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We have exploited the interference narrowing of Stark resonances to map electrostatic fields to a
previously unattained level of accuracy and spatial resolution. The technique involves stepwise ex-
citation with tightly focused laser light, an atomic beam, and temporal observation of ionization
over a region of interference narrowing. Field inhomogeneities as small as 70 ppm have been
detected with spatial resolution of 250 um in three dimensions. The method is used here with rubi-
dium atoms at fields of 3—4 kV/cm, but any alkali-metal atom over a range from a few tens of V/cm
to a few tens of kV/cm is appropriate. Ionization rates may be calculated with the WK B quantum-
defect method, but the field-mapping results are independent of the theory. Here this mapping tech-
nique is used to evaluate two electrode configurations for precision Stark spectroscopy. Field inho-
mogeneities produced by an electrode with a narrow slit, when properly constructed, are found to
be in good agreement with detailed electrostatic calculations. However, discrepancies between field
measurements and calculations for a metal mesh over an aperture indicate the presence of unavoid-
able crinkles of the mesh. We conclude that the slot is the preferred arrangement, and we present
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calculations that give the field inhomogeneity as a function of the slot size.

I. INTRODUCTION

One area of general physics that has generally not been
accessible to precision measurement is the spatial distri-
bution of electrostatic fields in a vacuum. Because nu-
merical solutions of the Laplace equation can often be
found to high precision, it is tempting to assume that
measurements are unnecessary. However, for complicat-
ed configurations of electrodes, particularly in full three-
dimensional geometry, such numerical solutions are not
trivial. Furthermore, there may be deviations from
design geometry caused by machining imperfections,
small burrs, bends, etc., so experimental verification can
be quite useful at times.

We report here results obtained by mapping electro-
static fields with a new technique using interference nar-
rowing! * of Stark resonances excited by intersecting
laser beams. The availability of precision mapping tech-
niques with high resolution in each of three spatial di-
mensions can make possible a new level of sophistication
in the production of electrostatic fields. Since the
method® involves measurements of ionization rates that
change rapidly with electric field, it is not suitable, for ex-
ample, for plasma diagnostics. Because the narrowing re-
gions are highly localized in field, this mapping technique
is normally preceded by a coarse calibration using more
conventional methods, such as measurements of Stark
shifts or calculations from the assumed geometry.
Within these limitations, the method leads to a product
of mapping precision and spatial resolution that is several
orders of magnitude better than previous methods (see
Sec. II). Of course, application to certain problems out-
side our interest, such as electron lens construction,
clearly requires some additional development to combine
the electrodes, laser fields, and particle detection.
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The specific application of interest to us is the electro-
static fields used in Stark spectroscopy. These experi-
ments often require an aperture in the electrode plates to
permit detection of an emitted electron or ion, so there is
inevitably some degree of field inhomogeneity. The map-
ping procedure is used here to evaluate two different stan-
dard configurations of apertured electrode plates, namely
the mesh-covered aperture and the slotted electrode.

Better methods of producing uniform electric fields
make it feasible to access new questions of physics. For
example, various experimental tests have very recently
been performed in several laboratories>®’ with several
different atoms on the WKB quantum-defect (QD) theory
of the Stark effect.® ! Small discrepancies are being ex-
plored, and additional possibilities for exploiting this re-
markably successful theory are being pursued. Measure-
ment of either radiative decay or field ionization of a res-
onance whose energy or width depends sensitively on
electric field obviously requires a uniform field over the
excitation and decay region. In this regard, there is the
possibility of performing a precise, absolute, calibration
of electric field. Since the WKB QD theory uses only
fundamental atomic constants and very accurately known
empirical quantum-defect parameters, theoretical values
could be used to establish an absolute electric field cali-
bration to ppm level of accuracy. Conversely, if high-L
quantum defects are not accurately known from zero-
field data, it may be possible to determine them from ac-
curate measurements of Stark energies and widths of lev-
els for which many L components are intermixed.

Interference narrowing of Stark resonances offers ideal
conditions for field-mapping experiments because of the
rapid variation of decay rate with field in the regions
where narrowing occurs.! 7> From an experimental curve
of decay rate versus field, inhomogeneous fields can be
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mapped by determining the position dependence of the
decay rate in a constant applied field. This is done by
steering the two crossed laser beams that stepwise excite
the resonance of interest to move the interaction region.
Since the only purpose of the lasers is to excite a particu-
lar state of interest, the laser linewidth only needs to be
narrow enough to resolve nearby levels. We note that
this method produces a minimal perturbation of the field
that is being measured. The spatial resolution in our field
maps, determined by the intersection region of the two
laser beams, is about 0.25 mm in each of three dimen-
sions. This is about 50 times smaller than the best of
several recent methods used for electric field mapping
and measurement (see Sec. II). Furthermore, the mea-
surement precision that we have obtained is about 30
ppm, as compared with values quoted at typically a few
percent for previous mapping methods.

After reviewing these previous field-mapping methods
in Sec. II, we briefly summarize the theory of interfer-
ence narrowing in Sec. III. Apparatus and data-
acquisition procedures are discussed in Secs. IV and V.
In Sec. VI, we discuss our method for solving the Laplace
equation for the slotted electrode and for the mesh elec-
trode, and we plot calculated values of an inhomogeneity
parameter as a function of the slot dimensions. Results
of the mapping measurements for these two geometries
are given in Sec. VII. These results indicate that a nar-
row slot introduces a much smaller degree of field inho-
mogeneity. A metal mesh can be used over a much larger
aperture to obtain more signal at the cost of moderate
field inhomogeneity, but crinkles in the mesh introduce
unpredictable effects. Prospects for precision electric
field calibration using interference narrowing are dis-
cussed in Sec. VIII.

I1. PREVIOUS FIELD-MAPPING METHODS

Electric field-mapping techniques have a long history
and have only recently benefited from the use of lasers.
Before the modern era, Langmuir probes'!!? were used
to map the electric potential rather than the field directly.
A primary disadvantage of these probes was the substan-
tial perturbation of the field to be measured. In the 1950s
the design of vacuum tubes was aided by the use of con-
ducting surfaces in an electrolytic tank'? to evaluate the
fields of complicated geometries, and such methods con-
tinue to be of use.!> More recently, probes have been
developed using the electro-optic (Pockels) effect'*!> and
single-mode fiber interferometers.!® These are never of
high accuracy, but are useful in certain situations because
they may be free of conducting materials.

