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We report an experimental study of one- and two-photon Rabi oscillations and other coherent
effects in microwave transitions between Rydberg states of calcium. Selective field ionization allows

us to observe the time evolution of both the initial and final states with high discrimination. The ex-

periments include measurements of the dependence of the one- and two-photon oscillation frequen-

cies on microwave power and detuning from resonance. We have used the off-resonant behavior of
the two-photon oscillation frequency to measure the ac Stark shift. In a magnetic field we have also

observed the free evolution of the magnetic sublevels and the effect of Zeeman splitting on the one-

photon Rabi oscillations. The theory for these experiments is presented; our results are in excellent

agreement.

I. INTRODUCTION

The evolution of a two-level system subjected to a har-
monic perturbation is a basic process in quantum
mechanics. A characteristic feature is an oscillation in
the populations of the two levels. ' This behavior was first
considered by Rabi in the study of nuclear magnetic mo-
ments, hence the phenomenon is often referred to as a
Rabi oscillation. In Rabi s original work and in subse-
quent magnetic resonance experiments, the interaction
between magnetic moments and oscillating magnetic
fields was studied. With the advent of lasers, the interac-
tion of two-level systems with optical radiation has been
studied extensively. In this regime, the term optical nu-
tation is often used.

Simple oscillations in level populations can also be ob-
served in multiphoton processes, and we will use the term
Rabi oscillations for these phenomena in general. Since
multiphoton processes usually require stronger radiation
fields than one-photon processes, the ac Stark shift
(power-dependent shift of the resonance frequency) can
be an important efFect. Two-photon Rabi oscillations
have been observed by Hatanaka and Hashi and Gold
and Hahn, and a variety of two-photon coherent efFects
have been studied theoretically ' and experimental-
ly. ' ' The ac Stark shift has been observed in a two-
photon process by Liao and Bjorkholm. ' We have car-
ried out a detailed experimental study of two-photon
Rabi oscillations in Rydberg states of calcium, including
measuring the ac Stark shift by examining the off-
resonant behavior of the two-photon oscillation frequen-
cy. Only one intermediate state is important, and our re-
sults agree well with theory. We have also studied one-
photon Rabi oscillations, whose well-known characteris-
tics have provided a means for analyzing the systematics
of our experimental system.

Realizing the optimal conditions for the study of Rabi
oscillations requires two- or three-level systems that are
free from radiative damping and a well-controlled in-
teraction with the radiation. Such conditions are closely
approximated by using microwave transitions between
Rydberg states of calcium. We have nearly ideal two- or
three-level systems because fine and hyperfine structure
are absent in calcium singlet states. (The nuclear spin of
the dominant isotope of calcium, Ca, is zero. ) The life-
times of Rydberg states are long and the electric dipole-
matrix elements between neighboring states are large.
Consequently, a low level of microwave power can gen-
erate many Rabi oscillations in a time short compared to
a lifetime, and so radiative damping is negligible.

Because the transitions are at microwave frequencies,
the timing, strength, and frequency of the radiation field
can be precisely controlled. The interaction occurs in a
waveguide, in which the amplitude of the microwave
electric field is constant for the duration of the interac-
tion. The frequency of the Rabi oscillations, which de-
pends on the electric field amplitude, is thus constant.

An additional advantage of Rydberg states is that
selective field ionization can be used to detect and
difFerentiate the initial and final states. This technique
provides a simple and efficient method for observing the
Rabi oscillations. The major disadvantage of Rydberg
states is their sensitivity to electric fields; thus the control
of stray electric fields is a challenge for this system.

Figure l shows a local-energy diagram for s, p, and d
singlet states of calcium for principal quantum number
n =50. We have studied the 4snp 'P, ~4sns 'So and
4snp 'P, ~4snd 'D2 one-photon transitions, and the
4snp 'P, ~4s (n —1 )p 'P, two-photon transitions. For
the two-photon transitions it is possible for the
4s(n —1 )d 'D2 state to be the only important intermedi-
ate state, which allows us to study two-photon Rabi oscil-
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~P(t) }=b, (t) exp( —ice;t)~i } +bf(t) exp( —icoft)~ f},

4ShS 'S,

and the time evolution of the coefficients b, (t) and bf(t) is
obtained from Schrodinger's equation
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—,
'
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—,
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FIG. 1. Local-energy-level diagram for n =50 showing the
one- and two-photon transitions studied. The dashed lines indi-
cate the locations of the n —2 and n —3 levels of hydrogen (lev-
els with zero quantum defect).

lations in a simple three-level system. The two-photon
transitions are driven with a single-frequency microwave
source.

Section II provides a simple analysis of the behavior of
one- and two-photon Rabi oscillations. The experimental
apparatus is described in Sec. III. Section IV presents the
results of our experiments on the power dependence and
o6'-resonant behavior of the two-photon oscillation fre-
quency and a study of the ac Stark shift. The theory of
the ac Stark shift is developed in the Appendix. Section
V presents the data and analysis of one-photon Rabi os-
cillations in a magnetic field, in which coherent eA'ects be-
tween sublevels must be taken into account. Finally, pos-
sible extensions and applications of the research are dis-
cussed in Sec. VI.

b, (t) =
—,
' exp( i 5t)Q, ,f—bf(t),

bf (t) = —
—,
' exp(i 5t)Q,fb; (t) .

