodetection corresponds to an emission of a pho-
ton by the cavity. In this case, the photoelectric-counting
sequence and the photon emission sequence are
equivalent. We begin by expressing the photoelectron-
counting statistics in terms of a generating function in
Sec. II. The statistics of the waiting time between succes-
sive photoelectric counts can also be derived from the
same generating function. In Sec. III the c number equa-
tions of motion for the DPO operating below threshold
are presented. This is done by using the positive-P repre-
sentation. The solutions to these c-number equations are
used to obtain a closed form expression for the generating
function. From this generating function exact expres-
sions for the photoelectron-counting distribution and the
waiting-time distribution are derived in Sec. IV. Intra-
cavity photon statistics are discussed in Sec. V. We con-
clude by summarizing the principal results of the paper in
Sec. VI.

II. THE GENERATING FUNCTION

Consider a photoelectric detector illuminated by a sta-
tionary weak beam of light. The probability p(m, T) of
detecting m photoelectric counts at the output of the
detector in a time interval T is given by'
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p(te, T)=(T: t) f ~r(t)dt exp —t) f 1(t)dt
m! 0 0

this system with perfect phase matching is given by'

H= —,'ii)t(za b —ted*a b ")+i%'I (Eb .—E*b)+H„.. .

where 0~ ii ~ 1 is the efficiency of detection and I(t) is
the photon-flux operator expressed in units of photons
per second. The colons denote normal ordering of the
enclosed operator product and T stands for time order-
ing of the operators to the right. The angular brackets in
Eq. (1) denote the expectation value with respect to the
state of the incident light beam. The photoelectric-
counting distribution p(m, T) can be derived from the
generating function

G (s, T)= T:exp —si) f I(t)dt
0

(2)

Note that G(1, T)=p(O, T) so that G(1, T) is the proba-
bility that no photoelectric counts are registered in time
T. In terms of G (s, T), we can write

( —1)
p(m, T)=

m!
dm

G(5, T)
d$ s=l

(3)

and the factorial moments

(m'")) =(m(m —1) (m —r+1))
of m can be derived from

s=0
(4)

(T)=te)('71(Tt)e p
—

stx) f 1(t)dt J(0):) (1)
0

and is related to G (s, T) by

Another quantity of interest in describing the
photoelectron-counting sequence is the waiting-time dis-
tribution u)(T) such that tt)(T)dT is the probability that
the waiting time between successive photoelectron counts
lies between T and T+dT. This distribution is given
b s

where ~ is the mode-coupling constant which can be ex-
pressed in terms of the third-order nonlinear susceptibili-
ty of the crystal and certain integrals over mode func-
tions, b and b are the creation and annihilation opera-
tors for the pump mode, and a and a are the creation
and annihilation operators for the subharmonic mode.
The dimensionless classical-field amplitude c is defined in
such a way that

~
c

~
gives the number of photons incident

on the cavity in one lifetime of the cavity (2I )
' at the

pump frequency. Decays of cavity modes are introduced
in the usual way by coupling cavity modes to zero-
temperature reservoirs and a Markov master equation for
the density matrix describing the coupled cavity modes is
derived. This equation is converted into an equivalent set
of classical Langevin equations by introducing an ap-
propriate phase-space representation of the density ma-
trix. The familiar coherent-state diagonal representation
is not useful in this case because it does not lead to a
Fokker-Planck equation with positive-definite diftusion.
This difhculty is removed by the use of the positive-P rep-
resentation' which leads to a Fokker-Planck equation.
The corresponding Langevin equations for the subhar-
monic mode, below threshold, where pump depletion is
negligible, are' '

a= — yacc a~ +& i~ps, (t),
a„=—ya, +Irma+& t(rs(t2), (9)

where (2y) ' is the cavity lifetime at the subharmonic
frequency. The Langevin noise terms gi(t) and gz(t) are
two statistically independent real Gaussian white-noise
processes with zero mean and unit intensity and a and n,
are two complex variables associated with the operators a
and a, respectively, in the positive-P representation. If
p represents the density matrix for the subharmonic field,
then the phase-space density P in the positive-P represen-
tation is introduced by'

p= f f d ad a„P(a,a„),
B

(10)

for a stationary beam of light. In general, higher-order
waiting-time distribution functions are needed to describe
photoelectron-counting sequences. Here we will concen-
trate only on u) ( T). Once the generating function G (s, T)
is known, the photoelectron statistics and photoelectron
waiting-time distributions can be calculated from Eqs.
(3), (4), and (6).

