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Influence of collisional dephasing processes on superfluorescence
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We present a quantum-mechanical treatment of the influence of collisional dephasing processes
on the statistical properties of superfluorescence (SF). The theory, which treats nonlinear propaga-
tion effects as well as quantum noise, shows how the nature of the cooperative emission process
changes from that of SF to that of amplified spontaneous emission as the collisional dephasing rate
is varied. The predictions of how the SF delay time varies with the collisional dephasing rate are in
good agreement with the results of a recent experiment [M. S. Malcuit, J. J. Maki, D. J. Simkin, and
R. W. Boyd, Phys. Rev. Lett. 59, 1189 (19871].

I. INTRODUCTION

Superfluorescence (SF) is the cooperative radiative de-
cay of a collection of initially inverted atoms. ' The
simplest theories of SF often ignore many of the compli-
cations that occur in actual experimental studies, such as
the presence of line-broadening mechanisms and the
effects of propagation. However, these effects can have a
profound inAuence on the character of SF. For instance,
a recent experimental study performed in part by several
of the present authors showed that the character of the
cooperative emission changes from that of SF to that of
amplified spontaneous emission ' (ASE) as the col-
lisional dephasing rate is increased. The results of this
experiment agreed well with the predictions of a semi-
classical theory developed by the authors. In the present
paper we present a quantum-mechanical theory of
cooperative emission from a collisionally broadened
medium and use the predictions of this new calculation to
interpret the results of the aforementioned experiment.
This new theory is based on a fully quantum-mechanical
derivation, where a correspondence between operators
and c numbers is made using quasiprobability
methods. ' We believe that this quantum-mechanical
theory can provide a more firm theoretical understanding
of the manner in which the character of the cooperative
emission process is modified by the presence of homo-
geneous dephasing processes.

Figure 1 shows the various regimes in which coopera-
tive emission can occur. The axes give the total number
N of interacting atoms and the intensity gain aL associat-
ed with a single pass through the interaction region of
length L. The gain axis can alternatively be thought of as
a normalized dephasing time, since (as pointed out by
Friedberg and Hartmann ')

= 2T2aL=

where T2 is the dipole-dephasing time. The "cooperative
lifetime, "

8vr 3
3g2

gives the characteristic time scale of SF, and is expressed
in terms of the cross-sectional area A of the excited re-
gion, the transition wavelength A, , and the inverse of the
Einstein A coefficient T, . In the limit of negligible de-
phasing, the SF process occurs in the form of a short
pulse whose duration is of the order v„and which is de-
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FIG. 1. Regimes of ¹tom cooperative spontaneous emis-
sion. For T2 ((~„~&)' amplified spontaneous emission (ASE)
occurs, whereas for T2 ) ~D superfluorescence (SF) occurs, with
damped SF occurring for intermediate values of T2. Strong-
oscillatory, weak-oscillatory, and pure SF occur depending on
the value of N compared to the cooperation number N, . The
case N, =3X10 is shown. The dashed line labeled pA. =1
shows how N and aL are related for the case in which the densi-
ty is held fixed at p= k, for a Fresnel number F= 1, and for
T2 =2Tl. The other dashed line shows the range of parameters
studied in the experiment and theory.
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layed with respect to the excitation by a delay time ~D.
The delay time is much larger than ~„and has been
shown by Polder, Schurrmans and Vrehen to be es-
timated by

rD =r„[—,'in(2~N )] (3)

Figure 1 is divided into several different regions, each
of which is given a name that the present authors find
useful in describing the nature of the emission process un-
der the indicated conditions. We stress that not all au-
thors use these names in exactly the same sense in which
we use them. The primary division of Fig. 1 is based on
the relative importance of dephasing processes and
divides the parameter space into three regions labeled
ASE, damped SF, and SF. These regions are separated
by the curves labeled T2=(r„rD)' and Tz=&D The r.e-
gion to the right of the second curve (labeled SF) is the
region in which Tz ) rD (or aL ) [In(2mN)] /8), that is,
the region in which on average no collision occurs during
the SF buildup time. In this region the effects of col-
lisional dephasing are negligibly small, allowing the
cooperative emission process to occur with the buildup of
a macroscopic dipole moment. Schuurmans and Polder
have shown that for Tz ((r,rD)'~ [or aL &ln(2nN)/2]
the amount of dephasing will be suScient to prevent the
occurrence of cooperative emission. ' "' In this limit no
macroscopic dipole moment can build up and the atoms
simply respond to the instantaneous value of the radia-
tion field. The region to the left of the curve for
T2 =(r„rD )' is hence labeled ASE. The region between
these two curves in which collisional dephasing effects
can play some role in inhibiting the cooperative radiative
decay is labeled damped SF.

