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Nonclassical light beams generated by the degenerate optical parametric oscillator operating
below threshold are analyzed in terms of photoelectron-counting sequences. The positive-P repre-
sentation is used to calculate the generating function for photoelectron statistics in a closed form.
This generating function is used to derive expressions for the photoelectron-counting and waiting-
time distributions. The dependence of these distributions on mean photon number inside the cavity
and efficiency of detection is studied. The relationship between photoelectron-counting sequence
and the photon emission sequence is used to present a simple physical picture of light beams pro-

duced by the degenerate parametric oscillator.

I. INTRODUCTION

Squeezed states of light have been observed in a variety
of physical systems.! ™3 These states do not admit a posi-
tive nonsingular diagonal representation in terms of
coherent states and are, therefore, an example of nonclas-
sical states of the electromagnetic field. Since squeezing
only refers to the variance of the two quadrature com-
ponents of the electric field, it does not fully characterize
these states. With experimental realization of these
states, increasing attention is being paid to their
quantum-statistical properties.*®> These properties for
idealized squeezed states are well known.®® The systems
in which squeezed states have been observed experimen-
tally are dissipative nonlinear systems, and photon sta-
tistical properties of squeezed states produced by these
systems have received much less attention.

The largest amount of squeezing has been observed in
an optical parametric oscillator (OPO) operating below
threshold.>? This simple dissipative quantum system has
played an important role in recent studies of squeezing.
In an OPO (Ref. 10) a strong pump beam interacts with a
nonlinear crystal and is frequency down-converted into
two beams of smaller frequencies inside an optical cavity.
If the two beams produced in down conversion have the
same frequency, then the oscillator is termed a degen-
erate parametric oscillator (DPO); otherwise it is termed
a nondegenerate parametric oscillator (NDPO). A
quantum-mechanical treatment of the OPO is of course
essential since it generates light with nonclassical proper-
ties.

For an oscillator a distinction must be made between
intracavity photon statistics and the statistics of photons
emitted by the cavity. Intracavity statistics are not
directly observable. The statistics of photons emitted by
the cavity can be measured in photon-counting experi-
ments. The statistics of the field inside and outside the
cavity are, of course, related. Many recent studies of the
quantum-statistical properties of the DPO have centered
around the calculation of the spectrum of squeezing'!!?
inside and outside the cavity because of the subtleties in-
volved in the detection of squeezed light. Intracavity
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field statistics were discussed by Drummond, McNeil,
and Walls'® by using the complex-P representation and
by Graham by using the Wigner function'®>. More recent-
ly, Wolinsky and Carmichael*!* have provided a com-
plete description of the quantum-statistical properties of
the intracavity field by using the positive-P representa-
tion. For the photons escaping the cavity, the mean and
variance of photon counts have also been calculated by
Collett and Loudon. '’

In this paper we discuss the quantum-statistical prop-
erties of photon beams generated by an OPO as measured
by a detector placed outside the cavity. These properties
can be studied in photoelectric-counting and correlation
experiments with low-intensity light beams appropriate
for an OPO below threshold. From the measured photo-
electron statistics, photon statistics of the incident light
beam can be derived. For a detector of unit efficiency
each photodetection corresponds to an emission of a pho-
ton by the cavity. In this case, the photoelectric-counting
sequence and the photon emission sequence are
equivalent. We begin by expressing the photoelectron-
counting statistics in terms of a generating function in
Sec. II. The statistics of the waiting time between succes-
sive photoelectric counts can also be derived from the
same generating function. In Sec. III the ¢ number equa-
tions of motion for the DPO operating below threshold
are presented. This is done by using the positive-P repre-
sentation. The solutions to these c-number equations are
used to obtain a closed form expression for the generating
function. From this generating function exact expres-
sions for the photoelectron-counting distribution and the
waiting-time distribution are derived in Sec. IV. Intra-
cavity photon statistics are discussed in Sec. V. We con-
clude by summarizing the principal results of the paper in
Sec. VI.

II. THE GENERATING FUNCTION

Consider a photoelectric detector illuminated by a sta-
tionary weak beam of light. The probability p (m,T) of
detecting m photoelectric counts at the output of the
detector in a time interval T is given by'®
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p(m,T)-<‘T.m! [nfo T(0)dr |"exp

—n [T }>
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where 0<% <1 is the efficiency of detection and I(z) is
the photon-flux operator expressed in units of photons
per second. The colons denote normal ordering of the
enclosed operator product and 7 stands for time order-
ing of the operators to the right. The angular brackets in
Eq. (1) denote the expectation value with respect to the
state of the incident light beam. The photoelectric-
counting distribution p(m,T) can be derived from the
generating function

G(s, T)= <‘T:exp

—sn [T ]:) @)

Note that G(1,T)=p(0,T) so that G(1,7) is the proba-
bility that no photoelectric counts are registered in time
T. In terms of G (s, T), we can write

, )= G(s, T 3
p(m,T) . g5 (s, T) . (3)
and the factorial moments
(m"y=(mm—1)--(m—r+1))
of m can be derived from
Ny — r d’
(m")y=(—1) -G (s,T) (4)
s=0
Another quantity of interest in describing the

photoelectron-counting sequence is the waiting-time dis-
tribution w (7T) such that w(7T)dT is the probability that
the waiting time between successive photoelectron counts
Iieg ]l;etween T and T +dT. This distribution is given
by™

w(T)=r/<‘T:f(T)exp

—sn [ [Tt |foy) /(D) )

and is related to G (s, T) by

__ 1 a’
7(T) dT?

w(T) G(1,T) (6)

for a stationary beam of light. In general, higher-order
waiting-time distribution functions are needed to describe
photoelectron-counting sequences. Here we will concen-
trate only on w (7). Once the generating function G (s, T)
is known, the photoelectron statistics and photoelectron
waiting-time distributions can be calculated from Eqgs.
(3), (4), and (6).