III. EQUATIONS OF MOTION

Consider two quantized modes of a cavity having fre-
quencies 2' and co and interacting with each other via an
intracavity nonlinear crystal. The high-frequency mode,
termed the pump mode, is excited by an injected classical
signal. In the interaction picture the Hamiltonian for

where 2) is some suitably chosen domain in the four-
dimensional phase space spanned by the complex vari-
ables a and a~, so that P(a, a, ) is real, positive, and nor-
malized to unity. The complex variables a and a, are as-
sociated with the operators a and a by a ~a ) =a ~a ) and
(a„~a =a„(a,~. Unlike the diagonal representation a
and a, are not complex conjugates of each other. This
means that Eqs. (8) and (9) describe trajectories in a four-
dimensional phase space. By means of the positive-P
function the normally ordered operator averages can be
calculated as c-number averages according to the
correspondence

(a~ ™a")= f f d ad a„a„a"P(a,a, ) . (11)

Since Eqs. (8) and (9) are equivalent to the Fokker-Planck
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equation for P(a, a„},the averages such as those in Eq.
(11) may be carried out with respect to the trajectories of
Eqs. (8) and (9). By writing I~E = ~~E ~e

'~ and introducing
new variables x and y by

Let us introduce Hermitian operators
—i $/2 +~ f i P/2

—i//2 ~ f iP/2 (22)

cx =xe
(12) 2l

=ye

we find that Eqs. (8}and (9) can be rewritten as

x = —yx+I~Ey+~/lac P, (t),
y = —yy +x sx + i/

~
tr E

~ gz( t ) .

(13)

k, =(y —
~irE~ ), Az=(y+ ~i~a~ ),

4+4'
2

' v'2

(15)

the coupled set of equations [(6) and (7)] leads to the fol-
lowing uncoupled equations for the random variables u1
and 02.

u (
— A. i u ) + v

~
ice /2q ( ( t )

u, = —
A,,u, + v'11~el/2q, (t) .

(16)

(17)

The threshold of oscillation is at ~vE~ =y so that below
threshold ~x's~ & y and both decay constants k, and A, 2 are
positive. The noise processes q, (t) and q2(t) are real
Gaussian white-noise processes with

These equations ensure that in the steady state the vari-
ables x and y are real because any imaginary parts to
them decay away. These equations also preserve x and y
as real quantities if they are real initially. The initial
state of the oscillator, when it is turned on, is the vacuum
state with x =O=y and this is su%cieIlt to guarantee that
x and y will stay real for all times. If we introduce new
real variables by

x+y x —y

(24)

Thus the variables u, and —iu2 correspond, respectively,
to the unsqueezed and squeezed quadrature components
X,&

and X2& in the positive-P representations. With solu-
tions (19) and (20) we can now evaluate the generating
function G (s, T). First we note that positive Pallows u-s

to evaluate normally ordered averages as c-number aver-
ages so that

T
G( , )s=T(e p x— sfs)1(t)dt

)0
(25)

where I(t) =2yaa„ is the photon-number fiux variable
for the photons emitted by the cavity. The average in Eq.
(25) is to be evaluated with respect to the trajectories of
the variables cz and a„. Using Eqs. (12), (15), and
(19)—(21) in Eqs. (25) we find that the generating function
can be written as the product

G(s, T)=Q, (s, T)Q2(s, T), (26)

where the phase angle P is defined in Eq. (12). Normally
ordered moments of X

&
can be evaluated by using Eqs.

(11), (12), (15), and (19)—(21). We find for the mean,

&&,~) =(u, &=o,
(23)

(&, )= —&, )=0,
and for the normally ordered variance, with AX-&
=x,q

—(x,~&,

u, (t)= dt'e '
q (t)'),

(q, (t)) =0, (q;(t)q (t')) =6, 6(t —t'} .

