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Role of pumping statistics in maser and laser dynamics: Density-matrix approach
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We discuss in detail the influence that the statistical properties of the pump source have on maser
and laser dynamics. We derive a general master equation for the radiation field that is valid for a
wide range of dift'erent pump mechanisms. If the pump noise is eliminated, we find that the photon
number noise in a micromaser and a laser can be significantly reduced below the shot-noise level. In
contrast, the phase fluctuations for both maser and laser are una6'ected by the noise contribution of
the pump.

I. INTRODUCTION

In ordinary laser theory as well as in many maser- and
laser-related problems, one commonly neglects the effects
of the statistical properties of the pump mechanism. Ex-
ceptions to this attitude are some recent work on micro-
masers, ' where the master equation for the reduced
density matrix of the field is obtained after averaging over
a Poissonian distribution of the incoming atoms. Furth-
ermore, a suppression of pump noise was considered for
the laser, where it was shown that it can lead to squeez-
ing of the amplitude.

In this analysis we provide a method for incorporating
the statistics in maser or laser dynamics. This method al-
lows one to go continuously from the regular injection
rate of excited atoms to the Poissonian-distribution case.
It also leads to a precise formulation of the conditions un-
der which explicit consideration of the atomic distribu-
tion is irrelevant. In this paper we derive a master equa-
tion for the reduced density matrix of the field which ex-
plicitly incorporates pumping statistics. We exemplify
our procedure by applying it to models for masers and
lasers and calculate the photon-number variances and the
phase-diffusion constant for these devices. In a planned
second, forthcoming paper we will use a different ap-
proach to analyze the influence of pump fluctuations on
laser and maser dynamics. We combine Langevin-
operator techniques and statistical arguments to gain fur-
ther insight into the role of pump noise in lasers. Al-
though these results are derived in a completely different
way than the one presented in this paper, there is a per-
fect agreement between the two approaches.

We find that if the transition between the two lasing
atomic states becomes appreciable, i.e., the Rabi angle be-
comes of the order of m, there is an important depen-
dence of the photon-number noise on the injected statis-
tics. In the case of a complete pump-noise suppression,
the photon-number fluctuations can be reduced up to
50% below the shot-noise level for the micromaser. For
the laser model, considered in this paper, the reduction

can be up to 25%. However, we note that the amount of
noise reduction in lasers also depends on the ratio of the
atomic decay constants. For example, in a semiconduc-
tor laser, noise suppression of up to 50%%uo is possible. A
detailed description of this aspect will be presented in a
planned second paper. The phase diffusion in a maser or
laser is found to be independent of pumping statistics.

Here we consider only the case in which the injected
atoms are in the excited state. If they are initially in a su-
perposition of states, so that we have a nonvanishing
atomic coherence, strongly-pump-dependent effects can
arise, which affect the squeezing of the field.

In Sec. II we present a simple combinatorial argument
which explains in physical terms why the photon-number
noise should depend on pumping statistics. In Sec. III we
establish a general quantum-mechanical approach to this
problem, applying the framework of the master equation.
We obtain a generalized master equation, which is valid
for a wide range of different pump mechanisms. This
theory is then applied in Sec IV. to the one-photon micro-
maser' and to a laser oscillator, yielding the dependence
of photon-number noise on the pump statistics as well as
the phase-diffusion constant. Our conclusions are sum-
marized in Sec. V.

II. IN JECTION STATISTICS
AND PHOTON-NUMBER NOISE:

HEURISTIC DISCUSSION

In this section we extend the arguments given in Ref. 1

in order to account for a general statistical distribution of
the injected atoms. We assume that a dense flux of atoms
goes through an excitation region (say, one or more laser
beams), and that each atom has a probability p of being
excited from the ground level c to the upper level a [Fig.
1(a)]. We assume that levels a and b are involved in the
lasing (or masing) transition, and that level b remains un-

populated. We further assume that the atomic beam has
a regular distribution before reaching the excitation re-
gion, so that the number K of the atoms which cross that
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FICi. 1. (a) An atom is excited from a level c to the upper lev-
el a, assuming that the lasing occurs in the a-b transition. (b)
An atomic beam, with a regular distribution, arrives at the exci-
tation region, where the Rydberg states are generated, before
entering the microwave cavity.

k

g f(N)p(N!k) P(k, K) . (2.8)(f(N))= y
k =0 N=O

atoms is equal to k. The total probability that N photons
are added to cavity during ht is then

K
P(N, hr)= g P(Nlk)p(k, K), (2.7)

k=0

with P(k, K) given by (2.2). Therefore, if we are interest-
ed in the average of some function of N, say f(N ), we can
first calculate the conditional average using (2.6), and
then average the result over the k distribution:

region during a time At is given by

E=R bt .