III. EQUATIONS OF MOTION

Consider two quantized modes of a cavity having fre-
quencies 2w and  and interacting with each other via an
intracavity nonlinear crystal. The high-frequency mode,
termed the pump mode, is excited by an injected classical
signal. In the interaction picture the Hamiltonian for
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this system with perfect phase matching is given by!3

A=1ifika b —x*a2b H+i#l(eb "—e*b)+ A, ,

2
(7)

where « is the mode-coupling constant which can be ex-
pressed in terms of the third-order nonlinear susceptibili-
ty of the crystal and certain integrals over mode func-
tions, b and b ' are the creation and annihilation opera-
tors for the pump mode, and @ and @ T are the creation
and annihilation operators for the subharmonic mode.
The dimensionless classical-field amplitude € is defined in
such a way that |e|? gives the number of photons incident
on the cavity in one lifetime of the cavity (2I") ! at the
pump frequency. Decays of cavity modes are introduced
in the usual way by coupling cavity modes to zero-
temperature reservoirs and a Markov master equation for
the density matrix describing the coupled cavity modes is
derived. This equation is converted into an equivalent set
of classical Langevin equations by introducing an ap-
propriate phase-space representation of the density ma-
trix. The familiar coherent-state diagonal representation
is not useful in this case because it does not lead to a
Fokker-Planck equation with positive-definite diffusion.
This difficulty is removed by the use of the positive-P rep-
resentation'® which leads to a Fokker-Planck equation.
The corresponding Langevin equations for the subhar-
monic mode, below threshold, where pump depletion is
negligible, are!> 1

a=—ya+tkea,+Vke& (1), (8)
a,=—vya,+kea+Vke&(t), 9)

where (2y)~! is the cavity lifetime at the subharmonic
frequency. The Langevin noise terms &,(¢) and &,(¢) are
two statistically independent real Gaussian white-noise
processes with zero mean and unit intensity and « and a,
are two complex variables associated with the operators @
and @, respectively, in the positive-P representation. If
p represents the density matrix for the subharmonic field,
then the phase-space density 7 in the positive-P represen-
tation is introduced by!?

la) a,l

ﬁ=ff(/)d2ad2a*4<a*‘a> P

where 2 is some suitably chosen domain in the four-
dimensional phase space spanned by the complex vari-
ables a and a,, so that P(a,a,) is real, positive, and nor-
malized to unity. The complex variables a and a, are as-
sociated with the operators @ and @ ' by @|a)=ala) and
(a,la "=a,(a,|. Unlike the diagonal representation a
and a, are not complex conjugates of each other. This
means that Egs. (8) and (9) describe trajectories in a four-
dimensional phase space. By means of the positive-P
function the normally ordered operator averages can be

(a,a,), (10

calculated as c-number averages according to the
correspondence
(6*”’&")=ff(l)dzadza*a;"a"‘[)(a,a*) . (11)

Since Egs. (8) and (9) are equivalent to the Fokker-Planck
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equation for P(a,a,), the averages such as those in Eq.
(11) may be carried out with respect to the trajectories of
Eqgs. (8) and (9). By writing ke = |«e|e ~'¢ and introducing
new variables x and y by

a=xe 472
. (12)
oc*=ye_“75/2 ,
we find that Egs. (8) and (9) can be rewritten as
x=—yx+rey+V|ke|& (1), (13)
y=—vyy+kex +V[ke|& (1) . (14)

These equations ensure that in the steady state the vari-
ables x and y are real because any imaginary parts to
them decay away. These equations also preserve x and y
as real quantities if they are real initially. The initial
state of the oscillator, when it is turned on, is the vacuum
state with x =0=y and this is sufficient to guarantee that
x and y will stay real for all times. If we introduce new
real variables by

x + x —
ul:—?_l’ u,= 2y ,
A=y —lkel), A=(y+lke]), (15)
(1)= §2+§2 )= §1_§2
q1 ‘/5 y g2 v

the coupled set of equations [(6) and (7)] leads to the fol-
lowing uncoupled equations for the random variables u,
and u,:

t,=—Mu,+Vike/2q,(t), (16)

i, =—Au, +V kel /2q,(1) . (17)

The threshold of oscillation is at |ke| =y so that below
threshold |ke| <y and both decay constants A, and A, are
positive. The noise processes gq,(¢) and g,(t) are real
Gaussian white-noise processes with

