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Formal time-independent scattering theory is applied to multiphoton ionization of atoms in in-

tense electromagnetic fields. The quantized-field version of the Volkov solution makes this ap-

proach possible. With the electron-photon interaction in a monochromatic photon field, it is found

that, in the nonrelativistic and large-photon-number limits, the final scattering state exists only in

the special case in which the ponderomotive potential per unit photon energy is an integer; other-
wise the final state vanishes. In the integer case the corresponding wave function reduces to a single

Volkov function, multiplied by an overlap factor. A simple interpretation of this result is given, and

some other consequences of this work are discussed.

I. INTRODUCTION

Multiphoton ionization (MPI) of atoms in strong elec-
tromagnetic fields has become of growing interest as ex-
periments with increasingly powerful lasers and low-
pressure gas targets are performed. ' Particularly intri-
guing is the observation of above-threshold ionization
(ATI), where the photoelectron spectrum exhibits a series
of peaks with spacing equal to the photon energy. '

Lowest-order perturbation theory fails to explain such
features as the shape of the envelope of the ATI photo-
electron peaks or the dependence of their strength on the
intensity of the laser light, typically exceeding 1 TW
cm . Several theoretical approaches to MPI with non-
perturbative aspects have consequently been developed.
Among existing schemes, a number of models make use
of the Volkov or Volkov-Coulomb' wave function.
By Volkov state we mean the solution of the time-
dependent Schrodinger equation for an unbound electron
in an oscillating electromagnetic field, obtained in an ap-
propriate gauge. " These models have their precedents in
the work of Keldysh, Faisal, and Reiss' (KFR), who
took the final state of the electron in MPI to be a Volkov
state. The consistency of the KFR approach has, howev-
er, been questioned by Antunes Neto and Davidovich and
Milonni. ' These authors argue that the KFR amplitude
is effectively canceled in the conventional perturbation
expansion of the transition amplitude in which the atom-
ic binding potential is treated as a perturbation. '

The models cited above ' ' are based on the usual
semiclassical time-dependent description of the laser field
and on scattering-theoretical arguments. The photons
and electrons are thus not treated as particles of a truly
closed system to which formal scattering theory' is appl-
icable. The link between these two approaches has been
provided by Mollow, ' who showed that, in the electric-
dipole approximation, the assumption of a coherent state
in the remote past in connection with the quantum-
mechanical photon-electron interaction operator is
equivalent to addition of the classical field operator to the
quantum-mechanical one, in association with a replace-

ment of the coherent state by the vacuum state. Neglect
of the quantum-mechanical operator leads to the semi-
classical approximation, and so does the assumption of a
very large but fixed number of photons in the initial
state. " Restoration of time independence now requires a
unitary transformation to a noninertial frame, as to a ro-
tating frame, in the circularly polarized case. ' Subtle
questions consequently remain regarding the applicability
of formal scattering theory to MPI in the semiclassical
approximation, not unrelated to the proposed incon-
sistency' of the KFR approach.

A set of exact solutions of the Dirac equation for an
electron in a quantized, elliptically polarized, mono-
chromatic electromagnetic field has recently been
found. ' This quantized-field version of the Volkov solu-
tion enables one to treat MPI as a genuine scattering pro-
cess in an isolated system that consists of photons and an
atom. Energy is conserved throughout the interaction,
resulting in a free electron which has kinetic energy equal
to the energy of the absorbed photons minus its initial
binding energy. Formal time-independent scattering
theory' thus is applicable.