Measurement of Stark energy levels or Stark line
broadening offers possibility for electric field mapping
and calibration both in plasmas and in vacuum. Spectral
line broadening methods typically use the width of the
Stark manifold of a given Rydberg level, as in helium,'”!8
as a measure of the electric field. This method is clearly
limited by other sources of line broadening, such as the
Doppler effect and collisions. The actual displacement of
Rydberg Stark levels has been used to measure the elec-
tric field to about 1% in the cathode fall region of a Ne
glow discharge.!® In that work, the use of intersecting
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laser beams reduced the region of observation to a
volume element 2.5X2.5X0.2 mm? (about 1 mm?). The
highest previous spatial resolution to our knowledge em-
ployed laser excitation of a molecular II state. Mixing of
lambda doublet components by the field leads to Q-
branch emission when P or R are excited, or vice versa.
Accuracies of +5% and spatial resolution of 0.1 mm?
have been reported with BCl (Ref. 20) and NaK (Ref. 21)
transitions. This molecular technique has worse spatial
resolution than the method reported in the present paper,
but it requires only that P, Q, and R emission lines be
resolved, and hence is generally applicable if the ap-
propriate molecules are present in sufficient abundance.

III. THEORY

As Refs. 2 and 3 contain rather complete discussions of
interference narrowing, the present summary will em-
phasize the differences between typical cases in Rb and
our previous observations in Na. Any alkali-metal Stark
state ¥/ may be represented as a linear combination of
hydrogen Stark states W

Vi=Sc, v . (1

The alkali-metal ion core potential adds to the purely 1/r
Coulombic potential and hence couples hydrogenic
discrete states with hydrogenic continuum levels ¥ so
that the coupling between an alkali-metal Stark state ¥ j"
and a continuum level @ may be represented as

Vja= zcji(wwacorei\[}g) . 2)

If there is only one continuum, the ionization rate is
then '=27| Vjalz. When different quasibound Stark
states are strongly mixed there may be considerable can-
cellation among the terms in (2) for one of the eigenstates
at some particular field value. If the mixing changes con-
siderably, for example, near an anticrossing, the ioniza-
tion rate may decrease by several orders of magnitude
over a small variation of the field. It is this phenomenon
that is exploited in our work.

The ion-core potential is larger in rubidium than in
sodium and this has several consequences that affect the
occurrence of interference narrowing regions of the type
that are of interest here. Most importantly, the discrete-
continuum coupling elements are so large that above the
saddle-point energy Egp virtually all Stark levels with
M; =3 and 3 ionize too rapidly to be useful in these ex-
periments. For this reason, Rb Stark energy levels and
widths, such as those shown in Fig. 1, can be calculated
with a multichannel version of Harmin’s WKB QD Stark
theory® ™ !° utilizing an expansion of inverse tunneling in-
tegrals.' This method is useful up to slightly above the
classical saddle-point energy Egp=—2V'F. (See also
Ref. 22 for discussions of the Stark effect in Rb and Ref.
23 for comments on the theory of the Stark effect of mul-
tichannel systems.) Resonance energies are identified as
the zeros of the determinant of a certain matrix Q, where,
in the notation of Ref. 10,

0=U"%cos8—hFU'¥siné . (3)
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Here U'? is a Clebsch-Gordon coefficient representing a
transformation between the J,m; and L,m; bases, cosd
and sind are diagonal matrices spanning the space of ap-
preciably nonzero quantum defects, § =y, , where Y is
the quantum-defect modulo unity (—1 <p; <1), and h¥,
defined in Ref. 9, is the density-of-states phase matrlx for
the hydrogen Stark effect. The resonance width, from
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Ref. 10, is
_ tr(gH*sind) / @)
 d[det(Q)1/dE |/ dgeto=0"
Here §=Q "!det(q) (g is the adjoint of the matrix of

cofactors of Q), and HY is the hydrogenic density-of-
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(a) Energies of rubidium Stark levels showing several narrowing regions (solid circles) and experimental resonance energy

measurements (open circles). The saddle point is indicated by a dashed line. (b) Ionization decay rates of the levels shown in (a).
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states amplitude matrix. Our computer program evalu-
ates h ¥ and H and then searches for zeros of det(Q) as a
function of energy. For Stark maps such as those shown
in Fig. 1(a), these zeros are tracked as a function of field
with sufficiently small (variable) increments to give an ac-
curate shape for the width function.

All narrowing regions of interest in rubidium have
been found just below Egp, as illustrated by the solid cir-
cles in Fig. 1(a), which correspond to deep minima in ion-
ization decay rates shown in Fig. 1(b). The actual ob-
served decay rates also include effects of transfer by
blackbody radiation and radiative decay, depending on
the measurement technique. Frequently, decay minima
in rubidium occur near level anticrossings as in Fig. 1.
However, this figure also shows that there are anticross-
ings with no associated narrowing, and conversely we
also find narrowings not obviously associated with a level
anticrossing, although in such cases the decay-rate
minimum is typically not so deep as for the cases in Fig.
1(b). The most narrowly avoided anticrossings [as be-
tween curves 2 and 3 in Fig. 1(a)] typically do not exhibit
interference narrowing because they occur between states
of predominantly different m;, which decay to orthogo-
nal noninterfering continua.

In contrast, Stark levels in sodium, with its smaller
core, preserve the hydrogenlike structure to a much
greater degree. There are many regions where k =2, 3,
or 4 hydrogenic levels cross. In such regions above the
saddle point, k(k—1)/2 interference narrowings
occur.>® M; =1 narrowings that are useful for field map-
ping may be found even a factor of 2 in field above the
saddle point. Thus there are more narrowing regions to
choose from in sodium than in rubidium. It is therefore
ironic that this phenomenon was first observed in rubidi-
um,! but quite characteristic for this atom that they were
found very near the saddle-point energy. Of course, field
mapping can be performed with a very few narrowing re-
gions if they have the right properties.