(g;(t))=0, (q,-(t)qj(t'))ZS,-jB(t—t’) . (18)
The steady-state solutions to Egs. (16) and (17) are
172
_ !KEI ! , A=t ,
T fwdze g, (19)
el 172 .
KE 1 , —A(t—1") ,
uy ()= |45 f_wdt e g . (20)

It follows from Egs. (17)—(20) that the variables u,(¢) and
u,(t) are statistically independent real Gaussian random
variables with mean and variance given by

(u,(t))=0,

1 leelg ,

= de—r]
4 x Y '

Cui(u; (1)) =

The variables u, and u, have a simple interpretation in
terms of the unsqueezed and squeezed quadrature com-
ponents of the subharmonic fields produced by the DPO.
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Let us introduce Hermitian operators
N ae—'id)/2+fa\ Tei¢/2
Xip= > )
. fe 125 TeiaS/Z (22)
X,5= ,
2 2i

where the phase angle ¢ is defined in Eq. (12). Normally
ordered moments of X;, can be evaluated by using Egs.
(11), (12), (15), and (19)—(21). We find for the mean,

<X]¢>=<u1>:0 ,
(fz,ﬁ):_l‘(uZ):O ,

and for the normally ordered variance, with Afm
=Xjs— (Xj4),

(23)

- 1 |kel
(AKX, ) )Z((Au.)2)=z-'§:}* ,

1 kel
4 A,

(24)
C(AR,)% ) =—((Au,)?) =
Thus the variables v, and —iu, correspond, respectively,
to the unsqueezed and squeezed quadrature components
,\'}w and ’?Zda in the positive-P representations. With solu-
tions (19) and (20) we can now evaluate the generating
function G (s, T). First we note that positive -P allows us
to evaluate normally ordered averages as c-number aver-
ages so that

G(s, T)= <exp

—snfOTI(t)dt ]> , (25)

where I(t)=2yaa, is the photon-number flux variable
for the photons emitted by the cavity. The average in Eq.
(25) is to be evaluated with respect to the trajectories of
the variables a and a,. Using Egs. (12), (15), and
(19)-(21) in Egs. (25) we find that the generating function
can be written as the product

G(s, T)=Q,(5,T)Q,(5,T) , (26)
where
_ T 2
Ql(s,T)—<exp —2sm/f0 ul(t)dt] , (27)
Qz(s,T):<exp 2smy foTu%(t)dtD . (28)

The factorization in Eq. (26) occurs because u(¢) and
u,(t) are statistically independent random processes.
The problem of the evaluation of the generating function
now reduces to the evaluation of Q,(s,T) and Q,(s,T).
Since u,(t) and u,(t) are Gaussian processes with ex-
ponential correlation functions, both Q,(s,7) and
Q,(s,T) can be evaluated in closed form following the
method of Slepian.!® Principal steps in this derivation are
outlined in the Appendix. The results for Q,(s,7) and
Q,(s,T) are

Rz
QI(S,T):: 1/2 >
coshiz, T)+ L |2+ 20 lginh(z, 1)
! 2 1z, A !
(29)
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M2 where
0Q,(5,T)= 77>
1 (A2, 22 |,
cosh(z,T)+ — |—+ — |sinh(z,T) d’
20z 2 (m")y=(—1) Q,(s,T)
dsr s =0
(30)
where .
' r! +k —k
SN =3 2P oy e
31) =0’
23=A}—2sny«ke

Note that the variable z, is always real. For physical pa-
rameters the variable z, is also real. This ensures that
Q,(s,T) is well defined for all values of 7. Equations (26)
and (29)-(31) determine the generating function for the
DPO below threshold. We now proceed to discuss
photon-counting statistics.

IV. PHOTOELECTRON-COUNTING STATISTICS

Substituting Eq. (26) into Eq. (1) and using the Leibnitz
rule to carry out the differentiation, we find that the
probability p (m,T) of counting m photons in time T can
be written as

- (_l)m m m dm—r
pmTI=""0 3 |, | | g @i D)
dr
X (s,T)
dSrQZ * s=1
=3 p(m—r,Tp,(r,T), (32)
r=0

where p;(r, T) for j =1,2 are given by

d’
ds”

(—1)
r!

piir,T)= Q;(s,T)

s=1

DX(p,(r —k,T) . (33)

2r —k l
k=1 r

The last relation allows us to evaluate p;(r, T) recursively.
The coefficients D}k’(s) are given by
dz;

k
(_l)k+1
ds

k!

(k) y— 192 —*T
D" (s)=4Qj(s,T)e

MNoE
z; A

ij il
—2* ; lk(ZjT)

k |.
+ZjT 1+‘}‘\'-j'? lkfl(ZjT) ’ (34)

where i, (x) are modified spherical Bessel functions.?’ A
similar procedure using Eq. (4) yields factorial moments
of the photon-counting distribution in the form

dl’

(m")y=(—1)
ds”

Q,(s5,1Q,(s,T)

s=0

r r
=3 [k}(m‘lk’ﬂm‘z”"’), (35)
k=0

Once again the last relation allows us to evaluate {(m;”)
recursively. The factorization that occurs in Egs. (32)
and (36) once again reflects the statistical independence of
the variables u; and u,. Equations (32) and (36) have a
formal similarity to the corresponding expressions for a
partially polarized thermal light beam?!2? and it is tempt-
ing to interpret Eq. (32) to mean that the cavity emits two
types of photons. The total number of photons m record-
ed in the time interval T may then be interpreted as com-
ing from various combinations of these two types of pho-
tons. This interpretation, however, is incorrect because
both p,(m,T) and p,(m,T) in Eq. (32) cannot be inter-
preted as probabilities; the function p,;(m,T) is a true
probability, but the function p,(m,T) becomes negative
for odd values of its argument m. This has interesting
consequences for the forms of p(m,T) as will be seen
shortly. Thus, although the expressions in Eq. (32) and
(35) are formally similar to those for a thermal light
beam, their physical content is quite different.