Thus, we find

(N) =Pk
(2.1)

and

(2.9)

p(k K )
—K k(1 )IC

—k (2.2)

From this we obtain

k=pX=r bt,
in which

(2.3)

Here, R is the constant injection rate and the time inter-
val At was chosen to be much larger than the time inter-
val between consecutive atoms. The probability that k
atoms get excited during time At is given by

((N) ) =(P P)k+P —k (2.10)

([N(t+Ar) N(r }])=rp b—r (2.1 1)

where the bar indicates the average over the k distribu-
tion. We again emphasize that N is the number of pho-
tons which are emitted into the cavity during the time in-
terval ht. Hence, N=N(t+bt) N(t), where—N(t) is
the total number of photons inside the cavity at time t.
Substituting Eqs. (2.3) and (2.5) into the results above, we
obtain

r =pR (2 4) and

is the average injection rate of excited atoms. Further-
more, we find

k =(1—p)k+k (2.5)

Our model is general enough to account for several
limiting cases of particular interest. If, for example,
p~0 and R ~00, so that the product pR =r remains
constant, the Bernoulli distribution goes over into a Pois-
sonian distribution. On the other hand, if p~1 all the
atoms get excited and we get a regular distribution. We
see indeed that (b.k ) =k —k, as obtained from (2.5), is
equal to k for p ~0, and vanishes when p ~1.

After crossing the pumping region, the atoms go on
into the resonant cavity [Fig. 1(b)]. Then, let P(t) be the
probability at time t that an atom gets deexcited and
emits a photon inside the cavity. We assume that the
number of photons inside the cavity is large enough so
that we can neglect the extra ones which are left by the
atoms during the time interval At. In other words, we as-
sume that the time over which the field distribution is
changing is much larger than both At and the flight time
of the atoms through the cavity. If k atoms reach the
cavity during a time interval b t, then the probability that
they release N photons into the cavity is given by

=rp(t } (2.13}

and

([N(r+b, r ) —N(r )]')D~t =ion
tit ~0 b, t

=(1 pp)rp . — (2.14)

Therefore the change of the mean photon number due to
gain is given at all times by the expression

d (N(r))=r(p(r)) .
dt

(2.15)

On the other hand, applying the generalized Einstein
relation to the variable b,N=N (N ), we find th—e equa-
tion for the variance:

([N(r+Ar) N(r )]')=(1 p—p)rp br+r—'P'(bt)' .

(2.12)

These two relations can now be used to get the drift
and the di8'usion coeScient corresponding to photon
number N (see, e.g., Ref. 8):

([N(r+hr ) N(t )])—Azt =hm
Et ~0 ht

p(N)k )
k PN(1 p)k —N (2.6) =2( A~bN)+2(D~),

dt
(2.16)

Note that P(N/k) is a conditional probability, i.e., it is
the probability of having added N photons to the cavity
during At, provided the number of incoming excited U = ((&N )') . (2.17)
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Equation (2.16) can be used to get the steady-state
photon-number variance, when dissipation is also taken
into account. This will be done in the following section.
However, from Eq. (2.14) alone we already see that the
statistical parameter p plays an important role in the
photon-number —diffusion constant, provided the deexci-
tation probability P becomes appreciable. On the other
hand, if only small Rabi angles are involved for each
atom inside the cavity (P ((1), the dependence on the
pumping statistics can be neglected.

We will now see how a precise quantum theory can be
formulated, which explicitly includes the effects of pump-
ing statistics.

k K —k kp(t)= g p "(1—p) "M" (0)
k=0

=[1+p(M—1)] p(0), (3.5)

where, according to (2.1), IC =Rt.
In writing (3.5), we have made a continuous approxi-

rnation of the steplike time evolution of the system. This
is valid on a time scale which is large compared to the
average time between two atoms, i.e., t ))1/r, with r
given by (2.4).