A narrowing region useful for electric field mapping
can be chosen from possible candidates according to the
following criteria: the spectral intensity should be ade-
quate, the range of lifetime values should be suitable for
the apparatus, other levels should be far enough away not
to bias the data, and of course, the field values should be
experimentally accessible. The technique is simplified if
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there is a negligible energy variation over the narrowing
region, so that lasers need not be retuned. We found it
convenient to work at the upper end of the range of our
voltage source so that the energy levels would be as well
resolved as possible. Hence the field region from 3 to 4
kV/cm was searched particularly thoroughly. An ideal
case was found at 3455 V/cm and —360 cm™!, unfor-
tunately after most of the mapping data reported below
was obtained using the narrowing shown in Fig. 1 at 3003
V/cm, —337.4 cm~!. The former is to be recommended
in future uses of rubidium for electric field mapping with
this technique. A list of several narrowing regions that
we have located between 2.8 and 4.1 kV/cm is given in
Table I. Sharper narrowing regions on this list are obvi-
ously more suitable when the spatial distribution of field
varies less rapidly.

Normally, except for problems with breakdown, etc.,
field maps can be performed at any field value because
only the relative field variation matters. For cir-
cumstances where smaller or larger field values are
desired, our calculations have shown that there are useful
narrowings in Rb, always near the saddle point. These
can be found at field values as low as 100 V/cm where
they are very abundant, and as high as 25 kV/cm where
they are quite sparse. Narrowing regions are rather
scarce above 10 kV/cm in Rb because there are fewer lev-
el crossings. In Na, clearly defined level crossings with
associated regions of line narrowing occur over a very
wide range of field values, even quite far above the saddle
point and as high as 50 kV/cm.>?

IV. APPARATUS

The apparatus is very similar to that used in our previ-
ous experiments,z’3 but will be briefly described here with
emphasis on the changes (see Fig. 2). One major
difference is the change from Na to Rb. This change was
made in order to be able to study interference narrowing
in different atoms and to be able eventually to decelerate
the atomic beam with chirped diode lasers. Actually, as
noted above, Na would have provided many more regions
of interference narrowing.

A thermal Rb beam from a few cm? stainless-steel oven
at ~200°C with a 0.25-mm-diam hole is directed hor-
izontally (x direction) to an interaction region about 1.1

TABLE 1. Useful regions of interference line narrowing in rubidium Stark levels between 2.8 and 4.1 kV/cm. The “nearest-level”
columns give the distance in cm ™! to the next closest resonance, and its relative intensity on the same scale as used for column 3. All
quantities in this table have been obtained from calculations as described in Sec. III.

Nearest Minimum Width at
Field Energy Relative level Tion Tion=2X10°s7!
(V/cm) (ecm™1) intensity (cm™1) Intensity (sec™!) (V/cm)
2896.0 —334.47 2.3 0.31 0.3 2 22
3002.9 —337.40 0.5 0.5 <0.05 8 11
3255.0 —351.88 33 1.1 2.6 2x10* 14
3337.5 —354.46 3.9 0.8 33 1.5X10° 3
3455.6 —360.36 5.2 1.3 <0.05 5% 10? 8
37373 —373.67 1.1 1.0 0.3 1.5X10? 5
4082.9 —391.25 2.0 1.6 1.8 1.4X10° 3
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FIG. 2. Overall diagram of apparatus showing laser and atomic beams.

m away. The atoms essentially fill the volume between
two oppositely charged, parallel, 3-mm-thick brass plates
that produce the z-directed Stark field (vertical). The 75-
mm-diam plates are machined and polished to about 25
pum (0.001-in.) flatness, and are separated by four Macor
spacers machined and ground to a uniform length of
7.209(5) mm. The degree of plate parallelism attained is
shown by the field-mapping results presented in Sec.
VIIC. In contrast to our earlier work, now the upper
plate is smooth and solid, but several different lower ones
with a variety of apertures are used to pass the ions re-
sulting from field ionization to a pair of multichannel
detector arrays mounted just underneath. The voltage
for the field is produced by a Hewlett Packard (HP)
6516A stabilized power supply, and was found to be
stable to one part in 10* during the data run (about 1 h)
by using the atoms themselves as probes. The voltage is
measured with a HP 3490A digital voltmeter and a high-
voltage probe, but the absolute field calibration is deter-
mined from atomic parameters as described below.

Rb atoms in the beam are stepwise excited in the re-
gion between the field plates to Stark Rydberg levels by
two laser beams. The first beam is from a 780-nm-cw
diode laser tuned to excite the 52S,,, (F=3) level to the
52P;,, (F=4) level of **Rb. (This transition is chosen
for convenience only: other transitions and *’Rb give the
same results.) In order to isolate the diode laser from the
effect of stray reflections, its beam passes through a circu-
lar polarizer. Since the beam propagates perpendicular
to the electric field between the plates, it contains both 7
and o components referred to the (vertical) field axis.
The second light beam is 7 polarized (vertical) light from
a 486-nm pulsed dye laser (Fig. 2). The horizontal diode
laser beam (~0.4-mm-diam at 1/e? points) crosses the
atomic beam about 1.1 m from the oven at nearly a right
angle, while the blue dye laser beam ( ~0.2-mm-diam at
1/e? points) counterpropagates against the atomic beam.

The Doppler width of this blue light from the moving
atoms’ point of view is comparable to the spectral width
of the laser beam. The geometry was chosen to avoid op-
tical pumping by the 780-nm light if it had traveled along
the atomic beam, but at the same time to use the intersec-
tion of the laser beams to define a small interaction
volume that can be moved around to map the field simply
by steering the laser beams.

Because the dye-laser excitation near 486 nm selects
the Stark states of interest, it must be spectrally narrow,
sweepable, and stable. The carefully designed®* dye laser
has a 5-cm-long cavity and two gratings on speciaily
modified mounts to achieve the large free spectral range
(3 GHz) that enables easy single-mode operation. Al-
though a single mode is only about 200 MHz wide
(Fourier transform limit is 40 MHz), pulse-to-pulse varia-
tions resulting from mechanical instabilities limit the
effective bandwidth to about 600 MHz =0.02 cm™'.
This laser is tuned by rotating the Littrow grating, and
the required smooth, uniform, repeatable movement is
accomplished with a Burleigh Inchworm. We can scan
the frequency about 20 cm ' without a mode change.
The output of this oscillator is amplified by two dye cells
that are saturated by the nitrogen laser pump light to sta-
bilize the output power. This dye-laser system provides
sufficient resolution to select Stark states of interest below
about 200 cm ! from the zero-field ionization limit.