The waiting-time distribution w (7)) is obtained by us-
ing Egs. (26), (29), and (30) in Eq. (6). We find it con-
venient to rewrite the generating function G (s,T) in the
form

FIG. 1. Photoelectron-counting probability p(m,T) as a
function of m and the counting interval T for small-mean-
photon-number 7=0.01. The curves are meaningful only for in-
teger values of m.
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G(s,)=[(1—A4,)(1— 4,)]'"? e
[(1—A4,e !

where

2

1

z;— A
z,tA

(38)
z,— A, :

z,tA,

A,=

We then obtain

w(T)=2yna) 'G(1,T)
2,4,
ZZ]T
e —

X | |z, +z,—2p)+

22, T
224! z34,e

2z, T 2z, T
(e ! -Al)z (e Vv

2z, T
+2

(39)

4,7

for the waiting-time distribution, where z, and z, are
given by Egs. (31) with s =1. We can also obtain the
probability P,(T) that the first photodetection occurs at a
time T after counting is started arbitrarily at time ¢ =0.
This probability is given by®

—_4
P(D)=~—"G(1,T)

=G(1,7) |4z, +2z,—2y)
z, A z, A
Zz]T 1 222T : (40)
e'"—4, e —4,

The counting distribution, together with waiting-time
distribution, provides a clear picture of photoelectric-
counting sequence. When the detector has unit detection
efficiency 7=1 each photoelectric count corresponds to
an emitted photon. In this case the photoelectric pulse
sequence is a true representative of the photon sequence
emitted by the cavity. If the efficiency of detection is less
than unity 7 < 1, the photoelectric pulse sequence is relat-
ed to the photon emission sequence only indirectly. We
consider the =1 and < 1 cases separately.

A. Unit detection efficiency n=1

In this case we can speak of photoelectric counts regis-
tered by the detector and photons emitted by the cavity
interchangeably because each photon emitted by the cavi-
ty is registered by the detector as a photoelectric count.
The counting distribution p(m,T) exhibits a variety of
shapes depending on the value of the parameter |ke|/y
and the counting interval 7. The parameter
0=<|ke|/y <1 is related to the mean photon number 7 in-
side the cavity by

)N1— Aze_ZZZT)]l/Z ’

(37

1
2

ke|?

v —Ixel? @b

ﬁ=(a*a>:

The counting distribution p (m,T) for low-mean-photon-
number 7 is shown in Fig. 1 as a function of m for several
different values of the counting interval T. It will be seen
that for short counting times 7 such that 2y T <1 [count-
ing time T less than T,=(2y)" !, the cavity lifetime]
p(m,T) monotonically decreases as m increases. For
longer counting intervals 2y T > 1 the counting distribu-
tion shows even-odd oscillations. The probability of
counting an odd number of photons is small compared to
the probability of counting an even number of photons.
The depth of these modulations increases with increasing
counting interval and in the limit 2yT>>1 the odd
counting probabilities become negligible compared to the
even counting probabilities. These oscillations in p (m, T)
can be understood in terms of the fundamental process of
generation of photons inside the cavity. Photons are pro-
duced simultaneously in pairs?*?* inside the cavity in the
process of frequency down conversion. These photons es-
cape the cavity independently with a lifetime of the order
of the cavity lifetime T,.=(2y)”!. For long counting
times 2y T > 1, there is a preponderance of even photon
counts because both photons from each pair eventually
escape the cavity. In the steady state the mean rate of
production of photons inside the cavity equals the mean
rate 2y 7 of photons escaping the cavity. At low-mean-
photon-number 7 <<1, photon pairs are created inside
the cavity at an average rate Y% corresponding to an
average pair separation T,=(yn )"!. Once a pair is
created inside, both photons escape the cavity within a
time of the order T., long before another pair is pro-
duced. The cavity is quiescent for long periods of the or-
der of T, and emits only for short durations of the order
of T, whenever a pair of photons is created. Outside the
cavity, therefore, photons appear to be coming out in
pairs with photons in a pair separated from each other,
on the average, by a time of the order of T, and each
such photon pair separated from the next one by an aver-
age time 7,. The qualitative picture presented here is the
one that naturally emerges from Egs. (32) and (39) in this
regime of low-mean-photon-number 7. For # <<1 and
2y T >>1, the generating function G (s, T) has the form

G(s,T)= exp[—(m)/2+{m)s—1)*/2].

1—-Es2
2

(42)

This equation leads to the following expressions for the
counting probabilities:

m

1 e—(m)/Z ,

m!

{(m)

2

n

p(2m,T)= l——?