We assume oscillatory solutions of the form

b, (t)=B; exp(iXt),

bf(t)=Bf exp[i(5+1, )t],
and obtain the two eigenvalues

X = —-'5+-'(5'+n' )'"+ 2 2 if

(4a)

(Sa)

(sb)

(6)

If the system is initially in the state ~i }, then the time
evolution of the populations is

~bf(t)~ = sin ( —,'Q, t), (7a)

For co=co;f the terms proportional to exp[+i (co —
cu;f )t]

oscillate slowly, while the terms proportional to
exp[+i (co+co;f )t] oscillate much more rapidly. Because
the time integral of the rapidly oscillating terms is nearly
zero, these terms do not contribute significantly and
therefore can be dropped (rotating-wave approximation).
This approximation yields

II. THEORY

A. One-photon Rabi oscillations

2

~ b, (t)
~

= 1 — sin ( —,'Q, t),+R1

1

where

Q, QR, +5, OR, 0;f .

(7b)

&i )W(t))f }=fiQf sin(cot)=& f IW(t)[i }',
&i [ W(t)]i }=

&f ( W(t)[f & =0 .

(la)

(lb)

We choose Q,.f to be real and time independent. An im-
portant parameter is the detuning from resonance,5:co 6) f ((co f where co;& =co; —cof . The state of the
system is expressed as

The response of a two-level system to a harmonic per-
turbation is well known. We briefly review this topic to
establish the notation and to aid the discussion of two-
photon Rabi oscillations. Radiative damping is not im-
portant in our experimental system and therefore is
neglected. Consider a system with two levels ~i }and

~f }
with energies Ace; and Ace&, respectively. We write the in-
teraction Hamiltonian W(t) in the form

We will refer to QR, as the one-photon Rabi frequency
and 01 as the one-photon oscillation frequency. The pop-
ulations of the states ~i } and

~f } oscillate at the frequen-
cy 0,. Gn resonance (5=0), the populations oscillate
with unit amplitude at the Rabi frequency QR, . As the
radiation is toned off resonance, the oscillations decrease
in amplitude and increase in frequency. The full width at
half maximum (FWHM) of the oscillation amplitude is
twice the Rabi frequency AR1.

In our experiments we study the interaction of an atom
with monochromatic radiation with an electric field given
by E=Eoz sin(cot). The electric dipole interaction Ham-
iltonian is

W(t) = dE=ezEO sin(cot)—,

and so
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Qtt (
=Q,f =ez;f Eo!A . (10) ~g(t)) =b, (t)[i)+b.(t)~a )+bf(t))f ), (12)

Here d is the electric dipole operator and d;f = —ez,f is
the electric dipole-matrix element between the two states
~i ) and

~f ). Thus the Rabi frequency for a one-photon
transition is proportional to the amplitude of the electric
field of the radiation.

B. Two-photon Rabi oscillations

Consider a three-level system with states ~ii ), ~f ), and
~a), as shown in Fig. 2. Radiative damping is again
neglected. The interaction Hamiltonian can be written in
the form

b, ( t ) = —
—,
'

I exp [i (co+ to,, )t]
—exp[ i—(to —co; )t] I Q(, b, (t),

b, (t) = —
—,
' Iexp[i(co —to;, )t]

(13a)

—exp[ i (—co+co;, )t] J Q,,b, (t)

,'—I e—xp[i(to+ co,f )t]

then the time evolution of the coeScients can be found
from

(i
~
W(t) ~a ) =fiQ, , sin(cot),

(a
~
W(t)~if ) =fiQ,f sin(cot),

(i~W(t)~f) =0,

(1 la)

(1 lb)

(1 lc)

(13b)

—exp[ i (co+—co,f }t])Q,fb, (t) . (13c)

—exp[ i (—to —to,f )t]I Q,fbf(t),
bf(t) = —

—,
'

I exp[i (to —co,f }t]

(i
(
W(t)(i ) = (f ( W(t)(f ) = (a [ W(t))a ) =0 . (11d)

For the states ~i ), if ), and ~a ) with unperturbed ener-
gies R~;, Acof, and Ace„respectively, we define
cof:co cof etc. As shown in Fig. 2, the di8'erence be-
tween the radiation angular frequency co and the one-
photon resonance frequency co;, is referred to as the "de-
fect" 6 =—co —co; . The detuning from the two-photon res-
onance is 5—=2' —co,f =b, +(to co,f). (Not—e that with
this convention a detuning of 5 requires a change in the
radiation frequency of —,'5.) Although the location of the
intermediate state as shown in Fig. 2 corresponds to the
real experimental system„ the magnitude of the detuning
has been exaggerated for clarity; in our experiments
5 « h. If the state of the system is expressed as

b;(t) =
—,
' exp( i b t)Q;,—b, (t),

b, (t) = —
—,
' exp(iht)Q;, b;(t)

+ —,'exp[ i (5 —b, )t]Q,fbf (—t),
bf(t)= —

—,
' exp[i(5 —6)t]Q,fb, (t) .

We assume solutions of the form

b;(t)=B; exp(ikt},

b, (t)=B, exp[i(A, +b, )t],
bf(t)=BI exp[i(A, +5)t],

and obtain the following cubic eigenvalue equation:

A[(A, +b, )(A, +5)——,'Q,f ]——„'Q;,(A, +5) =0 .