The steady-state solutions to Eqs. (16) and (17) are
1/2

(18)

(19)

where
T 2Q, (s, T) = (exp —2ss)T f e', (t)dt

T 2Q, (s, T)=(exp 2ss)T f tst(t)dr (28)

f dt'e ' )q2(t') . (20)

It follows from Eqs. (17)—(20) that the variables u i(t) and
u2(t) are statistically independent real Gaussian random
variables with mean and variance given by

(u, (t)u, (t')) =— 6,,e
1 /ac.

i

I

(21)

The variables u, and u2 have a simple interpretation in
terms of the unsqueezed and squeezed quadrature com-
ponents of the subharmonic fields produced by the DPQ.

The factorization in Eq. (26) occurs because u, (t) and
u 2 ( t ) are statistically independent random processes.
The problem of the evaluation of the generating function
now reduces to the evaluation of Q) (s, T) and Qz(s, T).
Since u, (t) and uz(t) are Gaussian processes with ex-
ponential correlation functions, both Q, (s, T) and
Q2(s, T) can be evaluated in closed form following the
method of Slepian. ' Principal steps in this derivation are
outlined in the Appendix. The results for Q, (s, T) and
Qi(s, T) are

T/2
1

Q)(s, T)=
Z1

cosh(z, T)+ — + sinh(z& T)
2 Z

L
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Q2(s, T) = —.

where

A, ~ T/2
e

cosh(zz T)+ — ++ smh(z2 T)
Z2 2

(30)

where

& m,")=( —1)" i(s, T)
ds s=0

2= 2z 1
=k1+ 2$'gpKE

2= 2
Z 2 k2 2$7jgKE

(31)
(36)

IV. PHOTOELECTRON-COOUNTING STATISTICS

mto Eq. (1) and uSubstituting Eq. (26)
1 to t th de i6'erentiation e

be written as
g photons in time T can

, (m, T)=-
m! r=0

dm —r

-Q, (s, T)

Q2(s, T)
ds s =1

= g p, (m r, T}p2(r, T), — (32)

where p, r, T) for j =1 2 are g bare given by

p, (r, T}=- Q, (s, T)
$ s=1

Note that the variable z
rameters the variable z

ria e z, is always real. For physical pa-
ria e z2 is also rea1. Thi

Q (,T)i lid fi dfo 11

d (29)—(31) d
0 b 1o h ho ld

p oton-counting statistics
o . We now rocp eed to discuss

Once again the last relation allows us
1. Th fe actorization thata oc u s in Eqs. (32)

gain re ects the statisti
the variables u and u .

is ical independence of
, an u, . Equations (32) ( )

ll ol d h

'

y o t e correspondin
ermal light be

t E (32)
types of photons. Th

q. to mean that s wot the cavity emits t

d' th t' '
t 1T

in g rom various co b'
erva may then be int

m inations of these
erpreted as com-

Th'

d b b'1a i ities; the function i

e unction p (m
for odd values fo its argument m. Th

becomes negat' ive

th 9 of (

hortl . Th 1 h h, a ough the ex rep ess ons in Eq. (32) d
a y similar to those f ib, h i h i 1ica content is uite

ig

Th iti -t d'g- im w is obtained by us-

venient to rewrite the ener
form

'
e e generating function G( Ts, )inthe

2r k
D "'(1)p (r —k, T) . (33)

The last relation allows us t 1

The coefficients D' '
us oevauate p (r, T) recursivel .

s are givenby

dz. ,

( 1)k+1
&kI

ds k!
Z T J + J

2 z A,J

+z T 1+— i , (z, T) (34)
ip

where ik(x) aree modified spherical Bes
y cto a oure using Eq. (4) ields

-counting distributi-co t
'

ion in t e form
ments GAP

18

&
m'"') =( —1)" Q, (s, T)Q2(s, T)

& m ',
"I ) & m '," ")

s=0

(35)

FICr. 1. Photoo oelectron-countin ro
function of m and them an the counting interval
photon-number n =0.01. T e curvese curves are meaningful on y for i-
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(2y —z) —
z~ )? /2

G(s, T}=[(1—A, )(1—A }]'
[(1—A, e ' )(1—Aze ' )]'

(37)

where

Z ]
2

1 z)+XI
'2

Z2
—

A2

Z2+A2

(38)

We then obtain

u(1T)=(2yqn ) 'G(1, T)

z] AI
—,'(z, +z~ —2y)+

z2A2+
2'2 T

e ' —A2

2Z] T

+2,', ,'

(
' —A )

2 2'2T
z2A2e+2

1 g )2
(39)

=G (1,T) —,'(z, +z~ —2y )

z] A)+
2zl T

e

z2 A2+
222 T

e
(40)

The counting distribution, together with waiting-time
distribution, provides a clear picture of photoelectric-
counting sequence. %'hen the detector has unit detection
eSciency g= 1 each photoelectric count corresponds to
an emitted photon. In this case the photoelectric pulse
sequence is a true representative of the photon sequence
emitted by the cavity. If the e%ciency of detection is less
than unity g & 1, the photoelectric pulse sequence is relat-
ed to the photon emission sequence only indirectly. %'e
consider the g= 1 and & 1 cases separately.