The Galileo chevron multichannel plates are operated
with about 1 kV on each (Fig. 3), and their output is col-
lected on a carefully impedance-matched anode biased at
300 V.25 The result is a clean pulse easily transmitted on
50-ohm cable and amplified by standard linear pulse
amplifiers.?®

To obtain the average field for a specific configuration
of field plates, we made several scans of the laser at
slightly different voltages on the field plates. By compar-
ing the observed peak positions with the calculated Stark
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plates, MCP’s, electrodes, and applied voltages. A delayed
pulse can be applied to the grid to ionize remaining atoms.

map [see Fig. 1(a)], we can find an approximate relation
between the voltage on the plates and the field between
the plates. Although this gives us only a modest resolu-
tion, it is sufficient to locate the resonances of interest. A
subsequent measurement of the lifetime of a particular
resonance at different fields yields the field calibration at
one point between the plates.
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FIG. 4. Plot of the field dependence of the lifetime of the
Stark state located near 3003 V/cm and —337 cm™~'. The solid
curve is calculated with a (40 usec)”' decay rate added (chosen
to match the peak of the curve) and the points are measured in
the absence (triangles) and presence (circles) of a magnetic field.
The maximum calculated lifetime of this state against field ion-
ization is ~ 1 sec.
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V. DATA ACQUISITION

A convenient way to exploit interference narrowing for
the measurement of fields is to measure the lifetime of a
particular Stark resonance at various points in the space
between the field plates. To facilitate this we choose a
Stark resonance whose lifetime changes rapidly, but not
too rapidly, with field over a narrowing region (for an ex-
ample, see Fig. 4). We then measure its decay time at
various positions by moving the intersection region of the
laser beams, and use Fig. 4 or its equivalent to determine
the field map.

The most obvious way to measure the ionization rate is
by observing the time dependence of the ionization signal
after the pulsed laser excites the Stark state as shown in
Fig. 5. If we use a least-squares method to fit the loga-
rithm of the signal to a straight line, the slope of the line
is equal to the decay rate. Figure 6 shows a typical exam-
ple of such a fit to a decay curve.

For long lifetimes (i.e., small decay rates) there are lim-
itations to this method. First, the small decay rate makes
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FIG. 6. Semilog plot of a typical decay curve showing
characteristic linearity.
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the signal weak thereby making it difficult to observe the
decay because of the decrease in signal-to-noise ratio.
Second, if the lifetime is more than about 30 usec, corre-
sponding to an average decay length of 1.2 cm, an appre-
ciable fraction of the atoms will leave the detection re-
gion before ionizing. Since we have a thermal beam with
no velocity selection, it is not easy to account for this
effect in our measurements. Third, atoms with long de-
cay lengths are more likely to experience a variation of
the necessarily inhomogeneous electrostatic field as they
travel between the plates. This can lead to complicated
signals because the lifetime is strongly dependent on the
field, so that an accurate extraction of the decay rate will
be difficult. Fourth, atoms can leave the excited state by
processes that do not produce an ion, such as radiative
decay or by downward transitions induced by blackbody
radiation.

To avoid all these problems, we have used a pulse
method to observe long lifetimes. We apply a 300-V
pulse to the lower field plate a few usec after the atoms
are excited to the Stark state (see Fig. 3). This causes the
field to increase rapidly from a region where the lifetime
is fairly long to a region above the saddle point, where
the lifetime is very short. The result is a large signal from
all excited atoms that survived the interval between the
laser pulse and the field pulse. A typical signal is shown
in Fig. 5. By integrating the signal over a few us window
with and without the field pulse and comparing the two
results, we can determine the decay rate of a state that
has a long lifetime in a rather short time. With our ap-
paratus, this method can only be used for lifetimes larger
than 0.5 usec, the time it takes to apply the field pulse to
the lower field plate.

There is a range of lifetimes where both the direct de-
cay and the pulse method yield valid results and can be
compared. We now consider ways the two methods
could give different results. With the decay method, all
processes that lead to a decrease of the excited state give
a contribution to the measured decay rate. Radiative de-
cay and transfer by blackbody radiation will contribute as
well as direct ionization. With the pulse method only
ionization processes, either direct or by blackbody radia-
tive transfer to more rapidly ionizing states, give a contri-
bution to the measured decay rate. From the differences
between these two methods, we can infer the contribu-
tions from nonionizing processes, namely, transfer by
blackbody radiation to nonionizing states and radiative
deexcitation. In the region of our present observations,
the sum of the decay rates from nonionizing processes is
typically about 6 X 10* sec™!. A more detailed discussion
of these contributions to the total decay rate is planned to
be presented in a forthcoming publication. For now we
conclude that both methods give a reliable way to deter-
mine a decay rate and they should agree within experi-
mental error for lifetimes less than a microsecond.

From knowledge of the field dependence of the lifetime
of a particular state (as shown in Fig. 4) and the mea-
sured lifetime at various positions, we can produce a map
of the electric field. The accuracy of the individual field
values is limited only by the combination of signal-to-
noise ratio and sharpness of the lifetime dependence on
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field. As the data below show, we can determine the life-
times to about 5%, and can choose spectral features
whose lifetimes change by a factor of 2 over a field
change of less than 0.05%. We are therefore sensitive to
field changes as small as =25 ppm. Although we have
made maps with this precision over a limited region, for
the plots reported here, the scatter in the data is about 70
ppm.

Most of the data presented below was taken with the
Earth’s magnetic field canceled by the field from
Helmholtz coils around the apparatus. To check for the
effect of small magnetic fields on the lifetime measure-
ments, and on the possible ultimate utility of this method
for calibrating electric fields, we reversed the current in
the coils to double the earth’s field at the interaction re-
gion. Figure 4 shows that there is no essential difference
between the measurements at magnetic field values equal
to zero and equal to a few gauss.

VI. CALCULATION OF ELECTROSTATIC
POTENTIAL AND FIELD

A. Introduction

To corroborate and extend the experimental maps of
electric field, we have computed the electrostatic poten-
tial and field for a slotted electrode and for a mesh-
covered aperture. The standard method for numerical
solution of the Laplace equation is now the finite-element
method,?”?® and several program packages that employ
this method are now available.?”3® We have employed
one of these? and also our own routines using analytic
function expansions in a manner discussed below. The
reason for supplementing the standard package, even for
two-dimensional calculations, is the precision required
and the considerable difference of scale between the slot
or mesh structure and the space between the electrodes.
This geometry requires several changes in scale in both
dimensions in the finite-element method. These could un-
doubtedly be handled by internal modifications of the
program package. However, we would like to point out
an alternative approach that is extremely versatile.
Within practical limits of the parameters and with ap-
propriate truncation of the problem, the two methods
agree very well.