(14a)

(14b)

(14c)

(15a)

(15b)

(15c)

(16)

The general solution is cumbersome. However, we can
gain insight into the behavior of the eigenvalues by con-
sidering the case of resonance (5=0). For the resonant
case we will label the eigenvalues A,o, A, +, and A, . For
the general case (5%0) we will label the eigenvalues A,„
A,z, and k3. The eigenvalues on resonance are

For co-co,-, -co,f, we can make the rotating-wave ap-
proximation and neglect the antiresonant terms
exp[+i(to+to;, )t] and exp [+i(co+co,f )t]. With this ap-
proximation, we obtain

A,0=0,
= —

—,
' 5+—,

'
( b +Q;, +Q,f )

'

(17a)

(17b)

Often, Q;„Q,f « 5 . This approximation will be
satisfied if the probability of a one-photon transition to
the intermediate state is negligible, as is true in our exper-
iment. With this approximation,

0;,+Q,f+= =—o (18a)

FIG. 2. Energy-level diagram for two-photon Rabi oscilla-
tions showing the microwave frequency co, the defect 5 and the
detuning 6. (The detuning is exaggerated for clarity. )

(18b)

Consequently, A, + « X . For small detunings, the eigen-
values are not expected to change significantly. Let us
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2

A. +X(5—Q )—2 0,,
0 4g

=0. (19)

consider the behavior of the large eigenvalue A, 3. Near
resonance, A, 3-A, & 5, and A.3-A, &)Q,-„A,f. Apply-
ing these approximations to Eq. (16}yields A,3= —b. For
the two smaller eigenvalues (A,o and A, + on resonance) the
cubic equation can be approximated by neglecting A, with
respect to A. This leads to a quadratic eigenvalue equa-
tion:

(24)] is proportional to the amplitude squared (and thus
proportional to the power). The off'-resonant behavior of
the two-photon transition is identical to that of the one-
photon transition except for a power-dependent shift of
the resonance frequency 5,'-f. This shift can be identified
as the ac Stark shift of the two-photon transition. The
particular expression for 5,'/, Eq. (23c), is only valid for a
three-level system in the rotating-wave approximation.
In real atomic systems, one must include the contribution
from other levels. The general expression for the ac
Stark shift of the two-photon transition is then

Therefore the conditions 6«A and Q;„Q,f «5 lead
to the following approximate solutions of the cubic eigen-
value equation

0 a).iS IS

&f
2( 2 2)

2fS~fS
2( coI~ ci) )

(25)

A, , =—,'(P —Q~),

A2= —,'(p+ Q~),

3 7

(20b)

(20c)

&,k =ez kE0~&,

co k
= (E Ek ) /i. ii—.

(20a) where the sum is over all intermediate states s and

(26a)

(26b)

where A, , and A, 2 are the solutions of Eq. (19) with

P—:Qo —5,
Q, = [(5 Q—,)'+ Q—',.5/a]'" .

(21a)

(21b)

~bI(t}~ = sin ( —,'Qzt),
2

2

~b,.(t)~ =1— sin ( —,'Q2t),&~2

2

~b. (t) ~'=0,

(22a)

(22b)

(22c)

Note that as 6~0 ki ~kp k2 A + and A, 3~A

If the system is initially in the state ~i ), then by using
the above approximations we obtain the time evolution of
the populations

This expression for the ac Stark shift is derived in the
Appendix. The first term in Eq. (25) is the shift of the
state ~i ) and the second term is the shift of the state

~f ).
One can recover 5,'-f from 5;f by restricting the sum to the
three levels ~i ), ~a ), and ~f ) and using the approxima-
tion co;, (co;, —co ) '=co&, (coI, —co ) '= —

—,'b. Note
that the shift is linearly proportional to the power.

Measuring the slope of the power dependence of the ac
Stark shift requires an absolute microwave power mea-
surement, which is difficult. However, if 5,f is expressed
in terms of the two-photon Rabi frequency Q+2 [Eq.
(23a)], the explicit power dependence is eliminated. This
provides an important advantage in our study of the ac
Stark shift because we can measure the two-photon Rabi
frequency with much higher accuracy than the absolute
microwave power. Using Eqs. (23a), (25), and (26a), the
expression for the ac Stark shift becomes

where

0;,Of
R2 (23a)

5,f =0~26
2

lS IS

& z
CO- 67 i@ af

Q2 =Q~2+ (5—5'/ )

if 4g

(23b)

(23c)

2
S ZfS

2 2
S ~f5 Q) Zla Zgf

(27)

0,-, =ez,,Ep/fi, 0 f ez fEp/A . (24}

While the one-photon Rabi frequency is proportional
to the electric field amplitude (or to the square root of the
power), the two-photon Rabi frequency [Eqs. (23a) and

As expected, the populations of the ~i ) and
~f ) states os-

cillate while the ~a ) state remains unpopulated. We will
refer to 0+2 as the two-photon Rabi frequency and Q2 as
the two-photon oscillation frequency.

The two-photon oscillation frequency f12 has been
written in a form analogous to the expression for the
one-photon oscillation frequency Q&. Once again, we
consider an electric dipole interaction between the atom
and monochromatic radiation polarized along the z axis.
The one-photon Rabi frequencies are

C. Notation

Since all work described in this paper was done on
singly excited calcium singlet states, the shorthand nota-
tion np, ns, and nd will subsequently be used in place of
4snp 'P, , 4sns 'Sp, and 4snd 'D2, respectively. All equa-
tions in this paper are expressed in SI units. The follow-
ing list summarizes the notation for many of the frequen-
cies that appear in this paper: A~, is the one-photon
Rabi frequency [Eq. (8)], Q, is the one-photon oscillation
frequency [Eq. (8)], Qti2 is the two-photon Rabi frequen-
cy [Eq. (23a)], Q2 is the two-photon oscillation frequency
[Eq. (23b)], Q Jk

——ezjk Eo /fi [Eq. (26a)] (assuming an
electric dipole interaction), co -k

——(E Ek )/irt-
[Eq. (26b)], Qs is the modified Rabi frequency [Eq. (30c}],
and coL =eB/2m, is the Larmor frequency. In the dis-
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cussion of the data we will often refer to frequencies in
units of Hz: v =0 /2n. The frequencies coL and Qa
are discussed in Sec. V.

crowave radiation both occur in the waveguide. We de-
scribe the experimental system, emphasizing those as-
pects that are essential to the experiment.