A. Unit detection e%ciency q= 1

In this case we can speak of photoelectric counts regis-
tered by the detector and photons emitted by the cavity
interchangeably because each photon emitted by the cavi-
ty is registered by the detector as a photoelectric count.
The counting distribution p(m, T) exhibits a variety of
shapes depending on the value of the parameter ~xe~/y
and the counting interval T. The parameter
0 ~

~
ae

~ jy ~ 1 is related to the mean photon number n in-
side the cavity by

for the waiting-time distribution, where z] and z2 are
given by Eqs. (31) with s =1. We can also obtain the
probability P, ( T) that the first photodetection occurs at a
time T after counting is started arbitrarily at time t =0.
This probability is given by

P, {T)= — G(1, T)
d
dt

n =(a,a) =—
y' —fee/'

q

(41)

G(s, T)= 1 ——s exp[ —(m )/2+(m )(s —1) l2] .
2

This equation leads to the following expressions for the
counting probabilities:

fl 2m
p{2m, T)= 1 ——1+

2 (m)

m

2

(43)

The counting distribution p (m, T) for low-mean-photon-
number n is shown in Fig. 1 as a function of m for several
di6'erent values of the counting interval T. It will be seen
that for short counting times T such that 2y T ( 1 [count-
ing time T less than T, =(2y) ', the cavity lifetime]
p(m, T) monotonically decreases as m increases. For
longer counting intervals 2y T & 1 the counting distribu-
tion shows even-odd oscillations. The probability of
counting an odd number of photons is small compared to
the probability of counting an even number of photons.
The depth of these modulations increases with increasing
counting interval and in the limit 2@T)&1 the odd
counting probabilities become negligible compared to the
even counting probabilities. These oscillations in p (m, T)
can be understood in terms of the fundamental process of
generation of photons inside the cavity. Photons are pro-
duced simultaneously in pairs ' inside the cavity in the
process of frequency down conversion. These photons es-
cape the cavity independently with a lifetime of the order
of the cavity lifetime T, =(2y) '. For long counting
times 2y T & 1, there is a preponderance of even photon
counts because both photons from each pair eventually
escape the cavity. In the steady state the mean rate of
production of photons inside the cavity equals the mean
rate 2yn of photons escaping the cavity. At low-mean-
photon-number n «1, photon pairs are created inside
the cavity at an average rate yn corresponding to an
average pair separation T =(yn ) '. Once a pair is
created inside, both photons escape the cavity within a
time of the order T„ long before another pair is pro-
duced. The cavity is quiescent for long periods of the or-
der of T and emits only for short durations of the order
of T, whenever a pair of photans is created. Outside the
cavity, therefore, photons appear to be coming out in
pairs with photons in a pair separated from each other,
on the average, by a time of the order of T, and each
such photon pair separated from the next one by an aver-
age time T . The qualitative picture presented here is the
one that naturally emerges from Eqs. (32) and (39) in this
regime of low-mean-photon-number n. For n «1 and
2yT)) 1, the generating function G(s, T) has the form
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p (2m + 1, T) = n
I

m!
('m )

e
—(m &/2 (44) n = 0.01

where

(m ) =r12ynT (4S)

is the mean number of photons de
~

p otons detected in the interval T
g po

en counting probabilities [Eq. (43)]
e ne a oisson distribution of ho
do b hy e cavity at an average rate n a

second corresponding to the mean num

'
i y r, that the cavity emits r

the interval T by

'

y mi s r photon pairs in

~( 7 )
—{m )/21 (m~

r! 2
(4e)