The region of Fig. 1 labeled SF is further divided into
three regions labeled pure SF, weak-oscillatory SF, and
strong-oscillatory SF by the curves labeled N=N, and
N =N,' . Here N, denotes the Arecchi-Courtens
cooperation number

(4)

which is a measure of the maximum number of atoms
that can emit cooperatively. %'e have plotted these lines
for the particular value N, =3X 10, which is appropriate
for the conditions of our experimental study using the
material system KC1:02, namely, T, =80 ns, A, =629
nm, L =0.7 cm, and a Fresnel number (I' = 3 /A, L ) equal
to unity. Bonifacio and I ugiato have shown that prop-
agation effects become important when N significantly
exceeds N„ leading to strong temporal ringing in the SF
output due to reabsorption of the emitted radiation.
More recently, Crross and Haroche ' have shown that
the more restrictive condition N &N,' must be met in
order for pure SF to occur, in which propagation effects
are presumed not to be important.

We have also plotted in the figure the dashed line la-
beled pA, = 1, where p denotes the number density of ex-
cited atoms (p=N/AL ). The region below this line can
be reached only through the use of a number density

greater than A, . For densities this large, near-field
dipole-dipole interactions become significant, ' ' and the
effects of such interactions have not been included in pre-
vious (or the present) treatments of extended sample SF.
The functional form of the dashed line is
aL =(3/4n. )(T2/T, )(N/F)'~ . This form is obtained
through the use of Eqs. (1) and (2) and the assumption
that pA. =1. The dashed line as shown is plotted for the
values F= 1 and T2/T, =2. We performed our experi-
mental study of the transition from SF to ASE using a
sample containing a total number of excited atoms equal
to 3 X 10, well outside the region where near-field
dipole-dipole interactions are important.

II. EXPERIMENT
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FIG. 2. Typical experimental realizations of the temporal
evolution of the emission from KC1:O2 for several di8'erent
temperatures. At the lowest temperature, the emission is
characteristic of SF, whereas at the highest temperature the
emission is characteristic of ASE. The inset to case (f) shows
the evolution of the emission on a longer time scale.

Our experiment entailed studying the nature of the
cooperative emission process for several different values
of the temperature of a KC1:02 sample and hence for
different values of the dipole dephasing time T2. Some of
the experimental results of this study are shown in Fig. 2.
Here for six different values of the temperature of the
crystal, we show typical experimental realizations of the
time evolution of the intensity of the cooperative emis-
sion. As the temperature of the crystal is increased,
thereby increasing the dipole dephasing rate, the nature
of the emission is seen to evolve gradually from that of
SF to that of ASE. We have quantified these results by
determining how the delay time of the emission depends
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on the dipole dephasing time, as shown in Fig. 3. We
have used two different ways of characterizing the delay
time of the emission. One method involves estimating
the delay time associated with each experimental realiza-
tion of the emission, where in the present case the delay
time is taken to be the time required to reach the peak of
the emitted intensity. For the data collected at higher
temperatures, where the time evolution is quite noisy, we
first fit a smooth curve through the data before determin-
ing its peak. For each value of the temperature, the solid
squares shown in Fig. 3(a) give the average value of the
delay time according to this definition. The analysis of
delay-time statistics could instead have been done using
an energy passage time, defined to be the time required

for a certain amount of energy to be emitted. The energy
passage time has the desirable property that it is less sen-
sitive to Auctuations for cases where the emission is quite
noisy. Our other method of analyzing the data entails
first determining the ensemble average of the time evolu-
tion of the intensity and then estimating the time delay of
this ensemble-average intensity. These results are shown
by the solid squares in Fig. 3(b). This second method is
of interest because certain theoretical treatments of SF
(see below) can predict the time evolution of the
ensemble-averaged intensity but cannot make predictions
regarding even the statistical behavior of individual reali-
zations of the emission process. Note that these two
different estimates of the time delay differ significantly in
the transition region between that of SF and ASE. The
reason for this difference is that each realization contains
roughly the same energy. Consequently, realizations
with shorter-than-average delay times preferentially have
higher-than-average intensities at small times, and hence
the ensemble-averaged intensity for small times is dispro-
portionately weighted by such realizations.
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III. QUANTUM THEORY OF SF