Differentiating (3.5) with respect to t, we get

p(t ) =—ln[1+p(M —l)]p(t) .
p

(3.6)

III. MASTER EQUATION FOR GENERALIZED
PUMPING STATISTICS

Let us first neglect dissipation effects. Let v. be the time
spent by each atom inside the cavity, and t the arrival
time of atom j. The change of the radiation field due to
the interaction with atom j can be written as

(3.1)

where p is the reduced density matrix of the field, and M
is an operator whose explicit form depends on the model
under consideration. For example, for a one-photon mi-
cromaser, in which nondecaying atoms pass through the
cavity during a time interval v., the operator M is given
by

2 t sin( A,r ) sin( A.r )M(r)p=cos(Ar)p cos(Ar)+g a p a .

This equation constitutes our generalized master equa-
tion. We immediately see that when p~0, while at the
same time r is kept constant, we get

p(t)=r(M —1)p(t) (p~0, r constant) . (3.7)

This is the usual Scully-Lamb master equation, which
therefore corresponds to a Poissonian pumping (see Ref.
3 for an alternative derivation). The same result is ob-
tained from (3.6) for any p, if M —1 is small in some
sense. However, this is certainly not the case if the atom-
ic Rabi angle becomes of the order of m as the atoms go
through the cavity. Such large Rabi angles arise, for ex-
ample, in the usual experiments, involving micro-
masers, ' ' '" or in laser operation far above threshold.

On the other hand, for p = 1 (regular distribution), we
get

(3.2)
p(t ) = r(lnM )p(t ) (p = 1) . (3.8)

Here we assumed that the atoms are initially prepared in
their upper lasing level. The operator A, is defined by

In order to apply Eq. (3.6) to a specific problem, we
may consider p an expansion parameter, and write

A, =g(a a+1)'~ (3.3)
—ln[1+p(M —l)]=(M —1)—+(M —1) + ' ' . (3 9)1

p 2

(ki(t ) Mk (()) (3.4)

If the distribution of incoming atoms is now given by
Eq. (2.2), we find the density matrix at time t, averaged
over that distribution, to be

and g is the electric dipole coupling constant, while a and
a are the usual annihilation and creation operators for
the resonant mode. On the other hand, for a laser the
atomic lifetime is much smaller than r, so we must re-
place (3.2) by its average over the distribution
1 exp( —I r), where I ' is the atomic lifetime.

We now assume that each atom contributes indepen-
dently of the others to the field (this is certainly the case
if there is at most one atom in the cavity at a time; how-
ever, this restriction is not necessary, and our treatment
remains valid as long as the active atoms constitute a di-
lute gas ). Therefore, if k atoms are passed through the
cavity from 0 to t, the density matrix at time t is deter-
mined by

We will follow this procedure in the next section. We
will show that, surprisingly enough, only the first two
terms in the expansion (3.9) need to be considered, if the
pumping rate is suSciently high.

IV. PHOTON-NUMBER NOISE
AND PHASE DIFFUSION IN MASERS

AND LASERS

We first exemplify our procedure with a one-photon
rnicromaser, ' ' assuming that a monokinetic atomic
beam is injected into the cavity, with practically no popu-
lation in the lowest lasing state. The operator M(r),
defined in Eq. (3.1), is then given by Eq. (3.2). Later in
this section we will consider the laser case.

We now replace expansion (3.9), with M given by (3.2),
in Eq. (3.6), and keep only terms up to first order in p.
We then get
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z t sin( k~) sin( A.r )p= r(1+p ) eos(A, r)p eos(A. r)+g a p a

—r 1+—p—
2

"P 2 2 z t sin(Ar) sin(Ar)
cos (A~)pcos (Ar)+g cos(kr)a p a cos(Ar)

t sin(A~) sin(Ar) 4 t sin(Ar) t sin(Ar) sin(Aw) sin(Ar)
+g a cos A.~)peos A,r a+g a a p a a

(4.1)

From this expression we now obtain the equation of motion for the matrix elements of p in the photon-number repre-
sentation. In particular, the equations for pN N and pN N+, will allow us to calculate the photon-number noise and the
phase-diffusion constant, respectively.

A. Reduction of photon-number noise

In the photon-number representation, the diagonal elements satisfy the equation

p~~=r[ —sin (g&N+lr)p~~+sin (g&Nr)p~, ~, ]

+ [
—sin (g&N+lr}p~~+[sin (g/Nr)+sin (g&N~)sin (g&N+lr)]p~

2

—sin (g&N r)sin (g&N —lr)p~ ~ ~ 2I .