The a roxipproximate expressions [(43) and 44
d ithth td bexac tstribution (32) in Fi

found that Eqs (43) d (44) dprovide a good approxima-
o e exact countin r b

(I~El�

/y (0 1) dy . and 2y T)) l.
g pro abilities for n ~0.02

The inter reta
'

p tation of photons emitted b th
terms of photon pa' 1

i e yt ecavityin
pairs a so emerges from t

di rib io ( T) hiw ich describes the time in
t a hoto d t de ecte at time t andn the next detected

is distribution. derived f
g. . i i ct time scales visibl

q t tatively with th

w
' '

rom q. 39) when n is small. This

w(T)=2yne r" —(1+1
e )+—3+—

2 n

(47)

CI

n, = 0.01

Cl
CS—

12

FICi. 2.Ci. . Comparison of the exact countin gpo
approximation (dotted curve

and (44) for n =0.01 and 2
only for integer values of m

and 2y T =200. The curveves are meaningful

FIG. 3. hotoelectron waitin -time d'' 'ng- ime istribution w(T) as a
e waiting-time T. The full curve is

the dotted curve is Eq. (47).

w(T)=2 n= yn ( ~, ( T)~( T)~„(0)~(0)) /( «)'
=:2yng "'(T), (48)

so that w(0)/2yn is a direct measure of
ft' t hibit d b h

'
e y p otons emitted b the

emitted photons exhibit muc
s m 2yn =2 but

s t e pump amplitude increases, n r
b hc anges. With increasin um
hoto airs are co 1co p inside the cavity.copious y produce

cavi y p oton number n rows
ti it 1 herva, p otons from man a'

side contribute to th h
y pairs created in-

e o e photon Aux from the c
is no longer possibl te o speak of hoton

e cavity and it

th it . Altho h t o t
en-o oscillations for lar e cou

h d d smaller. An ex-en-o modulations are
m, or a large-cavit y photon number n is

pression for p(m T) in
ig. . t is not possible to derive've a simple ex-

counting-time limit. W
m, in t is regime exce t ip in the short-

lowing approximation for the
imi . en 2@T&(1 we obtaiain the fol-

ion or t e generating function:

G(s, 7 )=[1+2n —2n(g / 7"—1yrj — ) ] (49)

where we have kept enough terms

o
= " y" g'

r e normalized normall
ment of the li ht

y ordered second mo-
e ig t tntensity. Equation (47

d d i Fi 3n ig. and is found to be
mation to th

be a good approxi-

z' —1

e exact res ul

, —(2y) corresponds to the mean s
t. The short time

e ong time con
n s to t e average separation ofof successive pho-

i e y the cavity. The value
2y T «1 is related to h
the light intensity by

e o t e normalized second moment of
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0.4 0.6
I

0.8

FIG. 4. PhPhotoelectron-counting probability p ( m, T) for
large-mean-photon-number n =5. Th e curves are meanin ful
only for integer values of m.

g

FIG 6 Com
u(T

parison of the exact waiting-ti d' t bme is n ution

b
) {full curve) with the approximat' (d h dion as e curve) given

y E~. ~&, in the large-mean-photon-number (hi h-d51
limit n =5.

m er &g -degeneracy)

For n not too small we can derive the following expres-
sion for p (m, T):

( T)
(2 —1)!!

(1+2( ) )m+1/2 (50)

This expression is compared with the exact counting dis-
tribution in Fig. 5 and is found to be a very good approxi-
mation.

e arge n regime ise waiting-time distribution for th 1

s own in Fig. 6. The time scale T, = (2y )
' is

suppressed. The dominant time scale in this case is the
mean separation time T, =(2yn )

' between photons em-

itted by the cavity. This is the so-called high-degeneracy

I

4

FIG. 5. Com
*

(m
omparison of the exact countin b b'l'ing pro a i sty

p m, T) (full curve) and the approximat (d d
b E . 5

a ion otte curve) given

y q. (50) for short counting times in th 1'n e arge-mean-photon-
number limit n =5 and 2@T=0.5. Th e curves are meanin ful
only for integer values of m.