In our previous paper, we interpreted our experimen-
tal results by means of a semiclassical model that includ-
ed the effects of propagation and of homogeneous dephas-
ing. %"e used a semiclassical approach because the only
available quantum-mechanical treatments ' of SF that
included the effects of propagation and of homogeneous
dephasing assumed the condition of constant inversion
and hence were valid only for the initiation period of the
emission. Quantum-mechanical theories that can de-
scribe the temporal evolution of the emission beyond the
initiation regime exist, but treat the case of inhomogene-
ous broadening. ' ' In the present paper, we reanalyze
our results in terms of the fully quantum-mechanical
theory developed originally by Haken' and Louisell. '

This theory was later generalized' ' to a positive distri-
bution representation, in order to describe the quantum-
statistical properties of optical bistability. The details of
the derivation leading to the equations of motion needed
here are given in Ref. 36. In applying this formalism to
the present problem, we assume that initially the medium
is totally inverted. Through the use of the positive P rep-
resentation, ' ' it is found that the operator equations
describing the coupled atom-field system can be convert-
ed to (c-number) Ito stochastic differential equations. '
To leading order in a 1/X expansion for X atoms, these
equations are

FIG. 3. Delay times as functions of the single-pass gain. The
squares are the values found from the experiment, while the cir-
cles are the values found fram the theory. (a) gives the mean
value of the individual delay times, while (b) gives the delay
time of the ensemble-averaged intensity. The solid line in (a) is
an aid to the eye. The solid line in (b) gives the value of the de-
lay times found using the linearized theory, Eq. {15).The arrow
marked Tz =(~,~D )' gives the value of the gain corresponding
to the Schuurmans-Polder criterion for the transition to ASE
and the dashed line gives the theoretical value [Eq. (3)] of the
delay time in the limit of no dipole dephasing.

a, = —gib, „a, +gJ, .
a
at

(Sa)

—J, = —r2J, +a~, D, +I',
Bt

D, = y&(D, +X, ) —2g[(—J, )~a, +J, (a, ) ]+I,at

(5c)

where a, is the electric field amplitude, and J, and D,
are the atomic polarization and inversion, respectively, at
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the position z, . The correspondence between c numbers
and operators is as follows:

a, ~(2M+ 1) '~ g a exp(im b,kz, +icoot ), (6a)

J, ~g & „exp( i k—o r„+icoot ),
P

D,~g & '„,

(6b)

(6c)

r,' =[q, (D, +N, )/2]'"-(g, , +g„),
I, =[2@ (DI, +N)]'~ g 2, 3,

(8a)

(8b)

where y =yz —y, /2 and where the g; are real, Gauss-
ian, random variables of zero mean correlated according
to

(g;, (t)g, , (t') ) =5,,5„5(t t'), . —

where i and j equal 1, 2, and 3. In writing Eqs. (8) we
have included only the inversion-dependent contributions
to the stochastic sources, which is appropriate since they
are the dominant contributions for the case of an initially
inverted medium. The terms included here, therefore,
generate only classical statistical noise, in the sense that

where coo is the atomic-transition frequency. The field
operator & is the lowering operator for the field mode
having wave vector k =ko+mAk along the axis of the
interaction region, where ko =coo/c and hk =2'/L. The
Pauli operators o.„and o „' describe the atom located at
position r„. The summation over p in Eqs. (6b) and (6c)
is to be performed over the total number N, of atoms
within the volume element (or slice) of cross-sectional
area A and thickness b,z =L /(2M + 1 ) located at
z, =shz, where s is an integer that ranges in value from
—M to M. Here 2M+1 is the number of volume ele-
ments into which the sample has been divided. The
atom-field coupling constant g for a given volume ele-
ment is related to the single-mode atom-field coupling
constant g =d(2rtcoo/A'V)' by g =(2M+ 1)' g, where d
is the atomic dipole transition moment and V= AL is the
total volume of the interaction region. The atomic damp-
ing and dephasing rates are given by y, =l/T, and
y2= 1/T2, respectively.