Here we outline the treatment of MPI in terms of
scattering theory and within the framework of quantum
electrodynamics (QED). We assume that the electron-
photon interaction takes place in a single-mode quantized
photon field with a fixed number of photons in the initial
state. This assumption per se does not provide a realistic
description of strong laser fields used in current experi-
ments. ' Our approach may be considered, however, as
the first step towards a more complete theory based on a
multimode field, in which the pulsed-laser interaction and
the photon statistics are described in terms of time-
dependent density matrices. Secondly, we make a con-
sistent application of scattering theory to the entire MPI
process in the nonrelativistic and large-photon-number
limits which correspond to the single-mode semiclassical
approximation of the vector potential. " Our theory thus
incorporates the escape of the electron from the laser
field as a part of the scattering process, also in this ap-
proximation, in contrast to previous work in which the
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escape is either ignored or treated separately from MPI.
Although the latter procedure may account realistically
for the decay of the laser pulse, it on the other hand in-
volves the approximation of treating MPI as a two-step
process, in contrast to the present scattering approach.
It is hence of interest to compare, in the limit of a vanish-
ing Coulomb potential, the genuine scattering amplitude
with the KFR amplitude which follows from the scatter-
ing theory and QED in the same way, provided that the
final scattering state is replaced by the quantized Volkov
state. '

In this work we thus examine the form of the scatter-
ing amplitude in which the final scattering wave function
arises from the scattering of the electron by the elec-
tromagnetic potential. As a result we show that, in gen-
eral, the final scattering state does not reduce to a quan-
tized Volkov state by examining the case in which the
ponderomotive energy is an integer multiple of the pho-
ton energy. In the nonrelativistic and large-photon-
number limits, however, the final state reduces to a single
but modified Volkov state if the ponderomotive energy is
an integer multiple of the photon energy. Otherwise, the
final state vanishes. The scattering amplitude conse-
quently only exists in the integer case, where it becomes a
product of the original KFR amplitude and the overlap
between the final plane-wave state and the Volkov state.
A simple interpretation of this result is presented. Sug-
gestions are also made as to how the restrictions on the
ponderomotive potential may be removed in a more real-
istic nonrelativistic theory.

II. THEORY

A. Quantum-electrodynamical Volkov solution

In the following we use relativistic units, c =%=1, and
the metric tensor g„with goo = 1 and g» =g22

g 33
—1 and g„=0 (pWv ). The scalar product of

two four-vectors is defined as ab =g„a"b, and the ya
scalar product is denoted by 4; y stands for 4X4 Dirac
matrices.

The Hamiltonian of a single atomic electron in a quan-
tized monochromatic electromagnetic radiation field is

charge is denoted by e = —
~e ~.

The photon field is assumed to be elliptically polarized,
described by

A( —k r ) =g (eae '"'+ e*a e '"'),
where we have

(6)

g—= (2V co)r

and the polarization vectors satisfy

(7)

e e=e* e*=cosg,
(8)

X 1+e Dp~n ),y, , (10)

where V, is the normalization volume of the electron, k
stands for (a~„k), and

C„,=(kP) '[C(n+ —,')+ —,'e g s

e'g'C '(P—e, )(Pe,')],
with

C=[(kP+e g ) —e g cos g]'~ (12)

In Eq. (10), the coordinate-independent photon field
operator

A =g(ea+e*a ) (13)

Here, V is the normalization volume of the photon field
and co is the photon frequency. The angle g monitors the
degree of polarization, such that g=n/2 c.orresponds to
circular polarization and /=0, to linear polarization.

The eigeg, states of H&=Hr+H, + V can be found ex-
actly. ' The solution of

Hi +p,„=(E+C„,co)alp, „,
where (E,P):—P is the electron four-momentum on the
mass shell, is

%p,„=V,
' exp[i ( P r+ C„,k r k—rN, ) ]

H=H +H, +U+ V,
where

H, = —„' co( a a +aa ) (2)

involves the polarization four-vectors e=(O, e) and
e" =(O, e" ), respectively. According to Eqs. (8), they
satisfy the relations

is the free-photon energy operator, and

is the free-electron energy operator, and where

U= U(r)

(3)

(4)

E= 1

Ee=e e ='cosg .

The photon number operator is denoted by

N, =
—,'(a a+aat),

(14)

(15)

is the atomic Coulomb potential due to the nucleus and
the other electrons in the atom. The electron-photon in-
teraction is

and

N, =
—,'(c c+cct) (16)

V= —

eely

A( —kr).
In Eq. (3), m, is the electron rest mass; the electron

is a hyperbolically rotated photon number operator. The
rotation is defined by a Bogoliubov transformation, intro-
duced to cancel the quadratic term in solving Eq. (9)
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c=a cosh' —a sinhy,

c~= —a sinhg+a cosh',
where

e g cosag= ——' tanh
2 2kP+e g

The eigenstate of N, is

(n! )'

and the rotated vacuum state is
' 1/2

—i f2
"

m (2m —1)"
~0&, =(cosh') 'f g (tanhy)

(2m )!!