The Schwartz alternating theorem®' ™3 for elliptic
boundary-value problems states that iterative solution of
the Laplace equation in overlapping subdomains con-
verges to a solution for the entire domain of interest. For
the first iteration, boundary values for some selected sub-
domain are provided by a simple model. Calculation of
the potential in this subdomain provides estimates for the
boundary values for other subdomains lying within. The
computed potential in all the subdomains leads eventual-
ly to improved values for the potential on the boundaries
of this first subdomain, so that one can iterate to conver-
gence. In a recent thesis,* it was shown that the rate of
convergence generally increases with the degree of over-
lap. For each subdomain, one is free to select the most
convenient method. Although the finite-element method
could be used throughout, subdomains of simple, separ-
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able geometry can be chosen for the problems at hand, so
that analytic function expansions apply.

B. Calculations for an electrode with a slit

We illustrate this method by giving further details for
the calculation of the field near a narrow slit in one elec-
trode. The overlapping subregions for the two-
dimensional calculation (infinitely long slit) are depicted
in Fig. 7. The slit electrode B is at ground potential, an
electrode below, A4, provides the Stark field over the ob-
serving region, and an electrode above, C, accelerates
charged particles into a detector or provides a region of
nominally null field for studying field penetration. Be-
cause the electrodes used were amply large (the diameter
to spacing ratio was greater than 10:1), fringing effects
were not considered.

According to standard elementary methods,’*3¢ the
potential ® in rectangular regions I, II, and III may be
represented by a sum of eigenfunction expansions, each
of which reproduces given boundary values on one side,
or on two symmetric opposite sides. Regions I and III
extend sufficiently far horizontally into the regions of uni-
form field on either side of the slot that the potential on
the boundary is represented adequately by AV /d, where
AV is the difference in potential between the plates. Re-
gion II overlaps I and III enough for the iteration pro-
cedure to converge rapidly. For a better representation
of the potential at the corners of the slot, the three-
quarter circle regions IV and V (and their mirror images,
not shown in Fig. 7) are added. The terms in the analytic
function expansion are of the form (p /R )*/3sin(2k ¢ /3),
where R is the radius of the subregion. If R is suitably
chosen, the potential over the arc is smooth enough to be
represented by a modest number of terms. To obtain
five-digit accuracy everywhere, typically we have used
150 terms.

At the start of the iteration procedure, the potential is
assumed to be zero within the slot and linear on either
side. This provides boundary conditions for region II,
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FIG. 7. Schematic diagram of the subdomains used for the
calculation of the electrostatic field for a slotted electrode by the
Schwartz alternating method. To show the subdomains clearly,
the slot and the electrode spacings are drawn to different scales.
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whose solution gives improved estimates for the potential
across the slot apertures, which are part of the boundary
of regions I and III. From the calculated potential in re-
gions I, II, and III, boundary values for regions IV and V
are obtained. Iteration then proceeds at the sequence
H—-II—-1—-1IV—>VII etc., until the potential V', at
some critical point, such as the center of the slot, changes
by a negligible fraction. After ten iterations, successive
increments in V, are typically less than one part in 108.
Over the experimentally accessible region, the conver-
gence is even more complete.

Figures 8 and 9 show the potential contours (solid
lines) and electric field lines (dashed lines) for the slotted
electrode problem. For Fig. 8, the field on the top side is
nominally zero, while for Fig. 9, the electric field values
on either side are equal. Figure 10 shows contours of the
difference between the two cases with an increment -5 of
that used in Figs. 8 and 9.

Our calculations with the POISSON/SUPERFISH group
codes?® produced results that agree with those obtained
as described above within limitations of these codes. The
maximum number of grid points with the version avail-
able to us was 10000 (each grid point involves several
coefficients). In view of the restrictions on multiple
changes of mesh size, we truncated the geometry to a
square region 2.5 mm on a side, with a 0.25-mm-wide
aperture in a 0.25-mm-thick plate. Near the aperture,
the contour lines were essentially identical with the re-
sults shown in Figs. 8, 9, and 10. The field for the actual
experimental geometry could undoubtedly be obtained
with this program package by application of the
Schwartz alternating procedure, or by internal
modification of the codes.
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FIG. 8. Equipotential contours (solid lines) and electrostatic
field lines (dashed) calculated by the Schwartz alternating
method for a slotted electrode plate. The electric field is nomi-
nally 3000 V/cm below the slot and zero above, as established
by electrodes 7 mm distant on either side. The interval between
contours is 5 V.
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FIG. 9. Equipotential contours (solid lines) and electrostatic
field lines (dashed) calculated for a slotted electrode plate. The
electric field is nominally 3000 V/cm above as well as below the
slot, as established by electrodes 7 mm distant on either side.
The interval between contours is 5 V.

C. Field inhomogeneity parameters for a slit
electrode

We now exploit results obtained as described in Sec.
VI B to represent the field inhomogeneity over the obser-
vation region to lowest order. The exact numerical re-
sults for the potential are fitted to a two-term expansion

®=E,y+E, cos(ax)exp[aly —D /2)], (5)

where D is the plate spacing, x is the transverse distance
from the slot center, and y is the vertical distance from
the unslotted plate. (The accuracy of this representation

-06 —T T T T T
-0.3 -0.2 -0l 0.0 Ol 02 03
X (mm)

FIG. 10. Contours of the potential difference between the re-
sults for Figs. 8 and 9. The interval between the contours is 0.1
V.
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decreases sharply close to the slot.) Each term in (5)
satisfies the Laplace equation, but with undetermined
boundary conditions. The primary interest is in the re-
gion directly below the slot (x =0) and midway between
the plates. We therefore write the electric field

_9® _
dy

where y=(y —D /2)/D is the distance from the midpoint
divided by the plate spacing, @=a/D, and B=E,a/E,.
Values for E,, B, and @ are obtained from calculated
values of the potential at =0 and *1. Because of the
slot, E, is not equal to E,=V,/D, where V¥, is the ap-
plied voltage, as will be evident from figures presented in
Sec. VII. However, because correction terms for E, are
frequently less than the measuring uncertainties of D, we
concentrate here on the second term in (5) and (6).