The theory developed by Drummond and Walls' to
treat optical bistability is a mean-field model. We have
generalized their theory to include one-dimensional prop-
agation effects by the inclusion of the term 6„ in Eq.
(5a). This term is given by

exp[imb, k(z, —z, )],mchk
~2M+1

and describes how the field in slice s is related to the field
in slice s . The one-dimensional model is fairly accurate
when the Fresnel number of the medium is of the order of
unity, as in our experiment.

In general, the stochastic source terms in Eqs. (5) can
give rise to nonclassical statistical behavior. However,
we approximate these noise terms by

the field distributions always have a Glauber-Sudarshan P
representation that is positive. This approximation pre-
cludes the study of nonclassical states of the field, which
are not of interest here.

Equations (5) can be rewritten in the form usually used
in theories of cooperative emission by rescaling the quan-
tities and by transforming the equations to a description
involving a continuous spatial variable x that varies be-
tween 0 and 1. Under the assumption of no interaction
between the counter-propagating waves within the sam-
ple, the stochastic equations for the description of the
emission traveling in the positive x direction at retarded
time r = ( t xL /—c ) /r „are

a e(x, r)=p(x, r), (loa)

a
p (x, r) = —y2p(x, r}+e(x, r)n (x, r)+ I t'(x, r),

7

a
n ( x, r ) = —y, [n ( x, r)+ I ]

(10b)

I ~(x, r)= I y [n(x, r)+1]/2NI'

X [g,(x, r)+igz(x, r)],
I "(x,r) = I2y, [n(x, r)+1]/N I

' $3(x,r),
(1 la)

(1 lb)

where the g; are Gaussian random variables of zero mean
with the correlation

( g;(x, r)g)(x', r') ) =5;,5(x —x')5(r —r'), (12)

where I, and j equal 1, 2, and 3. The dimensionless decay
rates are given by y2 =~„y2, y &

= v.„y„and y =y2—y, /2. We note that Eqs. (10) are equivalent to the
semiclassical Maxwell-Bloch equations except for the
added stochastic source terms I ~ and I ".

We solve Eqs. (10) numerically for N = 3 X 10, in

agreement with the experimental conditions of Ref. 8.
We assume that no external field impinges on the sample
at x =0, except for an initial excitation pulse that travels
through the sample in the positive x direction (swept
gain). Because we have omitted the nonclassical noise
terms, Eqs. (10) constitute five independent real equa-
tions, in our case. In the full quantum-statistical theory
five independent complex equations would replace Eqs.
(10}. The exact quasiprobability distributions are highly
singular for inverted atoms. However, in the present
(1/N) expansion, an approximate Gaussian distribution
reproduces the moments of the quantum Auctuations to
the required order in the expansion. In fact, these distri-
butions also occur in the solution for an optically pumped
medium when the present truncation approximation is

—
2[p '(x, r)e(x, r)

+p(x, r)e*(x,r)]+I "(x,r), (10c)

where the following correspondence between discrete and
continuous variables exists: e(x, r)~r„ga, (t), p(x, r)
~J, (t)/N„and n(x, r)~D, (t)/N, . The stochastic
source terms are now
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used. For each slice, the initial correlations in the po-
larization and inversion are

(J, J,+ ) =N, 5„
(D,D, . ) =0 .

(13a)

(13b)

Hence, in the continuum limit, the initial polarization
p(x, O) in retarded time is taken to be a random field
given by

p(x, O)=(2N) ' [g, ( x)+i(~(x)], (14)

where (g;(xg'i(x')) =5&5(x —x'). Note that the ran-
dom variable found by averaging p(x, O) over a spatial
slice has a variance that corresponds, within the Bloch-
sphere formalism, to an rms tipping angle of 2/N, ' . The
initial values of the variables for the inversion and the
electric field are taken to have the deterministic values
e(x, O) =0 and n(x, O) =1. Note that since the positive P
representation assumes the case of normally ordered
operators, the quantum uncertainty has shown up only in
the polarization.