III. EXPERIMENT A. Rydberg atom production
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A schematic diagram of the apparatus is shown in Fig.
3. Rydberg atoms are produced by laser excitation in a
thermal atomic beam of calcium. The atomic beam
crosses a waveguide and then enters the detector, where
selective field ionization is used to detect and differentiate
the two Rydberg states involved in the transition. The
laser excitation and subsequent interaction with mi-

A calcium atomic beam is emitted from a "tube" oven
operated typically at 500'C. The beam passes through a
collimating aperture and enters the waveguide where the
laser excitation occurs. Rydberg states are produced by
the three-step pulsed laser excitation scheme shown in
Fig. 4. The second and third harmonics of a Nd:YAG
(where YAG is yttrium aluminum garnet) laser (532 and
355 nm) are used to pump three grazing incidence dye
lasers. ' The 1034-nm light that drives the 4s4p ~4s5s
transition is produced in a KD'P (deuterated potassium
dihydrogen phosphate) crystal that generates the
difference frequency of a 525-nm dye laser and the
Nd:YAG laser (1064 nm). By tuning the wavelength of
the final laser, a wide range of 4snp Rydberg states can be
excited. The results described here were obtained in the
range n =45 —52. Unless otherwise noted, we shall take
the quantization axis to be the direction of the microwave
electric field, z. With this convention, the selection rule
for the microwave transitions is hm =0. (mh'=(J, )
where J is the total angular momentum. ) The polariza-
tion of the final laser beam that drives the 4s5s~4snp
transition can be selected with a half wave plate to be ei-
ther parallel or perpendicular to z. For parallel polariza-
tion the lasers populate the m =0 sublevel of the np state;
for perpendicular polarization a coherent superposition
of the m = + 1 and —I sublevels is excited.

B. Microwave excitation

VD'D'D'DPI VDD'WA'D~ YD~YDFY/i

r z s z x g r

DP
EI

E3 vugg T

C

W

/ /' 1 8 J' f' J r' I f' /

~lXA'A'A A 3PD DA A D'D'XA D lAYXz

(b)

To study one- and two-photon Rabi oscillations quanti-
tatively it is important to minimize averaging effects due
to spatial or temporal variations in the microwave field.

4snp 'P

4s4p 'P&

FICi. 3. Diagrams of the apparatus. (a) Side view of the sys-
tem. A, atomic beam; P, collimating plate; 8', waveguide; 8,
waveguide holder; R, ramped electric field plate; S, slotted elec-
tric field plate; C, channel electron multipliers; H, radiation
shield connected to the liquid-helium reservoir; N, radiation
shield connected to the liquid-nitrogen dewar; and M, magnetic
shield. (b) View from below. L, laser beams.

FIG. 4. Three-step pulsed dye-laser excitation scheme in cal-
cluIYl.
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We have accomplished this by having the atoms traverse
the waveguide along the direction in which the mi-
crowave electric field is constant, by exciting the atoms
inside the waveguide, and by switching the microwaves
on and off before a significant fraction of the atoms have
left the waveguide.

The microwave radiation is -30 GHz and is transmit-
ted to the atoms through 8'R-28 waveguide (3.56X7.11
mm ). As shown in Fig. 3(a), the atoms traverse the short
axis of the waveguide, entering and leaving the
waveguide through 1.3-mm apertures that do not
significantly perturb the field. The collimating hole just
before the waveguide restricts the atomic-beam diameter
to 0.5 mm. The laser beams intersect the atomic beam
1.2 mm from the entrance, resulting in a mean transit
time to the exit of 3 psec; the interaction time with the
microwaves is usually kept below 2 psec.

Two techniques were used to define the characteristics
of the microwave electric field at the atomic beam. In the
first, the waveguide was shorted with a copper end cap to
produce an antinode at the atomic beam. In this case the
variation of the microwave field amplitude due to the
finite width of the atomic beam is approximately 1%.
This is the configuration shown in Fig. 3. The second
method was to terminate the waveguide in a matched
load so that the atoms interacted with a traveling wave.
In this case the short was replaced by a bend and the load
was located after this bend. The reason for this
configuration is discussed in Sec. IV.

The microwave source is a 26.5 —40-GHz sweep oscilla-
tor that is phase locked to a frequency synthesizer operat-
ed at approximately 1 GHz. Using a superconducting
cavity with Q ) 10 as a reference, we have verified that
the short-term Auctuations in the microwave frequency
are less than 400 Hz. The —10-mW output of the sweep
oscillator was attenuated 70—100 dB for studies of one-
photon Rabi oscillations and 30—45 dB for two-photon
Rabi oscillations, using a combination of fixed and vari-
able attenuators. Since the power required for these tran-
sitions is extremely low, care is required to avoid spuri-
ous effects due to extraneous microwave power in the in-
teraction region.

The interaction time of the atoms with the microwave
radiation is varied by a computer-controlled pin diode
microwave switch. The switch has 50-dB isolation, a rise
time of 50 nsec, and a fall time of 5 nsec. The switch was
opened immediately after the laser excitation and closed
after a variable time period. The Rabi oscillations were
observed by measuring the populations of the two Ryd-
berg states for a range of microwave pulse lengths. Data
was taken only for switch lengths greater than 200 nsec
to avoid effects due to the rise time of the switch.

The range of Rabi frequencies we have measured ex-
tends from 0.4 to 12 MHz. Frequencies lower than 0.4
MHz were difficult to measure because the transit time of
the atoms across the waveguide allowed less than one
period of oscillation. Above 12 MHz, the resolution of
the timing electronics limited the observations. We usual-
ly observed two to ten periods of oscillation, which al-
lowed the Rabi frequencies to be extracted without com-
plicated analysis.