We can now calculate the increase of the mean number of photons due to the atomic gain by

(4.2)

(N) = g Np&&=r g a&pzz=r( az),
N=O N=O

in which

az =sin (g&N+ lr) [1+(p/2)[sin (g&N + lr) —sin (g&N +2r)] j

(4.3)

(4.4)

We notice that, in the semiclassical limit, X))1 and
N ))gr. Then the p-dependent terms in (4.4) cancel, so
that

field in the cavity, and add the usual loss contribution to
the master equation (3.4},

az-—sin (g&N r) (N )) i,gr) . (4.5)
(p)~„,= (2apa —atap —pa a) . (4.7)

In this limit aN coincides with the semiclassical transi-
tion probability from the upper to the lower masing state,
which we denoted by P in Sec. II. Equation (4.3) then be-
comes identical to Eq. (2.15).

On the other hand, for the variance v =(N ) —(N),
we get

v =2r (a~6,N )

+r(az —p sin (g&N+ la)sin (gV'N+2w)), (4.6)

with b,N=N —(N).
Again, in the semiclassical limit this equation becomes

identical to Eq. (2.16), since ra~ then coincides with the
drift coefficient 3& defined by (2.13).

In order to analyze the steady-state value of U, one
must necessarily include dissipation so that the system
can actually have a stable steady state. This is done in
the usual way, in which one assumes that the damping
time of the cavity (y ') is much larger than the transit
time ~. In this limiting case, we may neglect dissipation
when considering the interaction of each atom with the

and

v =2r(a&AN)+r(az —pa&) —2y v+y(N ) . (4.9)

In the last equation we have again assumed the semi-
classical limit, in which the photon number is much
larger than gr. Then the squares of the sine terms in Eq.
(4.6) can be replaced by a& as given by Eq. (4.5). The
steady state for the mean photon number, denoted Nz, is
now obtained as

(4.10)

The solution to this equation can be found graphically as
the intersections of the gain curve (left-hand side of the
above equation) with the loss curve (right-hand side), as
shown in Fig. 2. It is easy to see that the steady state Nz
is stable if and only if the slope of the gain curve is small-

Here we have assumed that the damping heat reservoir
for the field is at zero temperatures. Adding the gain and
loss contributions for the field, we get

(4.8)
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Substituting Eq. (4.17) into (4. 14), we find the simple ex-
pression

U=
2ns

pns
(4.18)

We can now easily discuss the influence of pump fluc-
tuations on the photon-number variance in a laser. In the
case of a Poissonian distribution over the incoming atoms
(p =0), the variance is always larger than the mean num-
ber of photons, as we expect from the usual laser theory.
In the high-intensity limit this variance has its smallest
value, approaching a Poisson-like distribution of the pho-
ton number. In the case of a regular distribution, in

which p =1, we can obtain a significant noise reduction
far above threshold. The normalized photon number ns
then approaches the value —,', so that one can obtain 25%
reduction of the photon-number fluctuations below the
shot-noise level.

At this point we should pay closer attention to the ex-
pansion (3.9), since otherwise it should be doubtful
whether our results are valid in the limit p =1. In order
to discuss this problem, it is convenient to introduce the
high-X expansion of the master equation, as presented in
Ref. 3.

Defining t'=rt, 6=1/X„, n =N/N, „, and

P =g QN, „r, and converting p~ ~ into a continuous vari-
able function p(n, t '), one can rewrite Eq. (4.2) as follows:

dp(n, t') = —sin P&n+ 5p(n, t') +isnP&n 5(n —5, t')
dt'

+ I
—sin P&n+5p(n, t')+[si nPVn +sin (P&n )sin P&n +5]p(n —5, t')

—sin P&u sin Pv'n —5p(n —25, t')] .

Now, we expand Eq. (4.19) in powers of 5, which corresponds to a high-X expansion, getting

dZ(n, t') a, 5' a'= —5 [a, (n)p(n, t')]+ [a~(n)p(n, t')]+O(5, (5$) ),dt' Bn ' 2 Bn 2

where

6 . — 3rp 6ai(n ) =sin p&n + — sin2$v'n — sin pv'—n cospVn
2n 4 n

a2(n)=sin P&n + -sin2$&n6
2n

(4.19)

(4.20)

(4.21)

The above equation corresponds to the usual Poissonian distribution for the incoming atoms, and therefore one can
make the identification [(M —1)p]&,v with the right-hand side of (4.19). This implies that

$2 Q2
[(M —1) p]„„=—5 Iai(n )[(M —1)p]„„)+ Ia2(n )[(M—1)p]„„I+0(53,(5$)3)