IV. RESULTS

The equations were solved numerically by using an
Euler method (see the Appendix) appropriate for solving
stochastic di6'erential equations. Some of the results of

these numerical simulations are given in Fig. 4. The
three columns labeled "single realization" show particu-
lar realizations of this stochastic process for various
values of the gain. The rows correspond to four different
values of gain. For high gain [Fig. 4(a)] the emission is
characteristic of SF and for low gain [Fig. 4(d)] the tem-
poral evolution of the intensity is very noisy, a charac-
teristic of ASE. Note that the qualitative character of
the emission evolves gradually from that of SF to that of
ASE as the single-pass gain is gradually decreased. For
example, as we decrease the gain, the temporal ringing of
SF is diminished and replaced with a pulse breakup
phenomenon, where the first pulse is not necessarily the
highest pulse. To characterize the stochastic nature of
the emission process we have calculated 30 realizations of
the temporal evolution of the emission for each value of
the gain. For each value of the gain, we determine the
average value of the delay time using the same method
(described above) used in analyzing our experimental re-
sults to determine the mean of the individual delay times.
The solid circles in Fig. 3(a) show these theoretical pre-
dictions. The agreement between the theory and experi-
ment is quite good.

%'e note that a direct identification of experimental tra-
jectories with quantum-stochastic trajectories is possible
here because the photon numbers are extremely large.
Quantum-stochastic averages can in general be identified
with overall moments of the experimental data. In the
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FIG. 4. Theoretical plots of the temporal evolution of the X-atom cooperative spontaneous emission. The plots labeled "single
realization" give particular realizations of the emission for the given value of the single-pass gain. For the plots labeled "ensemble
average, " the solid curves give an estimate of this quantity based on averaging 30 realizations of Eqs. (10), while the dashed lines are
plots of Eq. (15).
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present case the variance caused by shot-noise effects at
the detectors is relatively small. In addition, the removal
of nonclassical noise from the simulations implies that
only classical phase-space trajectories are available. For
these reasons, the identification of stochastic and experi-
mental moments implies that we can regard each stochas-
tic trajectory as representing a typical, experimentally ob-
servable result.

The results of the numerical solution of Eqs. (10) have
also been used to find the ensemble-averaged intensity.
The curves drawn with a solid line in the fourth column
of Fig. 4 labeled "ensemble average" show estimates of
the ensemble-averaged intensity based on these 30 reali-
zations of the emission for each value of the gain. We
then calculate the delay time of these ensemble-averaged

intensities. The solid circles of Fig. 3(b) show these
theoretical predictions of the delay time of the ensemble-
averaged intensity. The agreement between these
theoretical predictions and the results of the experiment
is again quite good.

It is useful to compare the results of our numerical cal-
culation of the ensemble-averaged intensity to those of
the approximate, analytic theory sometimes used to de-
scribe the initiation of SF. During the early stages of the
cooperative emission process, the population inverse is
essentially constant and equal to its initial value of unity
[i.e., n(x, r)=1]. Under these conditions Eqs. (10a) and
(10b) become linear and can be solved analytically to ob-
tain the following expression for the ensemble-averaged
intensity (normalized by NAcu/A r„):

(I(r) ) = —e '- [Io(2r' )
—I, (2r' )]+2y f dr'e ' [Io(2r' )

—I, (2r' )]
0

(15)

(I(r) ) =exp(4r' 2y, r)/8vrNr . — (16)

This equation describes a pulse of radiation which peaks
at the time ~=4@ z and which dies out for ~))y 2

'.
For times so large that the first term has essentially died
out, the second term of Eq. (15) can be estimated by for-
mally replacing the upper limit of integration by infinity,
which gives (I) =y exp(T~)[IO(T~) I&(Tz)]/Ny2. —