C. Detector

The Rydberg atoms are observed with a two-channel
field ionization detector that can monitor the individual
populations of the two states with good state resolution.
Rydberg atoms ionize in modest static electric fields (100
V/cm for the 46p state), and the Rydberg states involved
in our transitions can be differentiated by the value of the
electric field required for ionization. (This is not always
possible: our observations are on np~ns rather than
np~(n +1)s transitions because the np and (n +1)s
states ionize at nearly the same value of electric field). As
the atoms emerge from the waveguide they pass between
two electric field plates whose separation decreases
linearly, which provides an increasing electric field. The
ramp angle of these plates is chosen so that a single fixed
voltage ionizes the two Rydberg states above their respec-
tive channel electron multipliers (CEM's). For a negative
ramped plate voltage, the electrons released by the ion-
ization pass through a slotted plate and are detected by
one of the CEM's which generates an electrical pulse for
each ionized atom. Consequently, we can count the num-
ber of atoms in both states involved in the transition. If
all the population is in one state, the background signal
on the CEM for the other state is about 4%%uo of the total
signal. This resolution can be obtained for a variety of
transitions with a single ramp angle. The small back-
ground signal is due primarily to the finite resolution of
selective field ionization.

D. Radiative transfer and spontaneous emission

The transfer between neighboring Rydberg states due
to room-temperature blackbody radiation cannot be
neglected because these transitions are at microwave fre-
quencies and have large dipole-matrix elements. To
reduce this undesirable effect, the apparatus is operated
at liquid-nitrogen temperature or colder and is surround-
ed by a liquid-nitrogen cooled shield. With these precau-
tions, radiative transfer is negligible.

To the best of our knowledge, there are no published
measurements of the natural lifetimes of the Rydberg
states used in these experiments. We estimate the ns and
np lifetimes for n =50 to be longer than =60 @sec based
on scaling from available measurements' ' and our own
observations. The lifetimes of the nd states are shorter,
but these states are never populated [Eq. (22c)]. The
neglect of radiative damping in Sec. II is therefore
justified for these experiments because the mean transit
time across the waveguide is only 3 @sec. The mean time
from excitation to detection is 40 @sec, so less than
=50% of the Rydberg atoms decay before detection.

E. EA'ect of level splittings and broadening

Since the one- and two-photon oscillation frequencies
are functions of the detuning from the atomic resonance
frequency [Eqs. (8) and (23b)], the atomic response is
afFected by any perturbation that causes level splittings or
broadening. Inhomogeneous broadening causes dephas-
ing that washes out the Rabi oscillations. Splittings due
to substructure can complicate the response of the system
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(see Sec. V). The effective spectral half width of the
atomic resonance is the Rabi frequency itself [Eqs. (7),
(8), (22), and (23)], and so these effects can be neglected if
the splittings or broadenings are small compared to the
lowest Rabi frequency of interest. To assure that we ob-
serve at least one complete Rabi oscillation, we only
study Rabi frequencies greater than the transit time
linewidth of 300 kHz. We have reduced all splittings and
broadenings to well under this value.

The use of a low-density atomic beam avoids collision
broadening. Doppler broadening due to the longitudinal
velocity distribution of the beam would be 100 kHz, but
the actual broadening is negligible because the microwave
radiation propagates transverse to the atomic-beam axis.

Effects of Zeeman splitting were reduced by employing
a single-layer p-metal magnetic shield and constructing
the apparatus from nonmagnetic materials. The residual
magnetic field in the waveguide of 5 —10 mG causes a
maximum splitting of 28 kHz between the m =+ 1 and
—1 sublevels of an np state, which is less than 10% of the
transit time linewidth. The effect of Zeeman splitting on
the Rabi oscillations (Sec. V) was studied by removing the
magnetic shield.

The Stark effect due to inhomogeneous stray electric
fields is the most troublesome source of broadening in our
experiments. These fields arise from a number of surface
effects associated with the waveguide walls. The states
we have chosen to study have no first-order Stark shifts
in low fields because of their large quantum defects.
However, the second-order Stark shift can still be
significant. For example, in an electric field parallel to
the quantization axis, the second-order Stark shift of the
46p~46s transition is 110 MHz/(V/cm) . The shift of
the 46p~45p two-photon transition is more than an or-
der of magnitude smaller because neighboring p states
have nearly equal Stark shifts. With some difficulty, we
reduced the stray electric field in the waveguide to 15
mV/cm. In this field the 46p ~46s transition has a shift
of only 25 kHz, and the shifts of the two-photon transi-
tions are negligible. With the terminated waveguide the
stray electric field was 85 mV/cm. However, this field
was acceptable because it was fairly homogeneous. In ad-
dition, the work performed in this configuration was pri-
marily studies of two-photon transitions.

pump with a water cooled baffle. A mass analyzer has
confirmed that the most prevalent contaminant is water.
Our experience suggests that water on the waveguide sur-
face results in stray electric fields as large as 0.5 V/cm.
To reduce the partial pressure of water, we baked the en-
tire vacuum chamber at 120'C. The operating pressure
was typically in the mid-10 -Torr range. The shield at-
tached to the liquid-nitrogen reservoir was kept cold
whenever the liquid-helium reservoir was cold so that it
could cry opump outgassing water from the vacuum
chamber. The calcium oven itself would sometimes cause
a small increase in the electric field during a run. Cooling
the apparatus with liquid helium greatly reduced this
effect. The exact nature of this effect and its mysterious
solution are not well understood, but similar behavior has
been seen in another system. '

It was also found that if the powerful pulsed laser
beams hit the edges of the entrance or exit holes of the
waveguide, a stray electric field would be generated. This
was presumed to be due to the ejection of contaminants
or charge and their subsequent deposition on surfaces
near the atom-microwave interaction region.