1+

2m
(m)

(43)
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1 (m) |”
pQm +1,T)=A— _’g._ e~ (mi2 44)
where
(m)=m2yAT 45)

is the mean number of photons detected in the interval 7.
Note that since 7 <<1, odd counting probabilities are
negligible. The even counting probabilities [Eq. (43)]
then define a Poisson distribution of photon pairs emitted
at random by the cavity at an average rate y# pairs per
second corresponding to the mean number of pairs in T
equal to yAT={(m ) /2. We may then introduce the
probability 4(r, T) that the cavity emits » photon pairs in
the interval T by

1
ﬁ(r,T)—;T

{(m)

S e (46)

The approximate expressions [(43) and (44)] are com-
pared with the exact distribution (32) in Fig. 2. It is
found that Eqs. (43) and (44) provide a good approxima-
tion to the exact counting probabilities for 7 <0.02
(|ke| /y <0.1) and 2y T >> 1.

The interpretation of photons emitted by the cavity in
terms of photon pairs also emerges from the waiting-time
distribution w (7) which describes the time interval T be-
tween a photon detected at time ¢ and the next detected
at time ¢ +7. This distribution derived from Eq. (39) is
shown in Fig. 3. There are two distinct time scales visible
in w(T). This can be seen more quantitatively with the
help of the following approximate expression for w(T)
which can be derived from Eq. (39) when # is small. This
expression is

w(T)y=2yse T | L e Disp Lo
4 2 7
@7)
«
3

FIG. 2. Comparison of the exact counting probability (full
curve) with the approximation (dotted curve) given by Egs. (43)
and (44) for i=0.01 and 2y T =200. The curves are meaningful
only for integer values of m.
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FIG. 3. Photoelectron waiting-time distribution w(7T) as a
function of the waiting-time 7. The full curve is Eq. (39) and
the dotted curve is Eq. (47).

where we have kept enough terms in 7 so that
f3°w(T)dT=1+0(ﬁ) and w(0)/2y7n gives the correct
value for the normalized normally ordered second mo-
ment of the light intensity. Equation (47) is shown by the
dotted curve in Fig. 3 and is found to be a good approxi-
mation to the exact result. The short time scale
T.=(2y)"! corresponds to the mean separation of pho-
tons in a pair and the long time constant TI,=(7/ﬁ)71
corresponds to the average separation of successive pho-
ton pairs emitted by the cavity. The value of w(T) for
2y T <<1 is related to the normalized second moment of
the light intensity by

w(T)=2ya a,(Ta(Ta,(0)a(0)) /{a,a)’
=2yag'?(T) , (48)

so that w(0)/2y#% is a direct measure of the bunching
effect exhibited by photons emitted by the DPO. For
thermal light fields w(0)/2yn =2, but for the DPO the
emitted photons exhibit much greater bunching.

As the pump amplitude increases, 7 grows and the
above picture changes. With increasing pump strength
photon pairs are copiously produced inside the cavity.
The mean cavity photon number 7 grows and during any
counting interval, photons from many pairs created in-
side contribute to the photon flux from the cavity and it
is no longer possible to speak of photon pairs escaping
the cavity. Although the counting distribution p(m,T)
still shows even-odd oscillations for large counting times
2yT > 1, the even-odd modulations are smaller. An ex-
ample of p(m,T) for a large-cavity photon number 7 is
shown in Fig. 4. It is not possible to derive a simple ex-
pression for p(m,T) in this regime except in the short-
counting-time limit. When 2y 7T <<1 we obtain the fol-
lowing approximation for the generating function:

G(s,T)=[1+27r—27A(synT —1)*]7 /2. (49)
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FIG. 4. Photoelectron-counting probability p(m,T) for
large-mean-photon-number 7 =35. The curves are meaningful
only for integer values of m.

For 7 not too small we can derive the following expres-
sion for p (m, T):

(2m —1)! (m)m
ml o (14+2(m )"+

This expression is compared with the exact counting dis-
tribution in Fig. 5 and is found to be a very good approxi-
mation.

The waiting-time distribution for the large 7 regime is
shown in Fig. 6. The time scale 7.=(2y)"! is
suppressed. The dominant time scale in this case is the
mean separation time T, =(2y7 )~ ! between photons em-
itted by the cavity. This is the so-called high-degeneracy

(50)

p(m,T)=

3l
I
o

0.0

T |
0 ‘IL 8 12 16
m

FIG. 5. Comparison of the exact counting probability
p(m,T) (full curve) and the approximation (dotted curve) given
by Eq. (50) for short counting times in the large-mean-photon-
number limit 7=35 and 2y T =0.5. The curves are meaningful
only for integer values of m.
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FIG. 6. Comparison of the exact waiting-time distribution
w (T) (full curve) with the approximation (dashed curve) given
by Eq. (51) in the large-mean-photon-number (high-degeneracy)
limit 7 =35.

limit that was discussed in Ref. 8. In this limit, 7 >>1,
we arrive at the following expression for w (T):
3
w(T)=2yi——————~ (51)
" i ayaT”?

which reproduces exact distribution for all values of T for
which w(T) is not too small. This distribution agrees
with the corresponding distribution for an ideal squeezed
state in the high-degeneracy limit.® The dotted curve in
Fig. 6 shows Eq. (51).