1'imit that was discussed in Ref 8 I th 1'n is imit, n ))1,
we arrive at the following expression for w ( T}:

w(T}=2yn 3

( 1+4,.-T} ~

which reproduces exact distribution for all values of T for
which w ( T) is not too small Th' d' '

gis istn ution agrees
with the corresponding distribution for an ideal squeezed
state in the high-degeneracy limit. The dot
Fig 6 h E .ig. s ows Eq. 51}.

i . e otted curve in

(51)

B. Nonunit detection e%ciency & 1

2l"
p(rn, T)= g q (1 —i})'" p(r, T),

r =[m/2]
(53)

ess an unity weW en the detection efficiency is less th
must istinguish between the photon emission sequence

y e photoelectric-counting sequence
recorded by the detector. This is because not every pho-

r e as a p otoelectricton emitted by the cavity is recorded as a h
count. The nonunit detection efficiency is equivalent to
con vertin the hg e p oto-emission sequence into a photoelec-
tric pulse sequence by randomly selecting the d de etecte

The effect of nonunit detection efficiency on p(m, T} is
shown in Figs. 7(a) and 7(b) for small- and large-m
p ton-number n. It will be seen that with decreasing

fade and for
etection efficiency the even-odd o 11

a e and for g « 1, they are completely washed out. This
is because at low detection efficiencies both photons from
a pair may not be detected. For «1n we can arrive at
the following expression for 6 (s, T) when q is small.

G(s, T)=exp[ —(m )/2+(m )(sg —1) /2] . 52

Using this result in Eq. (3) we find
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V. INTRACAVITY PHOTON STATISTICS

In this section we discuss the cavity photon occupation
probability P(n) such that P(n) is the probability that
the cavity contains n photons in the steady state. Al-
though P (n) is not directly measurable, it is interesting to
compare its form with the photon-counting probability
p (m, T) which, of course, is directly measurable in
photoelectric-counting experiments. An expression for
P(n) can be derived as follows. First we note that
P (n) = (n ~p~n ) so that from Eqs. (10) and (12) we find

steady state.
An interesting feature of P ( n ) in the steady state is

that for large values of n it exhibits long tails indicating
large intensity fluctuations. Relative intensity Auctua-

0.1

P(n)= I" dx f" dy, e "P(x,y), (55)

where the positive-P function P(x,y) is given from Eqs.
(12), (15), and (19)—(21) to be~

1P(x,y ) = exp 2xy-
2n

1/2
1+2n

2n
(x +y ) (56)

Substituting Eq. (55) into (54) and carrying out the in-
tegrals we obtain the following expression for P (n):

aa

1 2P(n)=—
2 2+ 377

1/2
&2n

2+1+2n —')~ 2n

n

„(2r —1)!!(2n —2r —1)!!
X 'V

(
—1)"

r! (n —r)!

2+1+Zn —+2n
X

2+1+2n +')r 2n
(57)

a
where n!!=n (n —2)(n —4). . . with —1!!=1. On intro-
ducing the generating function F(s) by

oo
1F(s)= g s "P(n)=

[1+2n —2n (1 —s/2)2]'~2
(58)

we can write P(n) and its factorial moments in a more
compact form,

aa
i8 18

T

P(n)= F(s)(
—1)"
nI ds" s=1

(59)
(c)

(n "') = F(s)(
—1)" d"

ds" s=0
(60) n, =1Q

Here n is the mean photon number inside the cavity. The
intracavity photon-number distribution P (n ) depends
only on the mean photon number inside the cavity. The
distribution P(n) is shown in Fig. 9 for several diff'erent
values of n. It will be seen that unlike the photoelectric-
counting distribution, P (n) does not show even-odd oscil-
lations. This, however, is not surprising since P(n) refers
to the probability that the cavity contains n photons at
any given time in the steady state. The cavity is losing
photons continuously even as they are being created in
pairs. Therefore, at any instant it may contain any num-
ber, even or odd, of photons. The situation is different in
the transient regime where P(n), which now depends on
time t that has elapsed since the oscillator was turned on,
may show even-odd oscillation in its passage towards the

lO

a

aaa
38

FIG. 9. Intracavity photon-number distribution P(n) as a
function of n for several different values of n. The curves are
meaningful only for integer values of n.



5156 REETA VYAS AND SURENDRA SINGH

tions as measured by g' '(0), however, decrease and ap-
proach a value of 3 as the oscillator threshold is ap-
proached. In terms of bunching of photons the photon
beams produced by the DPO are always more bunched
than the photon beams from a thermal source. Another
interesting feature is that the ratios P(1)/P(0) and
P(2)/P(1) approach values —,

' and 1, respectively. This
steplike behavior is clearly seen in Fig. 9. This behavior
continues for larger values of n, but the step size becomes
progressively smaller. For large values of n the distribu-
tion decays slowly to zero.