X~2m & .

(17)

(18)

(20)

B. Transition matrix element

Using formal scattering theory, ' the transition matrix
element for MPI can be written

Tf &4'f m
I
VI'pI+'&, (30)

where i and f refer to the initial and final state, respec-
tively. Here,

~
4I+' & is a scattering solution that satisfies

i+I+'&=i@,, t&+ Vie„t&,6—K —V —U+ie (31)

where ~@f,m & =Nf ~m &, ~@,, t &
—=0& ~1&. In the

direct products N, and 4f are atomic bound and contin-
uum states, respectively, which pertain to the Coulomb
potential V, while

~
t & and

~
m & are free photon number

states. The "kinetic energy" operator K =Hz+H, is the
sum of the free-photon-energy operator (2) and the free-
electron-energy operator (3). Thus we have

=E cosh'+ e*sinhy,

e,*=e sinhy+ e*coshy .

In the N, representation the shift operator is

Dp =exp(5, a —5;a ),
where the parameter 5, is defined as

(21)

(22)

5, = egP[e c—osh(2y)+esinh(2y)]/C . (23)

In Eq. (10), the shift operator acts on the photon eigen-
state (19) which can by virtue of Eq. (17) be transformed
into the N representation.

We use a projection operator in the spinor space, '

with ( —1)!!—:1. The rotated polarization vectors in Eq.
(11)are thus given by

(re+ v c)
~

e„—t & =o,
(re+ V e)!,ef,—m & =O,

(32)

Tf; =&+f
I VI@;,t &+&+f IVG+VI@;,t &,

where

(33)

0'f =(1+G„V)}Ipf,m & . (34)

We have !pf, m &
=pf ~

m &, pf is the final electron
plane wave, and

G+ =(6' 0+ie)—
G,—=(8 E—V+ie)—

(35)

which indicates energy conservation for the entire system
from beginning to end.

After some algebraic manipulation, we find

P= ( P +m, )k' l2kP

and a polarization-dependent spin operator

(24) By expansion, we have

G+ =G++G+ UG+
U U

(36)

with eigenvalues

s =+sing

for the description of the bispinor

y, =P(S+s )u

(25)

(26)

(27)

G„—= g V, (2ir) f d P (37)

Now we can express the final scattering state (34) as

and Gv can be expressed according to Eqs. (9), (10), (28),
and (29) in calculable form as

Here, u is an arbitrary but properly normalized bispinor.
It can be shown' that if p=P+C„,k is subject to a

box boundary condition, then the wave functions (10)
satisfy the orthogonality relation

qf qof+irr g——, ~q„&&%„~v~pf,m &5(6„—8),
tME-(P, s, n)

(38)

where

& +p, . ly'lq'p, .&
=J'5p.p5, ,5„.„,

where we have

(28) +f lpf m &+P Vlpf m &

1
(39)

J =m, '[E+C„,co 5,5,*co (n—+ —,')coco—sh(2y)] .

(29)

The bispinors (10) consequently forin a complete set with
respect to the momentum, photon, and spinor space.

and the +„are the relativistic quantized-field Volkov
solutions (10) in shorthand notation. Here, P means the
principal value.

Using Eq. (36) and the Green's operator (37), the tran-
sition matrix element can be calculated order by order ac-
cording to the power expansion of the Coulomb potential
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T/, =(e/ I vie„l &,

where qr& is given by Eq. (38).

(40)

C. Nature of the final scattering state

U. In lowest order, the transition matrix element is then N'k„= P„+P —VP„,
1

c~„—K —V

where N is a constant, are (i)

for the case 6„=6„and (ii)

(48)

(49)

The question that has remained unanswered since
Keldysh's pioneering work' is whether or not +& is a
single Volkov solution. The following three theorems,
proved in the Appendix, lead to the answer.