B. Nonunit detection efficiency 7 < 1

When the detection efficiency is less than unity we
must distinguish between the photon emission sequence
from the cavity and the photoelectric-counting sequence
recorded by the detector. This is because not every pho-
ton emitted by the cavity is recorded as a photoelectric
count. The nonunit detection efficiency is equivalent to
converting the photo-emission sequence into a photoelec-
tric pulse sequence by randomly selecting the detected
photons.

The effect of nonunit detection efficiency on p (m,T) is
shown in Figs. 7(a) and 7(b) for small- and large-mean-
photon-number 7. It will be seen that with decreasing
detection efficiency the even-odd oscillations begin to
fade and for ) << 1, they are completely washed out. This
is because at low detection efficiencies both photons from
a pair may not be detected. For 7 <<1 we can arrive at
the following expression for G (s, T) when 7 is small:

G(s,T)=exp[—(m)/2+{m)sn—1)*/2]. (52)
Using this result in Eq. (3) we find
2r

oo

pim,T)= 3
r=[m/2]

(=) " "4(r,T) , (53)
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FIG. 7. Effect of nonunit detection efficiency 1 on the count-
ing probability p(m,T) in the low- and high-mean-photon-
number limits: (a) 7=0.01, 2y T=150; (b) A=S5, 2y T =30. The
curves are meaningful only for integer values of m.

where [m /2] is equal to m /2 for even m and (m +1)/2
for odd m. Here 4(r,T) which is given by Eq. (46) is the
probability that r photon pairs are emitted by the cavity
in time 7. Equation (53) has a natural interpretation in
terms of photon pairs emitted by the cavity. Each term
in Eq. (53) is proportional to the pair emission probability
,(r,T). These r pairs have 2r photons. Out of these 2r
photons m photons can be selected in (3") ways and each
selection has the probability #™(1—=)>" ™. Thus, al-
though the even-odd oscillations die out for nonunit
detection efficiency, the structure of the photoelectric-
counting probability still suggests an interpretation in
terms of photon pairs emitted by the cavity. However,
the concept of photon pairs cannot be introduced based
on the observed counting probabilities. At sufficiently
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low detection efficiency photoelectric pulses are recorded
essentially randomly from the photon sequence emitted
by the cavity at a rate 52y 7, much lower than the rate
2yn at which photons are emitted by the cavity. For
large-mean-photon numbers the counting probability
does not have a simple expression.

The effect of nonunit detection efficiency 7 <1 on the
photoelectron waiting-time distribution is shown in Fig.
8. The distribution w(7T) does not, in general, have a
simple form. However, in the limit n <<1 we find that
for short waiting times

-\MT
e

8A37 2

-AT

w(T)=n2ya |1+ =n2yag ?AT) ,
Ui 8327 2 n2yng

(54)

so that w(T) is essentially the second-order normalized
intensity correlation function. For long waiting times
w (T) decays exponentially as expected for a random se-
quence of photons. In the low-detection efficiency limit
the waiting distribution w(7T) /72y 7 simply becomes the
probability of recording one photoelectric count at time ¢
and another count at time ¢t + 7.

Before leaving this section we comment on the multi-
plicative factor 2y that occurs in the definition of photon
flux [Eq. (25)]. This factor was introduced in Egs. (8) and
(9) to denote the rate at which the cavity loses photons at
the subharmonic frequency to all loss mechanisms, in-
cluding absorption inside the crystal and the cavity mir-
rors, scattering, and, of course, the mirror transmission.
Only the mirror transmission loss contributes to photon
flux from the cavity. The factor 2y should then be re-
placed by 2y7’, where ' (0=<%'=1) is the ratio of
transmission loss to the total loss. This factor denotes
the efficiency with which photons that are lost by the cav-
ity are collected for detection. This factor can be incor-
porated into the definition of the detection efficiency. For
a two-port cavity, the factor ' should be reduced further
unless photons escaping from both ends of the cavity are
collected for detection.

10

wTyn2yn

0.1

0.01

FIG. 8. Effect of nonunit detection efficiency 1 on the
waiting-time distribution function w(7T). Full curve, n=1;
dashed curve, 7=0.5; dotted curve, n=0.1.
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V. INTRACAVITY PHOTON STATISTICS

In this section we discuss the cavity photon occupation
probability P(n) such that P(n) is the probability that
the cavity contains n photons in the steady state. Al-
though P (n) is not directly measurable, it is interesting to
compare its form with the photon-counting probability
p(m,T) which, of course, is directly measurable in
photoelectric-counting experiments. An expression for
P(n) can be derived as follows. First we note that
P(n)={n|pln) so that from Egs. (10) and (12) we find

Pi=[" ax [* ay 2 e opxy) (55)

where the positive-P function P(x,y) is given from Egs.