IV. RESULTS FOR TWO-PHOTON
RABI OSCILLATIONS

The states relevant to the two-photon transition are
shown in Fig. 5. For these experiments, the final laser is
polarized perpendicular to the quantization axis, hence
the I = —1 and + 1 sublevels of the np state are equally
populated. The ns states play no role in these two-photon
transitions because of the Am =0 selection rule on the
microwave transitions. The analysis of Sec. II is valid be-
cause the (n —1)d state is the only significant intermedi-
ate state. Since both the nz = —1 and +1 sublevels are
initially excited, there are two three-level systems evolv-

nd

F. Control of stray electric fields

The sources of stray electric fields and methods for re-
ducing them deserve some additional discussion. We
have found two major sources of these electric fields: sur-
face contaminants and charge generation by laser photo-
ionization. To reduce the latter, a resonant excitation
scheme was employed which minimized the required
laser power. Photoionization by the 423-nm laser out of
the 5s state was further reduced by delaying the 1034-nm
laser pulse relative to the 423-nm laser pulse.

The condition of the surface of the copper waveguide is
important because the atoms are 1 —2 mm from the
waveguide surfaces while they interact with the mi-
crowave radiation. Our vacuum system is sealed with
many large 0 rings and is pumped by an oil diffusion

(n-1)d i a )

(n-i)p

(n-2)d

FIG. 5. Local-energy-level diagram for n =50 showing all
states involved in the two-photon Rabi oscillations. The laser
excitation populates the m = —1 and +1 sublevels of the np
state. The nd and (n —2)d states contribute to the ac Stark shift
only.
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ing simultaneously. However, the relevant matrix ele-
ments are independent of the sign of m and the two sys-
tems are not coupled; therefore the problem can be treat-
ed as a single three-level system.

The ac Stark shift of a state is caused by its off-
resonant coupling to nearby atomic levels by the radia-
tion. Consequently, all transitions that are close to one-
photon resonance can make large contributions to the ac
Stark shift. The dominant contributions to the ac Stark
shift of the np ~(n —1)p two-photon transition are from
the states nd, (n —1)d, and (n —2)d. We have accurately
measured the transition frequencies to these states in
another series of experiments.

In our experiments, the atoms interact with the mi-
crowave radiation in a rectangular waveguide operating
in the fundamental (TE&„) mode. When the waveguide is
terminated, the explicit expression for the one-photon
Rabi frequency is

60—

a 50-

20-
E
C)
O

10—

0.4

0 52p

0.5 0.6 0.7 0.8 0.9
microwave pulse length (psec)

1.0

' I/2
4P

R1 if (28)

where a =7. 11 mm (long dimension of waveguide),
b =3.56 mm (short dimension of waveguide), P is the mi-
crowave power, ug =c [1—(Ao/2a) j' is the group ve-

locity in the waveguide, and A,O=2 ic/~~.
The Rabi frequencies for a given microwave power can

be calculated from Eq. (28) (one-photon) and Eqs. (23a)
and (28) (two-photon). We have computed the radial ma-
trix elements required for this calculation numer-
ically; a typical value is n a0=2500ao. Configuration
interaction between the two valence electrons is not ex-
pected to affect these matrix elements at the level of accu-
racy required for comparison to our data. We have es-
timated the microwave power at the atomic beam by
measuring the output power of the sweep oscillator and
the attenuation and reflection characteristics of our
waveguide system. Uncertainties in the measurements of
the waveguide system limit the accuracy of this estimate
of absolute power to +20%. We have calculated Rabi
frequencies for various transitions from our computed
matrix elements and microwave power measurements.
These calculated Rabi frequencies are in agreement with
our measured Rabi frequencies within the above experi-
mental error (see Table I).

Figure 6 shows a two-photon Rabi oscillation of the

FIG. 6. Experimental results for the time evoluton of the 52p
and 51p states undergoing two-photon Rabi oscillations. At the
beginning of the plot (0.35 @sec), the system is starting its
second oscillation. The solid curves are a fit of the data to a
sin usoid.

N

10—

~ Data: one-photon transition

R1 ol +r

Data: two —photon transitio

R2 2
/

/

/
1

/

52p-~51p transition. The horizontal axis represents the
interaction time of the atoms with the microwave radia-
tion, which is controlled by the microwave switch. The
vertical axis is the number of atoms detected per laser
pulse by the two CEM's. A summary of parameters for

cu;&/2&=53. 88 GHz
5/2~=6. 76 GHz
zia =3100ao /
z,&

=2320a„/& 5
P =2.7(5) pW
v;, =-290{30) MHz
v,f =210(20) MHz
vg 2

=4.5(9 ) MHz
v&2=4. 07(1) MHz

Measured microwave power
Calculated Rabi frequencies

Measured two-photon
Rabi frequency

TABLE I. Parameters of the 52p ~51p Rabi oscillation
shown in Fig. 6. The numbers in parentheses denote uncertain-
ty in the last digit.

Transition frequency
Defect
Computed matrix elements

&0' )0 ~o'
relative microwave power P,

FIG. 7. Log-log plot of the variation of the one- and two-
photon Rabi frequencies with the microwave power. As de-
scribed in the text, v~, is proportional to the square root of the
power and v„, is proportional to the power. The lines are fits of
the data to these predicted power dependences; only the scale
factors a& and a2 are adjustable. The absolute power levels for
the one- and two-photon transitions dift'er by a factor of =10 .
The uncertainties in the data points are smaller than the size of
the points.
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TABLE II. Measured and calculated slopes of the ac Stark
shift vs two photon Rabi frequency 5;I/QR2. The numbers in
parentheses denote uncertainty in the last digit.