From many fittings of calculated potential distributions
to (5) and (6), we find that @ varies only slightly with the
scaled thickness of the slotted plate, T/D (for T /D
values from 0.01 to 0.05, @ varies linearly from 6.8 up to
only 7.5), and negligibly with the scaled slot width W /D.
This range of values of @ implies that the field inhomo-
geneity term increases by a factor of e over about one-
seventh the plate spacing. The 3 values vary more drasti-
cally and are represented in Fig. 11 in ppm units. In

E(x=0,y)=E,= —E [1+Bexp@y)], (6)
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FIG. 11. A representation of the field inhomogeneity due to a
slit in an electrode plate. The coefficient B (in ppm) of the inho-
mogeneity term in Eq. (11) is plotted as a function of the elec-
trode thickness T divided by the electrode spacing D for various
values of the slit width W divided by D. Solid lines are for equal
field strengths on either side of the slit, dashed lines represent

results when the field is nominally zero on the opposite side.
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these calculations, the observation region was assumed to
be below the slot (inset, Fig. 11) and the spacings on ei-
ther side of the slotted plate were taken to be the same
(the results do not depend critically on the geometry on
the opposite side of the slot). For the solid lines in Fig.
11, the field on the opposite side of the slotted plate is
equal to the field on the observation side, while for the
two dashed lines, the field on the opposite side is nomi-
nally zero. The inhomogeneity term of course tends to
zero with the slotted-plate thickness if the field is nomi-
nally the same on either side of the slot.

From Fig. 11, it is noted that if the electric field is the
same on either side of the slot, the inhomogeneity term
increases rapidly with T /D up to one or two times the
scaled width W /D, and then is less sensitive to further
increases in the thickness. The inhomogeneity term is a
sharp function of the slot width W. For parameters
T=W=0.25 mm, as in the present apparatus, and for
D=1 cm, B is about 80 ppm. Two mm from the slot
(2 /& above the midpoint), the inhomogeneity term in (5)
is e times this, or about 580 ppm. Signal amplitudes will
normally increase with slot width. Figure 11 therefore
helps to determine the trade off between signal amplitude
and field homogeneity. In addition, the parameters
defined in (5) and (6) and plotted in Fig. 11 can be used to
derive limits on the laser-beam diameter consistent with a
desired degree of field uniformity over the excitation re-
gion.

D. Calculations for a mesh-covered aperture

The mesh problem is considerably more complicated
because it does not reduce to two dimensions. We are
aware of only one published detailed study of the electro-
static fields associated with a mesh.’” (The specific
configuration of interest here is not considered.) Al-
though there exist commercial computer program pack-
ages®® that are capable of solving the Laplace equation in
three dimensions, the number of computational grid ele-
ments required for each physical mesh element makes a
straightforward approach impractical. For purposes of
comparison with the experimental data below, it will
suffice to present results obtained from an array of
infinitely long strips. Calculations with infinite arrays of
strips and meshes in two and three dimensions indicate
that the two-dimensional problem is an adequate approxi-
mation.

We therefore consider (model A) an array of infinitely
long strips parallel with and covering a long aperture in a
solid conducting plate with the same dimension used in
the experiment (6-mm-wide aperture and 3-mm-thick
plate). The strips have the same thickness (7 um), period
(25 pm), and transparency (73%) as the actual mesh.
The field is produced by a charged electrode on one side;
the mesh itself and an electrode on the other side are at
ground potential. The results can be characterized in
terms of an average correction potential V, over each
mesh period. (For a solid metal electrode, all ¥, would
be zero.) The correction potential falls off slightly from
the center to the edge because of the effect of the plate
thickness.
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To estimate the discrepancies resulting from the as-
sumption of infinitely long strips rather than the actual
orthogonal mesh wires, we consider an infinite array of
strips in two dimensions (model B) and a three-
dimensional array of orthogonal wires (model C). Each
of these infinite arrays can be solved by considering a
single-unit cell with Neumann boundary conditions (e.g.,
0® /3x =0) on the vertical boundary surfaces. The re-
sults of these calculations may be expressed in terms of
average correction potentials ¥, over the mesh surfaces,
as with model A. If the percent transparency is kept con-
stant, the correction potential values for models B and C
agree to within 10%, and also agree to within a few per-
cent of the average potential over the central apertures in
the model A. Finally, we define model D to consist of
electrode strips i each with the width of the mesh period
and a potential equal to V, from model A. We verify
that these V,; values over mesh apertures reproduce the
spatial distribution of the field obtained from model A to
within a few percent, provided one is at least two mesh
spacings from the mesh surface so that the periodic varia-
tion of the field from the individual wires is negligible.
Hence we accept the field values obtained from the finite
array of infinite strips as an adequate approximation. Re-
sults of this calculation are presented along with experi-
mental data in Sec. VII B.

VII. MEASUREMENTS
A. Introduction

The primary goal of field-mapping measurements that
we have performed to date has been to evaluate electrode
configurations used for detecting atomic ionization in an
electric field. Traditionally, the most common arrange-
ment has been a wire mesh placed over an aperture.
Often a sufficiently uniform field is obtained by this
means. However, as the measurements reported below
indicate, it is very difficult to construct a mesh surface
that is extremely flat. An alternative configuration is a
long slit parallel to the atomic beam. This yields a small-
er signal, but provides a much more homogeneous elec-
tric field. The results obtained by our mapping technique
in several cases show the effects of deviations from the in-
tended geometry. When these deviations are small, the
mapping corroborates electrostatic field calculations for
the design geometry.

B. Field mapping with a mesh-covered aperture

Wire mesh electrodes are used in many situations
where a uniform electric field is needed behind an aper-
ture that must be highly transparent to charged particles.
It is often assumed that at a few mesh spacings from the
mesh surface, the field assumes its nominal value AV /d
for two electrodes with potential difference AV separated
by a distance d. Calculations described in Sec. VI D con-
tradict this assumption. The periodic variation of the
electrostatic field does damp out rapidly, but if the field
on the two sides of the mesh is not the same, the stronger
field penetrates the mesh such that 8V, the difference be-
tween the average potential in the mesh plane and the po-
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tential on the surface of the wires is not zero. The field
correction term 8V /d is significant over distances on the
scale of the entire mesh aperture. Hence there are spatial
variations in the field at the edge of the mesh aperture,
and the correction term extends all the way to the planar
electrode. If the electrode spacing is 400 times the mesh
period and if the field on one side of the mesh is nominal-
ly zero, the field correction term at the planar electrode is
slightly more than 3000 ppm.