(12), (15), and (19)-(21) to be*

1+2q |7
21 (x*4pY)

2n

1
27

P(x,y)=—exp |2xy — . (56)

Substituting Eq. (55) into (54) and carrying out the in-
tegrals we obtain the following expression for P(n):

_ 1 2 172 \/—2; n
P(n)=— —_— —
2" (2437 2V1+27 —V2A
v 2r—1 (2n —2r —1)1
xréo( b r! (n—r)

(57)

W 1+20 —V2r ]
Vit+m +Vor |
where n!'=n(n —2)(n —4)... with —1!=1. On intro-

ducing the generating function F (s) by

_ 1
[1+27—2m(1—5/2)*]'%

F(s)= 3 s"P(n) (58)
n=0

we can write P(n) and its factorial moments in a more
compact form,

pmy="Z" 14" gl (59)
n! dS" s=1

(ny==1"14d" b (60)
n! dsr s =0

Here 7 is the mean photon number inside the cavity. The
intracavity photon-number distribution P(n) depends
only on the mean photon number inside the cavity. The
distribution P(n) is shown in Fig. 9 for several different
values of 7. It will be seen that unlike the photoelectric-
counting distribution, P(n) does not show even-odd oscil-
lations. This, however, is not surprising since P (n) refers
to the probability that the cavity contains n photons at
any given time in the steady state.’ The cavity is losing
photons continuously even as they are being created in
pairs. Therefore, at any instant it may contain any num-
ber, even or odd, of photons. The situation is different in
the transient regime where P(n), which now depends on
time ¢ that has elapsed since the oscillator was turned on,
may show even-odd oscillation in its passage towards the
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steady state.’

An interesting feature of P(n) in the steady state is
that for large values of 7 it exhibits long tails indicating
large intensity fluctuations. Relative intensity fluctua-

(a)
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0.0

Sw

0.0

0.]30

©)

Plp)
0115

0.00

0 12 A4 36 48

FIG. 9. Intracavity photon-number distribution P(n) as a
function of n for several different values of 7. The curves are
meaningful only for integer values of n.
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tions as measured by g‘?'(0), however, decrease and ap-
proach a value of 3 as the oscillator threshold is ap-
proached. In terms of bunching of photons the photon
beams produced by the DPO are always more bunched
than the photon beams from a thermal source. Another
interesting feature is that the ratios P(1)/P(0) and
P(2)/P(1) approach values 1 and 1, respectively. This
steplike behavior is clearly seen in Fig. 9. This behavior
continues for larger values of n, but the step size becomes
progressively smaller. For large values of n the distribu-
tion decays slowly to zero.

In terms of intracavity photon-number distribution we
can derive another expression for the photoelectric-
counting distribution p (m, T). Let 8 denote the probabil-
ity of detecting a photon, then p (m,T) is given by

©

pmT)=3

nh=m

n

BT(1—=p)"""P(n) . (61)

m

Using Eqgs. (57) and (58) we can write Eq. (61) in the form
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where F(fs) is given by Eq. (58) with s replaced by fs.
The single-photon detection probability B(T) is a compli-
cated function of 7. For short times, however,
B(T)=2ynT. Substituting this in Eq. (62) and using Eq.
(58) we recover the short-time approximation [Eq. (49)]
for the photoelectron-counting statistics.

We close this section by giving the intracavity photon-
number distribution when pump depletion is taken into
account. The corresponding positive-P distribution,
which is valid both below and above threshold, has been
derived by Wolinsky and Carmichael.* This distribution
is

7’(x,y)=const><[(U—xz)(o—yz)]noilezxy ,
IxL, Iyl <Vie, (63

where 0=2Te/k and n,=2Ty/k’. Here (2y)"! and
(2I')~! are the cavity lifetimes at the subharmonic and

(—1ym [ am the pump frequencies. Using this expression in Eq. (55)
p(m,T)= F(Bs) , (62)  we obtain
m! ds™ s=1
P(2 ): O,Zr © O,Zm F(r +m +%) 2 0 O,Zm F(m —f—%) 2 (64)
T 2 ) | T tm tm+ D) |/ 2 @ | Tom tng ) |
2 1 2
gt @ gam et L(r+m+41) x  p2m Fim+3)
P +1)= , 65
(2r+1) (2r+1)!m§O(2m +1) | T(r+m+ny+3) /"Z'O(zm)g T(m +ny+1) (65)

Examples of P(n) derived from Egs. (64) and (65) are
shown in Fig. 10. The exact distribution below and at
threshold is shown in Figs. 10(a) and 10(b), and qualita-
tively reproduces the behavior of Eq. (57). Above thresh-
old, where Eq. (57) is not valid, new features appear. One
noteworthy feature is the appearance of two most prob-
able values of n just above threshold in Fig. 10(c). The
distribution also exhibits a tendency to oscillate for small
values of n. High above threshold the distribution is cen-
tered at a nonzero value of n indicating finite amplitude
of oscillations

VI. SUMMARY AND CONCLUSIONS

We have studied the photoelectron-counting sequences
and photon emission sequences from the degenerate para-
metric oscillator cavity below threshold. These sequences
are described in terms of the counting distribution
p(m,T) and the waiting-times distribution w (7T) between
successive photoemissions or detections. The expressions
derived in this paper are valid for arbitrary counting time
and detection efficiency.

For low excitation of the cavity (7 <<1), the photon
emission sequence may be described in terms of pairs of
photons emitted by the cavity. The average separation
between photons in a pair is of the order of the cavity
lifetime T,=(2y)”!. The separation between pairs of

f

photons is of the order of the inverse of the mean rate of
emission of photons by the cavity. These photon pairs
outside eventually reflect the pair production of photons
inside the cavity. The role of cavity in the low-photon-
number regime is to stretch the photon pair correlations
to a time of the order of T..