In terms of intracavity photon-number distribution we
can derive another expression for the photoelectric-
counting distribution p (m, T). Let P denote the probabil-
ity of detecting a photon, then p (m, T) is given by

where F(Ps) is given by Eq. (58) with s replaced by Ps.
The single-photon detection probability /3(T) is a compli-
cated function of T. For short times, however,
/3(T)=2y'nT. Substituting this in Eq. (62) and using Eq.
(58) we recover the short-time approximation [Eq. (49)]
for the photoelectron-counting statistics.

We close this section by giving the intracavity photon-
number distribution when pump depletion is taken into
account. The corresponding positive-P distribution,
which is valid both below and above threshold, has been
derived by Wolinsky and Carmichael. This distribution
1s

P(x,y) =const X [(o —x )(cr —y )] ' e "~,

n
p(m, T)= g P (1—P)" P(n) . (61)

lx I, lyl
(&~,

1)m dm
p(m, T)= F(f3s )

m t dsm s=1
(62)

Using Eqs. (57) and (58) we can write Eq. (61) in the form
where o =2I e/x and no=21 y/v . Here (2y) ' and
(21 )

' are the cavity lifetimes at the subharmonic and
the pump frequencies. Using this expression in Eq. (55)
we obtain

2r+I 2m+1 I (r +m +
2 )

P(2r +1)=
(2r +1)! o (2m +1)! I (r +m +no+ —', )

2

2
~&m I (r+m+ —,') ac 2m

P(2r) =
(2r)! o (2m)! 1 (r +m +no+ —,') 0 (2m)!

2I (m + —,')
I (m +no+ —,')

2m I (m+,')
I( + +

2

(64)

(65)

Examples of P(n) derived from Eqs. (64) and (65) are
shown in Fig. 10. The exact distribution below and at
threshold is shown in Figs. 10(a) and 10(b), and qualita-
tively reproduces the behavior of Eq. (57). Above thresh-
old, where Eq. (57) is not valid, new features appear. One
noteworthy feature is the appearance of two most prob-
able values of n just above threshold in Fig. 10(c). The
distribution also exhibits a tendency to oscillate for small
values of n. High above threshold the distribution is cen-
tered at a nonzero value of n indicating finite amplitude
of oscillations

VI. SUMMARY AND CONCLUSIONS

We have studied the photoelectron-counting sequences
and photon emission sequences from the degenerate para-
metric oscillator cavity below threshold. These sequences
are described in terms of the counting distribution
p (m, T) and the waiting-times distribution w (T) between
successive photoemissions or detections. The expressions
derived in this paper are valid for arbitrary counting time
and detection efficiency.

For low excitation of the cavity (n ((1), the photon
emission sequence may be described in terms of pairs of
photons emitted by the cavity. The average separation
between photons in a pair is of the order of the cavity
lifetime T, = (2y ) '. The separation between pairs of

photons is of the order of the inverse of the mean rate of
emission of photons by the cavity. These photon pairs
outside eventually refiect the pair production of photons
inside the cavity. The role of cavity in the low-photon-
number regime is to stretch the photon pair correlations
to a time of the order of T, .

It is interesting to compare the field produced by a
thermal source with the field produced by the DPO. The
field produced by a thermal source can be described as
two real independent Gaussian random processes with
the same variance and spectral properties. The field pro-
duced by the DPO can also be described by two real in-
dependent Gaussian processes, u, and u 2. However,
these two variables have different variance and spectral
properties. It is this difference that is responsible for the
very different behavior of photon statistics in the two
cases.

The approach presented in this paper provides an ex-
ample of the power and usefulness of the positive-P repre-
sentation in describing nonlinear dissipative quantum sys-
tems. The techniques presented here are also applicable
to many other systems such as the nondegenerate para-
metric oscillator and four-wave mixers. Since the equa-
tions describing intracavity degenerate four-wave mixing,
under appropriate conditions, are equivalent to the equa-
tions for the DPO, the results of this paper are directly
applicable to intracavity degenerate four-wave mixer. '
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FIG. 10. Exact intracavity photon-number distribution, with pump depletion included, for {a) below threshold o. =980, {b) at
threshold o =1000, {c) slightly above threshold o. =1040, and {d) high above threshold a. =1100 operation of the oscillator with
no = 1000. The curves are meaningful only for integer values of n.