In principle, both the short-range periodic effect and
the long-range field correction term 8V /d are measurable
with our interference narrowing method of field mapping.
However, with the fine meshes of interest here it is not
possible to probe sufficiently close to the mesh surface to
detect the periodic variation of the field. An absolute
calibration is difficult because of measurement uncertain-
ties in the electrode spacing, contact potentials, and pos-
sible imprecision in WKB QD Stark theory (see Sec.
VIII). Nevertheless, the spatial variation of the field due
to the penetration is easily observable. However, we have
found that ripples or crinkles in the mesh surface pro-
duce effects that are comparable to or larger than the
field penetration term, as results presented below will
show.

To maximize our sensitivity to the mesh structure, we
make the field on the opposite side of the observation re-
gion nominally zero by covering both sides of a 6-mm-
wide by 25-mm-long slot in a 3-mm-thick plate with
meshes in electrical contact with the plate. An electro-
formed nickel mesh® of period 0.25 mm (100 lines/in.)
and thickness 5-8 um having a transparency of 73% is
used. We have examined the mesh with an electron mi-
croscope and found a regular pattern of square holes with
some small irregularities near the edges of the holes. A
thin mesh such as this minimizes the effect of the mesh
thickness but is rather fragile. After testing several
methods for fastening the mesh over the holes in the
brass electrode plates, we found that gluing was the most
successful.’® By carefully stretching the mesh and hold-
ing it on the electrode, we managed to mount three pairs
of meshes that did not appear to be substantially crinkled
or deformed.

The large aperture of the slot allows us to scan the field
between the plates in three directions by steering the laser
beams. Results of field-mapping measurements along a
vertical line at the center of three different mesh-covered
apertures are shown in Fig. 12 together with the corre-
sponding theoretical field distribution (solid line). Be-
cause the deviations from theory are quite significant, we
have adjusted each of the experimental data sets to give a
zero deviation very near the solid electrode, although the
theory indicates a 0.3% (9-V/cm) correction at this point.
Therefore the zero of the scale differs for each experimen-
tal data set and for the theory. It is clear that for two of
the three meshes, the field increases closer to the mesh, in
contradiction with theory and with physical intuition.
For the mesh that does exhibit a deviation of the correct
sign, the magnitude of the change between the flat plate
and the mesh is about twice the calculated value.

The nature of the mesh imperfections is indicated more
clearly by horizontal scans of the field. For one of the
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FIG. 12. Electric field variation along a vertical line between
electrodes separated by 7.2 mm, at the center of a 6.4-mm by
25-mm aperture in one electrode, both sides of which are
covered with electroformed mesh with 100 lines/in. (period
0.25 mm). Calculated values are given by the solid line. The
circles, squares, and crosses, for three different meshes, denote
measured values, shifted so that each data set is zero at the solid
plate. Hence for the experimental data, only the relative field
variation over the vertical line is significant. The deviations
from theory are associated with crinkles in the mesh.

meshes with a positive deviation in Fig. 12, field scans
along the beam axis (centered in the transverse direction)
at various vertical positions are shown in Fig. 13. Near
the solid plate, the inhomogeneities are very small. The
substantial variation of the field near the mesh suggests
that there are ripples or crinkles in the mesh. Approxi-
mate calculations indicated that 30-um ripples are
enough to produce the observed irregularities. Examina-
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FIG. 13. Field distribution in the horizontal direction along
the atomic beam for the mesh denoted by solid circles in Fig.
12. The diamonds, triangles, and circles refer to data obtained,
0.5, 3.1, and 6.3 mm, respectively, from the flat electrode, as
compared with the electrode spacing of 7.2 mm. Since the abso-
lute field shift cannot be determined, the vertical scale is adjust-
ed so that the shift is zero at the center of the first scan (0.5 mm
from the solid plate).
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tion of the mesh by viewing reflections of the overhead
fluorescent lights revealed slight ripples persisting despite
extreme precautions taken in gluing the mesh to the elec-
trode surface. The utility and sensitivity of the field-
mapping technique is apparent.

C. Field maps for a slit electrode plate

A long thin slit in the electrode plates parallel to the
atomic beam produces maximal field uniformity along the
decay path. It also happens that the field variation even
in the transverse direction directly under the slit (the re-
gion from which ejected particles are detectable) can be
reduced to a negligible value because the slit can be much
narrower than the electrode spacing. Of course, the sig-
nal is less than with a mesh over a wide aperture. The
slits we have used were about 25 mm long and typically
250 pum wide, carefully aligned parallel to the atomic
beam.*»?> The excitation region was just under the mid-
dle of this slit. In our report of studies on the interfer-
ence narrowing phenomenon in Na,? a slit of this design
was used, and some preliminary field inhomogeneity mea-
surements were included.

When the field distribution produced with this elec-
trode was mapped more carefully with Rb, the vertical
and longitudinal variation shown by the solid triangles in
Figs. 14(a) and 14(b), respectively, was obtained. The
field was found to increase as the interaction region was
moved closer to the slit [Fig. 14(a)]. This is opposite to
what is calculated from elementary electrostatics. Also
[Fig. 14(b)], the field was maximum at the slit center and
decreased toward either end. These observations led us
to perform a careful examination of the slit that revealed
a very small lip along both of its edges that had been left
by the machining process.

We therefore lapped and polished the brass disk to re-
move this lip, and repeated the measurements. The open
circles in Figs. 14(a) and 14(b) show the field variation in
the vertical and longitudinal directions for the slit after
lapping, while the solid line [Fig. 14(a)] gives the calculat-
ed field distribution. Figure 14(a) shows that the field is
most uniform near the solid plate (as expected), and re-
tains this uniformity for more than half the distance to
the slit. Figure 14(b) shows that the field variation along
the slit after lapping is dominated by the nonparallelness
of the plates. There is a field change of about 2 parts in
3000 along a 1.5-cm horizontal path, corresponding to
about a 25-um (0.001-in.) variation in the size of the four
spacers on a ~75-mm circle.