It is interesting to compare the field produced by a
thermal source with the field produced by the DPO. The
field produced by a thermal source can be described as
two real independent Gaussian random processes with
the same variance and spectral properties. The field pro-
duced by the DPO can also be described by two real in-
dependent Gaussian processes, u; and u,. However,
these two variables have different variance and spectral
properties. It is this difference that is responsible for the
very different behavior of photon statistics in the two
cases.

The approach presented in this paper provides an ex-
ample of the power and usefulness of the positive-P repre-
sentation in describing nonlinear dissipative quantum sys-
tems. The techniques presented here are also applicable
to many other systems such as the nondegenerate para-
metric oscillator and four-wave mixers. Since the equa-
tions describing intracavity degenerate four-wave mixing,
under appropriate conditions, are equivalent to the equa-
tions for the DPO, the results of this paper are directly
applicable to intracavity degenerate four-wave mixer.'?
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Similarly, the results for the nondegenerate optical para-
metric oscillator are applicable to intracavity nondegen-
erate four-wave mixer.
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APPENDIX

In order to evaluate the generating function, we make
a Karhunen-Loeve expansion®® of the random variable
u,(t) in the interval 0 <7 < T as
172

©

> B.d,(2),

n=1

ul(t):%

Iwe|

A (A1)

where the coefficients 3, are random variables and the

functions ¢, (¢) satisfy the integral eigenvalue equation
T —Alt—r
NG Wy (e =g, (1) . (A2)

. —Mle—r] . . ...
Since the kernel e ' is real symmetric and positive

definite the eigenvalues p,=pu,= - are real and posi-
tive and the eigenfunctions ¢,(¢) can be chosen to form
an orthonormal set

fOTd),,(t)qﬁm (dt=5,,.

Furthermore, since u,(¢) is a real Gaussian process and
¢,(t) are orthonormal, the coefficients 3, are indepen-
dent real Gaussian random variables with zero mean and
variance u, given by

(B =mu, -
Using Egs. (A1), (A3), and (A4) in Eq. (27) we find

(A3)

(A4)
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©

0,sT=1]
n=1

AS
1+syylkelu, /A, (A3)

1 ]1/2

The integral eigenvalue equation (A2) can be converted
into the differential eigenvalue equation

2
«ddt—2¢,,<z>+w$,¢,,m=o (A6)
where
) 2)\'1
o= —Af. (A7)

The eigenvalues u, are now determined in terms of o,,.
Solutions of Eq. (A6) satisfy Eq. (A2) provided w, are
chosen to be the roots of

M

w 1

f(a))zcosz-F% sinoT =0 . (A8)

The roots of this equation are real and occur in pairs
tw,, tw,, ..., with 0<w,<w,< :--, and form an un-
bounded sequence. Expressed in terms of w,, Eq. (A5)
reads as

2 172
0> +A3

ol + A+ 2slkely

0,D=1]

n=1

(A9)

Taking the logarithmic derivative of Q (s, T) with respect
to s we obtain
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In order to evaluate this sum we note that the function
f(w) [Eq. (A8)], considered as a function of a complex
variable w, has simple zeros at tw, and lim, o, is un-
bounded. Furthermore, f(w) is analytic for all values of
o so that it may be written as the infinite product®®

f(w)zrl(w*w,,)(a)-f-w,,) . (A11)
n=1
Its logarithmic derivative with respect to o,
d i 1
—1 = »
d0 nf(w) n2:1 oo, (A12)

has singularities which are simple poles at o =*w, with
residue +1. It follows from Eqgs. (A8) and (A12) that the
singularities of the function

0*+A3+2snlkely do
1| M .
XIn |coswT +— |— — — |[sinoT (A13)
2 o A
are simple poles at w==i(AI+2snikely)!’? and
F(u Now consider the contour integral
45(1 w)dw, where €@, is a circle of radius R,

(o, <R,, <w, 4+ centered at the origin and not passing
through any pole. Then R, — o as n— o« so that as
R, — o the contour will enclose all the poles of F(w).
Now as n — oo, the integral ﬁ(,

1 dQ,(s,T) w ) F(w)dwis O(R, % and
= —nlkely > . so tends to zero as n tends to mﬁmty. This means that
, T d . -
Qs 1) s n=0 @, T A+ 2s7lnely the sum of the residues at the poles of F(w) vanishes and
(A10) we obtain
]
25— b d e, m D 2 2 ez, 1 | =0 (A14)
isoytzi zy dzy 2 Ay : '
Using this result in Eq. (A10) and integrating we find"’
ST/
Qi(s, )= 2 77 (A15)
cosh(z,TH—% z—l‘+k—11 sinh(z, T)
where
z3=A}+2smylkel . (A16)
Using a similar procedure we find Q,(s,7T) is given by
R
Qz(s, T)= Y 172 » (A17)
z,
cosh(z,T)+ 1 —2 + — |sinh(z,7T)
2 Ay -
where
23 =M —2smylke| . (A18)
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