4.0-

3.5-

Transition

46p ~45p
48p ~47p
50p ~49p
52p ~51p

Measured slope

0.165(12)
0.155(13)
0.134(13)
0.142(11)

Calculated slope

0.151
0.141
0.133
0.126

3.0-

2..5 I I ~
I

I I I I ~ I ~
I I I I

—4 -3 -2 -1 0 1 2

detuning (MHz)

FIG. 8. 06'-resonant behavior of the two-photon oscillation
frequency v2 for the 46p~45p transition. The solid curve is a
fit of the data to the expected form, Eq. (23b), that yields values
for the ac Stark shift 5,&/2~ and the two-photon Rabi frequency
&Z2

0-

cn -0.6—

-1.0—

2 3 4 5
two-photon Rabi frequency (MHz)

the data in Fig. 6 is presented in Table I. It can be seen
that the approximation A,-„O I «6 is excellent. The
microwave radiation is at the ac Stark shifted resonance
frequency, which requires a detuning of 6,I /2~= —0.56
MHz at this power level.

Figure 7 shows the variation of the one- and two-
photon Rabi frequencies with the microwave power on a
log-log plot. The one-photon Rabi frequency is propor-
tional to the square root of the microwave power [Eq.
(28)], while the two-photon Rabi frequency is proportion-
al to the microwave power [Eqs. (23a) and (28)]. The
46p~46s transition was used to obtain the one-photon
data, and the 52@~51p transition was used to obtain the
two-photon data.

Figure 8 shows the off-resonant behavior of the two-

photon oscillation frequency v2 for the 46p ~45p transi-
tion. The detuning 5 is defined relative to the transition
frequency we measured with the microwave power
sufficiently low for the ac Stark shift to be negligible. It is
experimentally impractical to detune much more than
5=20~ 2 because the amplitude of the oscillations de-
creases off-resonance [Eqs. (22) and (23b)]. Therefore the
approximation 6«A is very good. As expected, the
minimum oscillation frequency (viz) does not occur at
5=0. A fit of the data to the expected form, Eq. (23b),
yields values for the ac Stark shift 6,I/2~ and the two-
photon Rabi frequency v~z. This procedure was repeated
at several power levels; the results are shown in Fig. 9.
The data point near v&2=0 is from our transition-
frequency measurement at low power as discussed above.
A linear fit to the data yields the slope of the ac Stark
shift versus the two-photon Rabi frequency [Eq. (27)].
We have repeated this entire procedure for four
np~(n —1)p transitions; the results are shown in Table
II. The calculated slopes were determined by using our
measured transitions frequencies and computed matrix
elements in Eq. (27). Only the nd, (n —1)d, and (n —2)d
states have been included in the calculation for each tran-
sition; including the other states would affect the result
by less than 0.5%.

As a check on the consistency of the measured slopes,
we checked for shifts of various one-photon transitions.
We do not expect to observe these shifts because they are
much smaller than our experimental resolution. For ex-
ample, the shift of the 46p~46s transition is calculated
to be 2.4 kHz at v~, =5 MHz. However, when these ex-
periments were first carried out using a shorted
waveguide, power-dependent shifts were observed. These
shifts were attributed to frequency-dependent rejections
in the microwave system. In order to eliminate these
reAections a matched load was installed at the end of the
waveguide. In this case we observed no shifts of one-
photon transitions within our experimental uncertainty.
Consequently, we measured the shifts of the two-photon
transitions with the waveguide terminated. The possibili-
ty of systematic power-dependent shifts smaller than our
experimental resolution contributes an uncertainty of
+0.01 in each of the measured slopes listed in Table II.

V. ONE-PHOTON RABI OSCILLATIONS
IN A MAGNETIC FIELD

FIG. 9. The ac Stark shift 5;I /2m. of the 46p ~45p transition
vs the two-photon Rabi frequency v„2. The solid curve is a fit
of the data to the predicted linear dependence.

A magnetic field alters the dynamical behavior of the
system. Although the two-level approximation is no
longer valid, the magnetic sublevels evolve coherently
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10-
B=0.42 G

)0' 0-2 10
relative microwave power

)0'

FIG. 12. The variation of the modified Rabi frequency vz
with the microwave power. The solid line is a fit of the experi-
mental data to the modified Rabi frequency [Eq. (30c)]. As in

Fig. 7, the scale factor is the only adjustable parameter in the fit.
Note that the modified Rabi frequency approaches 2vL (1.18
MHz) at low power. The dashed line shows what the behavior
would be in the absence of a magnetic field. The uncertainties
in the data points are smaller than the size of the points.

(m =+1). Analysis of the three-level system yields the
populations of the 46p (all magnetic sublevels) and 46s
states

2

P(46p) =1— sin ( —,'Q~t),R1

B

2

P(46s)= sin ( —'Sl~t),+R1

Q B

where

(30a)

(30b)

B R 1+4~L (30c)

The populations oscillate at a modified Rabi frequency
Qz =(Qz &+4roL )'~, and the amplitude of the oscillation
is QR1/QB. If QR1&&~L, the spectral width of the reso-
nance is much greater than the Zeeman splitting and the
transitions are both nearly on resonance. As expected, in
this case Eq. (30) reduces to the solution for a two-level
system on resonance. If coL )&BR,, the modified Rabi
frequency approaches the frequency 2coL and the ampli-
tude is =0&&/4coL. In this case, both transitions are far
off resonance.

Figure 12 shows the observed variation of the modified
Rabi frequency vB with microwave power on a log-log
plot. The Larmor frequency is obtained from the mea-
sured period of the evolution of the magnetic sublevels
(Fig. 10). Note that at low power the modified Rabi fre-
quency approaches 2coL, as expected.