Bn an

=5 a, (n) [a, (n)p(n, t')] +O(5, (5$) )
On

' an

, a', , a aa, (n)=52 [a, (n )p(n, t')] —5~ a, (n )p(n, t')
Bn Bn Bn

(4.22)

Therefore, the first two terms of expansion (3.9) yield, up to second order in 5 and 5P,

d a
, p(n, t')= —5dt' '

Bn
p5 aa, (n ) $2 Q2

ai(n)+ ai(n) p(n, t') + [[az(n) —pa, (n)]p(n, t') 3+0( 5( $5) ) .
2 ihn

' 2

(4.23)

We again obtain the pumping-statistics-dependent correction to the diffusion coeKcient, plus a correction of order 6 to
the drift coefficient [the existence of this correction is already evident in (4.4)]. In comparing (4.23) with the high-N ex-
pansion of (4.5), one should keep in mind that a, (n ), as defined in Eq. (4.21), already contains terms of order 5. When
these contributions are taken into account, one gets the same result for the drift coe%cient from both equations.

It is clear that, since (M —1)p is of order 5, (M —1) p will bring contributions up to order 5, and analogously
(M —I)"p will bring corrections of order 5". This proves that, as far as the drift and the diffusion coefficients are con-
cerned, one does not need to beyond the second term in expansion (3.9), as long as 5,5$ « l.
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B. Phase diffusion

Following a procedure similar to Eqs. (4.19)—(4.23), one can now write a difFerential equation for the off-diagonal ele-
ments of p. Defining g(n )

—=p„z+ &, and with Eqs. (4.1) and (4.7), we get

g (N ) = r [ [cos(g&N + lr)cos(g&N +2r) —1]g(N )+sin(g/N r)sin(gdN + lr)g(N 1)—I

+ I [2 cos(g &N + 1r)cos(g v'N + 2r) —1 —cos (g &N + 1 r)cos (g &N + 2r)]g (N )
2

+ [2 sin(g&N r)sin(g v'N + lr) —cos(g&N + lr)cos(g&N +2r)sin(g v'N r)sin(g&N + lr)
—sin(g&N r)cos(g&N r)sin(g&N + 1r)cos(g &N + lr)]g(N —1)

—sin (gVN r)sin(g&N —lr)sin(g&N+lr)g(N —2)I —+(2N+1)g(N)+@&(N+1)(N+2)g(N+1) .
2

(4.24)

In order to get the phase-diffusion constant, we use the method presented in Ref. 3. We express this equation in
terms of the normalized variable n =N/N„, and expand it in powers of 6= 1/N, „. This yields an equation of the form

d
, g(n, t')= —p(n )g(n, t') —5 [f&(n )g(n, t')]+ — [f2(n )g(n, t')] +o(5, (5$) ) .dt' an n

(4.25)

The coefficient p( n ), evaluated at the steady-state point
ns, is the phase diffusion constant (divided by r, since
t =rt). This interpretation is valid only if the distribu-
tion is sufficiently concentrated around nz (see, e.g. , Refs.
3 and 8).

Following this procedure, we find, for the phase-
diffusion constant,

(1+~'))
8N

(4.26)

as in usual laser theory.
This result is independent of the parameter p: phase

diffusion, at least up to order 6, does not depend on
pumping statistics. It will be shown in a planned, forth-
coming paper that this result remains valid up to all or-
ders of 6.

We notice again that, for large enough pumping, only
the first two terms in expansion (3.9) need to be con-
sidered; the remaining terms yield contributions of order
5 or (5P) to the diffusion constant.

V. CONCLUSION

The fact that usual laser theory implicitly assumes a
Poissonian statistic for the injected atoms has been point-
ed out recently. ' We have been able to derive a master
equation which is valid not only in the Poissonian case,

but also for any general Bernoulli-type distribution of the
incoming excited atoms. The regular distribution, which
corresponds to equal-time intervals between consecutive
atoms, is especially interesting, since it leads to the max-
imum possible reduction of the photon-number noise.
This reduction can be up to 50%%uo for the internal field of a
micromaser and up to 25% for a laser with equal atomic
decay rates and far above threshold.

In this paper we have based our treatment on the
master-equation approach. Further insight into the
influence of the statistical properties of the pump on the
laser dynamics can be obtained through a very different
analysis, involving Langevin-operator techniques. This is
planned to be the subject of a separate paper.

Note added. After finishing this work, we learned that
M. J. Collet, F. Haake, and D. Walls have independently
arrived at conclusions similar to those presented here. '
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