Having obtained a good approximation to the ideal slit
geometry, we now present additional measurements and
calculations as a function of slit width and of the magni-
tude of the electric field on the opposite side of the elec-
trode (field penetration). Figure 15 shows the results of
measurements in the vertical direction that were per-
formed on two new slits of width 250 pum (0.010 in.) and
500 pm (0.020 in.) that were made by electron beam
machining and therefore had no mechanical artifacts. To
try to detect the effect of the accelerating voltage on the
opposite side of the plate, a charged grid electrode was
placed between the slitted electrode and the multichannel
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plate, to provide fields of 0, 500, and 1000 V/cm with
both slit widths (see Fig. 3). For the narrower slit, the
calculations all fall within the width of the solid line in
Fig. 15, while for the wider slit there is a small difference.
In either case, the effect of the applied grid voltage is al-
ways less than the 0.2-V/cm rms scatter in the experi-
mental data. The correction relative to the nominal value
very near the surface of the plane electrode, about 0.2
V/cm, is obtained from the electrostatic field calcula-
tions, and the scale for the experimental points is adjust-
ed to agree, since the absolute field strength is not deter-
mined. The experimental points in Fig. 15 agree with
calculations to about 1 part in 10* except for one point
just 0.6 mm from the 0.5-mm slit where the field inhomo-
geneity over the 0.25-mm-diam interaction region is
significant.
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FIG. 14. (a) Electric field variation along a vertical line at the
center of a 0.25-mm-wide slit machined in one of two electrodes
separated by 7.2 mm before (triangles) and after (circles) lapping
to flatness. The bold curved line is the calculated field, while
the straight line is merely sketched. (b) Field maps along a hor-
izontal line of the same slit. Triangles and circles have the same
significance as in (a). The lines have been merely sketched to
guide the eye. Experimental scales have been vertically adjusted
for convenience.
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FIG. 15. Vertical field map and calculated fields for the slit
electrode with various voltages on the auxiliary grid 1.5 mm
from the 3-mm-thick field plate. Open symbols are for the 250-
pum (0.010-in.) slit and solid symbols are for the 500-um slit.
Grid voltages are 0 V (circle), 500 V (triangle), and 1000 V
(square), such that for the last two cases, the field direction is
the same on both sides of the electrode. The calculated fields
coincide for all three grid voltages with the small slit, but are
distinguishable for the large one, with the greatest field shift
occurring for O V on the grid. Measured values are adjusted to
fit the calculations near the solid electrode. (The slit electrode is
7.2 mm from the solid plate.)

We conclude therefore that if the slit is well lapped and
polished, the experimental configuration closely ap-
proaches the design geometry, and the spatial variation
of the electrostatic field obtained from calculations and
from field-mapping measurements corroborate each oth-
er. Accepting the computed field values, we can say that
with the 250-um-wide slit, the field deviates from the
nominal value by 60 ppm at the surface of the plane elec-
trode, and by about 500 ppm two-thirds of the distance to
the mesh. As noted in Sec. VIC, the field varies essen-
tially exponentially with the vertical distance. Between 1
and 2 mm from the plane electrode, the total field varia-
tion transverse to the atomic beam is less than 20 ppm.
Since the longitudinal field variation can be reduced to a
negligible value over a 1-cm decay length, we recommend
the slot geometry for precision Stark spectroscopy.

VIII. CALIBRATION OF ELECTRIC FIELDS

The absolute calibration of electric fields to moderate
accuracy is easily done by dividing the electrode spacing
d into the potential difference V. However, the accuracy
in the knowledge of the effective applied voltage is limit-
ed by contact potentials, imperfections on the electrode
surfaces (e.g., patch effects), and possibly impurities de-
posited on the surfaces (e.g., charged dielectric contam-
ination such as pump oil), while the accuracy of the spac-
ing is limited by flatness and mechanical contacts as well
as by deformations of the plates. Also, fringe field effects
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and the presence of other materials must be carefully ac-
counted for in the calibration. The most accurate electric
field primary calibration*®® used Stark effect observations
with a molecular beam electric resonance apparatus and
is quoted at 50 ppm, the uncertainty reported for the
electric dipole moment of the OCS molecule. This pri-
mary standard is transferable by reference measurements
on OCS.

One of the very important features of interference nar-
rowing, as also the case for Stark energy level measure-
ments in any simple atom, is that the absolute value of
the field in principle is known ab initio to a high degree of
accuracy by WKB QD Stark theory.® !0 If the theory is
sufficiently precise, the calculated field values will depend
only on experimentally determined quantum-defect pa-
rameters and on the physical constants that provide a
conversion from atomic to mks units. Such a calibration
procedure would link electric field values directly to the
atomic unit of field, which is presently known to better
than 0.3 ppm.*!

It is normally difficult to use Stark shifts for high-
precision (< 1000 ppm) field calibration because the shifts
are not sufficiently large compared with typical probe
laser line widths. Nevertheless, Stark energies near
n =40 in He have recently been measured with a narrow
band laser at fields near F =260 V/cm. The internal con-
sistency of both the scale adjustments of these measure-
ments and of the scatter of the data is in the order of 50
ppm.*> Even though application of this approach to field
calibration would require laser frequencies that are
known absolutely to the order of 30 MHz, it is clearly
worthy of further study. If the relevant energies can be
calculated to this accuracy, a field calibration might be
obtained.

Interference narrowing is ideally suited for calibration
purposes because the narrow feature is highly localized in
field. From a set of decay rate measurements over a nar-
rowing region, the field at which the decay rate is
minimum may be fit very precisely. At present, our data
on individual narrowing regions are internally consistent
to better than 15 ppm in some cases. However, there are
discrepancies between different narrowings in rubidium
on the order of 1000 ppm (0.1%). As this is far beyond
the effects of uncertainties in the Rb quantum-defect
values, we attribute these discrepancies to shortcomings
of the semiclassical approximation used in the theory.
More precise computational methods*® are under study.
We note that NMR is an accurate method for measuring
magnetic fields, but until now there has been no counter-
part for electric fields.

IX. CONCLUSIONS

We have exploited the interference narrowing of Stark
resonances for the purpose of three-dimensional mapping
of electric fields to an unprecedented level of precision.
This is possible because of the very sharp field depen-
dence of the width of these resonances in the vicinity of
the narrowings. We have used this technique to detect
effects of crinkles in a mesh electrode, machining imper-
fections in a slotted electrode, and slight lack of parallel-
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ness of electrode plates. When the geometry is
sufficiently close to an ideal slotted electrode
configuration, we are able to corroborate electrostatic
field calculations for the field variation. By extending
these calculations, we have presented the degree of field
inhomgeneity as a function of the width of a slotted elec-
trode. And finally, we have proposed a new method for
absolute calibration of electric fields that has the poten-
tial for very high accuracy if present internal inconsisten-
cies can be resolved by improvements in the theory.
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