VI. CONCLUSION

Rydberg states undergoing microwave transitions con-
stitute an excellent system for the study of the interaction
of atoms with electromagnetic fields. The absence of fine
and hyperfine structure in singlet states of alkaline earths
provides a simple level structure. We have used calcium
Rydberg states to study one- and two-photon Rabi oscil-
lations and the ac Stark shift, and have obtained good
agreement with theory. Our methods could be extended
to the study of other coherent phenomena. Two-photon
Rabi oscillations can be studied in regimes where the ap-
proximations fulfilled in our experiments are no longer
valid. The large electric dipole matrix elements and con-
venient level structure of Rydberg states could make pos-
sible a study of three-photon Rabi oscillations. Our ob-
servation of the free evolution of the magnetic sublevels is
a form of quantum beat spectroscopy. Possible applica-
tions of this technique to Rydberg states include the mea-
surement of fine and hyperfine structure and the diag-
nosis of stray electric and magnetic fields. Finally, recent
experimental studies of Rabi oscillations ' and two-
photon transitions have been performed in the regime
where the quantum nature of the electromagnetic field is
important.
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APPENDIX: DERIVATION OF THE ac STARK SHIFT

We will calculate the ac Stark shift using a quantized
electromagnetic field and a second quantized atom.
The advantage of this approach is that the atom-field in-
teraction can be made time independent by transforming
to the Schrodinger representation. This allows us to use
time-independent perturbation theory instead of time-
dependent theory to calculate the ac Stark shift. We as-
sume that the atoms interact with a single mode of the ra-
diation Geld with no spatial variation along the atomic
beam axis. We first consider the ac Stark shift of a two-
photon transition, i.e., the case when the radiation is not
resonant with any one-photon transition. The Hamiltoni-
an is

H =H~ +HF+HqF,
H„= gficok~k )(k~ (atom),

Hz =%co(a a + —,') (field),

(Ala)

(A lb)

(A 1c)

where ~k ) is an atomic eigenstate and at and a are the
creation and destruction operators for the electrornagnet-
ic field mode with frequency cu. The atom-field interac-
tion Hamiltonian in the electric dipole approximation is
H~F = —d E, where d= —er. The dipole moment d can
be expanded as
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d = g djk I j ) & k I,
j, k

(A2)

Ac&)

2ep V
E=

where e is the polarization direction and Vis the volume
of the "cavity" in which the field is quantized (periodic
boundary conditions). Choosing the electric field along z
yields

Ado
AF

1/2

gzk(a+at)lj)(kl .
j, k

(A4)

where d k
——( jldlk ). The quantized electric field opera-

tor is given in the Schrodinger picture by
r 1/2

e(a +a ), (A3)

The first term (( m
l
a

l
n ) ) requires m = n —1,

yields
2

eEpz;, 1 n

n ir?( cd; +cd )
(A10a)

1 n

ih( cd;z cd )
(A lob)

where we have used n +1=n. Therefore we need only
sum over atomic levels, and

1eEon 2 1
2 2

1
(A 1 1 )

The second term ((m la ln )) requires m =n +1, which
yields

2
eEpz, ,

2

We will assume that the microwave radiation is a classi-
cal stable wave, i.e., that the field is in a coherent state
lct) with average photon number n = lal ))1. The ex-
plicit expression for this coherent state in terms of the
number states is

With 0,,—=eEpz, , /A and n =n,

AE, „=—g, ' —= irt5, .
2 -

-' — 2
CO

(A12)

la) = exp( —
—,
' lccl') g ln ),ir'n! (A5)

and so HAF becomes

H„F= gzk(a+a )lj)(kl .
2 n jk

(A7)

We will now calculate the shift of the atom-field state
li, n ) due to couplings to other states ls, m ) via H„F and
then use the properties of the coherent state to calculate
the shift of our initial state li, a ) . The shift from
second-order perturbation theory is

l &s, m lH„F li, n ) l'
b,E, „=

s, mwi, n Ei, n s, rn

The contribution of atomic state ls ) to the sum is

lz, , (m l(a +at)ln ) l'

fi[(cd; + n cd ) (cd, +m cd )]—eEp

2&n

(A8)

(A9)

where ln ) is an eigenstate of the number operator a a
with eigenvalue n. The actions of a and a on the num-
ber state n ) are given by a ln ) =&n ln —1) and
a ln ) =v'n + 1 ln +1). The uncertainty in n is b, n ((n,
so for the relevant number states, n + —,

' =n =n ))1. As-
suming that the classical field varies as E=Eosin(cdt +8),
we can make the correspondence

' 1/2
fi

(A6)
2 V

2

,~; 2(cd,, —cd )

Bf,cof,

2( cd' cd )
(A13)

The ac Stark shift of a one-photon transition cannot be
evaluated from Eq. (A13) because the energy denomina-
tor is zero for s =f when the radiation is resonant. The
ac Stark shift can be calculated in the dressed basis
[eigenstates of the full Hamiltonian, Eq. (Al)], but that
calculation wi11 not be presented here. The result has two
parts: the shift of li ) due to states other than

lf ), which
is given by Eq. (A13) with the sum restricted to ski, f
where li ) and

lf ) are the initial (upper) and final (lower)
states of the transition, and the shift due to level

l f )
(Bloch-Siegert shift), which is given by

EBS EBS
4 67,.f +6)

(A 14)

The Bloch-Siegert shift is due to the counter-rotating
term that is neglected in the rotating-wave approxima-
tion.

Consequently, the constituent number states of the
coherent state la) all have approximately the same Stark
shift 6, . They also all have approximately the energy of
the coherent state U =(n+ —,

' )A'cd, and so we can identify
6; as the frequency shift of the atomic state li ) in the
presence of the radiation. The shift of the two-photon
transition is
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