Here Io and I, are the zeroth-order and first-order
modified Bessel functions, respectively. This expression
is identical to that relevant to stimulated Raman scatter-
ing and can be derived by methods identical to those de-
scribed by Raymer and Mostowski. ' Note that this ex-
pression is also that given by Haake et al. for the
ensemble-averaged intensity for the case of SF from an
inhomogeneously broadened medium with the assump-
tion of a Lorentzian line shape. Plots of the temporal
evolution of the ensemble-averaged intensity found by
evaluating Eq. (15) for various values of the gain for a
fixed number N=3. 0X 10 of excited atoms are given by
the dashed lines in Fig. 4. Note that for low values of the
gain the ensemble-averaged intensity reaches a steady-
state value before much of the energy of the system has
been radiated, as is characteristic of ASE. We assign a
delay time to the ensemble-averaged intensity through
the use of a reference intensity. We take this reference
intensity to be 85%%uo of the value of the intensity at the
time at which half of the atoms have radiated. The solid
line in Fig. 3(b) shows the predictions found from using
Eq. (15) for the delay time of the ensemble-averaged in-
tensity. The predictions found from using Eq. (15) are in
good agreement with the results of the experiment and
the numerical theory for the delay time of the ensernble-
averaged intensity.

Some conceptual understanding of the distinction be-
tween SF and ASE can be obtained by studying Eq. (15)
in its various limits. For ~))1, the first term of this
equation becomes approximately

For the case of interest in which Tz(=aL/2) &)1 this
equation becomes

(I ) =exp(aL ) /2vrNT; (17)

where Tz = y' '(aL /vr )
' is roughly the correlation

time of the emission. This result describes a steady-state
regime of the emission, i.e. , ASE.

The predictions of Eqs. (16) and (17) are, of course,
based on the use of linearized equations that do not ac-
count for population depletion. However, one can esti-
mate the delay time ~D by assuming the validity of Eq.
(16) and calculating the time required by some fraction
(say 50%) of the stored energy to be emitted. In fact, by
setting

(18)

with I(r) given by Eq. (16) with yz set equal to zero, we
can obtain the standard expression for ~D given in Eq.
(3). The nature of the emission is expected to be quite
different depending on whether ~D is shorter or longer
than the time (T2 /~„) required to reach the peak value of
the first term in Eq. (15). If rD is much longer than
T~ /~„, the steady-state behavior described by the second
term in Eq. (15) will certainly be reached before the popu-
lation is significantly depleted (since for the general case
of y2&0 the time required to deplete the inversion will be
greater than or equal to the value of ~D as calculated
above) and the emission will be characteristic of ASE.
The transition from SF to this type of emission occurs ap-
proximately for rD = T2 /r„, that is, for T2 = (r„rD )'
which is just the Schuurmans-Polder criterion. The value
of aL corresponding to the case T~=(r„rD)' is marked
by an arrow in Fig. 3(b) and the value of rD is depicted in
Fig. 3(b) by the dashed line.
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V. CONCLUSIONS

In summary, we have presented a quantum-mechanical
theory of cooperative emission from a homogeneously
broadened collection of initially inverted atoms.
Through the use of the positive P representation, we have
shown how this system can be described by a set of sto-
chastic partial differential equations. We have presented
numerical solutions to this set of equations for various
values of the parameters to illustrate the transition of SF
into ASE. We find that predictions of this theoretical
model for the average delay time of the single-realization
intensities and the delay time of the ensemble-averaged
intensity agree well with the values of these quantities ob-
tained from our experiment.
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APPENDIX: NUMERICAL SOLUTION
OF THE EQUATIONS

Equations (10) are stochastic partial differential equa-
tions for which the Ito interpretation is to be used.
Consistent with Ito calculus, we solve these Eqs. (7) nu-

merically through the use of the Cauchy-Euler method. '

This prescription leads to the algebraic equations

ex+ ax, ~ ex, r+ ~xpx, g ~

p +t„=p,—hr(y2p„, —e,n, —I ~,),
(A la)

(A lb)

I „",=[2y (tn, +1)l Nb xb w]'

and where the initial polarization is given by

p o=(2N«) "(kt,x,o+tk, xo) .

(A2b)

(A3)

The Gaussian random variables g, „,have the correlation

(A4)

and are calculated using the Box-Muller method. Note
that the variables x and ~ are now taken to be discrete
variables that increase stepwise in value by the amounts
Ax and A~, respectively. The convergence of the numeri-
cal solutions was verified by ensuring that physical quan-
tities (such as delay time) did not change when the values
of the step sizes hx and A~ were changed.

n, +a,=n„, br—[y, (n„,+ I )

+2(p',e,+p„,e„*,) —I „",], (Alc)

where the stochastic source terms have the form

I t', =[y (n„,+1)/2Nbxhr]'~ ((, „,+if~ „,),
(A2a)
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