Similarly, the results for the nondegenerate optical para-
metric oscillator are applicable to intracavity nondegen-
erate four-wave mixer.
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functions P„(t) satisfy the integral eigenvalue equation

e ' „ t' dt'=p„„ t
0

(A2)

Since the kernel e ' is real symmetric and positive
definite the eigenvalues p, ~p2& - - are real and posi-
tive and the eigenfunctions P„(t) can be chosen to form
an orthonormal set

APPENDIX f P„(t)P (t)dt =5„
0

(A3)

In order to evaluate the generating function, we make
a Karhunen-Loeve expansion of the random variable
u, (t) in the interval 0 ~ t ~ T as

u, (t)=— g p„p„(t),
2

Furthermore, since u, (t) is a real Gaussian process and
p„(t) are orthonormal, the coefficients p„are indepen-
dent real Gaussian random variables with zero mean and
variance p„given by

(A4)

where the coefficients p„are random variables and the Using Eqs. (Al), (A3), and (A4) in Eq. (27) we find
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CQ

1
Q, (s, T) =

I+si)y licElp„ /A.
1

1/2

(AS)

The integral eigenvalue equation (A2) can be converted
into the dift'erential eigenvalue equation

In order to evaluate this sum we note that the function

f (co) [Eq. (A8)], considered as a function of a complex
variable co, has simple zeros at +~„and lim„~, is un-

bounded. Furthermore, f (co) is analytic for all values of
co so that it may be written as the infinite product

d2
P„(t)+co„P„(t)=0,

dt

where

2A 1

CO (A7)

f (co)= Q (co —co„)(co+co„) .
n =1

Its logarithmic derivative with respect to ~,

d 1-lnf (co)= g

dt's

CO COn

(A 1 1)

(A 12)

The eigenvalues p, are now determined in terms of co, .
Solutions of Eq. (A6) satisfy Eq. (A2) provided co„are
chosen to be the roots of

1f (co) =coscoT+—
2 G7

CO
sincoT =0 . (AS)

The roots of this equation are real and occur in pairs
+co, , +co2, . . . , with 0(~1(co2 & .

, and form an un-

bounded sequence. Expressed in terms of co„, Eq. (A5)
reads as

oo COn + A,
1

Q1(s, T) = Q ~'„+X;+ 2s pl E I y

1/2

(A9)

(A10)

Taking the logarithmic derivative of Q1(s, T) with respect
to s we obtain

dQ, (s, T)' —= —illicEly g —,
Qi(s T) ds „=0co„+A.'-, +2srIlicEly

has singularities which are simple poles at ~=+~„with
residue +1. It follows from Eqs. (A8) and (A12) that the
singularities of the function

1 d
co'+k', +2srII~Ely dco

X ln cosa' T +—
2

Cc) sin~T
I

(A13)

are simple poles at co =+ i(A, , +2si) licE
l y )' " and

m =+co„. Now consider the contour integraln

c.; F (co)dco, where 0„ is a circle of radius R„
t1

(co„(R„(co„,, ) centered at the origin and not passing
through any pole. Then Rn~ ~ as n~ ~ so that as
R, ~ ~ the contour will enclose all the poles of F(~).
Now as n ~ ~, the integral pc F(co)dco is 0 (R„)and

so tends to zero as n tends to infinity. This means that
the sum of the residues at the poles of F (co) vanishes and
we obtain

1 1 d 1 X1 z
2g, —— ln cosh(z, T)+ — + sinh(z, T) =0 .+z- z1 dz, 2 z,

Using this result in Eq. (A10) and integrating we find'

(A14)

Q, (s, T)=
A,

I
T/2

e

1
cosh(z, T)+ — +

Zl ~l
sinh(z, T)

1/2 (A15)

where

z I
= A i +2s i)y l

icE,

Using a similar procedure we find Q2(s, T) is given by

(A16)

Qz(s, T)=
A. , T/2

e '

Z2
cosh(zz T)+ — + sinh(zz T)

2 Z2 k2

1/2 (A17)

where

z-, =2;—2si)y lxE (A18)
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