Let zen be the ponderomotive energy of Vp, „,so that

z=c„, (n+ —,')—. (41)

(4 pz lgp, , m & =0 (42)

whenever z is not an integer equal to j =m —n.
Theorem 2. If 'Pp, „and a plane wave lgp, , m & have

the same energy eigenvalue, then

&e„„lVly, , , m &=0 (43)

From this definition it follows that zoo reduces in the non-
relativistic semiclassical limit to the usual expression for
the time-averaged energy of the quiver motion of an elec-
tron in an oscillating electric field. '

The first two theorems pertain to the Volkov solutions
(10) for the quantized field.

Theorem 7. If Wp, „and a plane wave

leap, m & =—Pp, iai Im & have the same energy eigenvalue,
then

(50)

between I4„) and iI)„. Here, the notation K is intended
to emphasize that K acts upon the quantities to its right,

C——

the linear space of kets, and K, that the adjoint operator
K acts on the quantities to its left, the linear space of
bras. ' Condition (50) is thus equivalent to the Hermitici-
ty condition.

When qrp, „and lp/, m & have the same energy eigen-
value and z =m —n, the fact that ( Vp, „ I Vlf/, m & does
not vanish shows that the final scattering-state wave
function (38) is a true scattering solution incorporating
the 6-function part. Thus it cannot be proportional to a
single relativistic quantized-field Volkov solution. The
non-Hermiticity of K between [Vp,„ I and li))I, m &, ap-
parent from Eqs. (42) and (43), and Theorem 3 implies
that its standing-wave part (39) also is not proportional to
that kind of Volkov solution.

In the large-photon-number and nonrelativistic limits,
however, the situation is quite different. Using formu-
las' which relate (l IDplm & and (m In &, to Bessel func-
tions, it can be shown that the quantum-electrodynamical
Volkov solution (10) in this case reduces to

whenever z is not an integer equal to j =m —n.
The key point in proving these theorems (Appendix) is

to note that the matrix elements in Eqs. (42) and (43) van-
ish unless we have four-momentum conservation:

qr V
—I/2 i ip+zk) r ~ ye '1

g
—ij k r

~ + ~

&Pn e j=—n

(51)

(E+(n+ —,
' )ro+zco, P+(n+ —,

' )k+zk)

=(E'+(m + —,
' )ro, P'+(m + —,

' )k), (44)

where the 8 are elliptically polarized Bessel functions,
defined in terms of ordinary Bessel functions as'

+z =~J(g'gP~)= g J
~ 2 (g)J (g)exp(2img&),

where (P)=(E,P) and (P')=(E', P') are both on the
electron mass shell. Hence P =P'+ (j—z )k, where
P =P' =m, and k =0. Since kP') 0, Eqs. (42) and
(43) must be valid except when

z=j=m 71

where

2I I
A

IP
2I I

A
IP

(52)

(6 —K —V)+ =0,
( e„E)$„=0, —

respectively, the 4 obey the orthogonality relation

(46)

(47)

The third theorem is more general. It applies to a
complete set I4 ] of an interacting system and a wave
function P„of a noninteracting system in which the in-
dices v= p indicate the same energies.

Theorem 3. For a complete set I 4 I and P„satisfying

g = (z /2)cosg,

/~=tan '[(P /P„)t n(ag/2)] .

%'e further have

A=gv'n =(n/2V co)'

(53)

(54)

which gives the maximum strength of the vector poten-
tial in the semiclassical approximation. '' It follows from
Eqs. (10) and (11) that the ponderomotive (potential) en-
ergy divided by the photon energy [Eq. (41)] reduces in
the limit of large n to

whether or not @&=6 . The necessary and sufficient con-
ditions for a %„E[ qr„j to satisfy

e A
kP

e A
(55)
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The Volkov solutions (51) form an orthonormal set, '

and satisfy the nonrelativistic counterpart of the
Schrodinger equation (9), where H, + V is now obtained
by substituting the canonical momentum p =p —e A in
the nonrelativistic kinetic energy operator p, /2m, . Thus
we have

V= —(e/2m, )[p A( —k.r)+ A( —k r) p]

Since J ~1 according to Eq. (29), we have

le„&&+„lvly/, m &~;=ly, , m &+
pE(P, n) P

=
l pI, m &

— g l e„&& e„lyI, m &

pE(P, n)

+(e /2m, ) A ( —k r), (56)
l e„&& e„lp/, m & . (65)

where A( —k.r) is given by Eq. (6) with ga and ga re-
placed by A.

A direct calculation using the wave functions (51) and
interaction (56) shows that we have

ijy (2~)
e

X5(PI —P+j k z—k),
where j =m —n. A similar calculation gives

(57)

3

&'pp, lp/~m & =d/e ~ 5(P/ —P+jk —zk) .
e

(58)

6'=EI+(m+ —,')co, (59)

while the energy eigenvalue of the nonrelativistic Volkov
state (51) is

@„=E+(n+—,')co+zen . (60)

The relationship between EI=PI/2me and E =P /2m,
is determined through the 5 function in Eqs. (57) or (58),
whence we have

The results which also follow from Eqs. (Al) and (A3) by
taking the appropriate limits are valid whether or not
l%'p „& and liI)/ & correspond to equal eigenenergies.

The energy eigenvalue of the free state i/I, m & is

According to Eq. (62), the condition of 6„=8 requires
that z =j =m —n is an integer. In that case only one
value of n appears in the third sum of Eq. (65), uniquely
determined by n+z(n)=m. In view of Eq. (57), the
final-state scattering wave function is thus given by

4/ =0'p „8,e (66)

where +P „ is the nonrelativistic classical time-f &

independent Volkov solution (51). The arguments in d",
are given by Eq. (53), where P =P/.

If z is not an integer, we have O'„XA', and the last sum
in Eq. (65) is over an empty set. Consequently in this
case the final state must vanish:

%I ——0. (67)

From the algebraic identity

This result can also be found through explicit evaluation,
which shows that the first expression in Eq. (65) becomes

qgO V
—I/2eip rim &f e

. .r I—V ' eiP.r ~ 8*8 'e ii'i're i ~—&lm+ j'& .e J J J
J J

E =E/+(j —z )co(P/ /m, )+(j z)co[(j —z )co—/2m, ] .

(61)

Omitting quantities which are of the order of PI/m, c or
higher (in ordinary units), we find the energy diff'erence

6„—@=(z—j)co . (62)

Combining this result with Eqs. (57) and (58), we obtain
the relation which indicates the Hermiticity of
IC=p /(2m, )+H between the two kinds of wave func-
tions:

i J Jo
J = oo

Eq. (67) follows.
As pointed out in the Appendix, Theorems 1 —3 still

hold in the large-photon-number nonrelativistic limits.
This fact provides an alternative proof of Eqs. (66) and
(67). The intermediate result (64) follows from Theorem
2 and Eq. (57), whereas Theorems 1 and 3 combined with
Eq. (58} immediately lead to the final result. The results
of Eqs. (66) and (67) correspond to the NAO and N =0
cases, respectively, of Theorem 3.

&0 „lvlyf, m &=(8„—A)&% „lyf, m & . (63) III. DISCUSSIGN
This result, together with the property

(6„—6)5(C„—6)=0, shows that the 5-function part of
the final scattering state (38) vanishes in the large-
photon-number and nonrelativistic limits. Consequently,
in these limits,

(64)

always holds, whether or not D„equals 6, i.e., z equals j.

The analysis of the quantized Volkov solutions (10) and
of the final scattering-state wave function (38) requires
further detailed considerations, part of which are in pro-
gress. ' We thus limit the present discussion to the non-
relativistic solution (51) and the corresponding final
scattering state (66).

As indicated by Eq. (56}, we do not make any use of
the dipole approximation. The wave function (51) conse-
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quently is more general than the usual zeroth-order solu-
tion" of the Floquet equation for radiative potential
scattering in the dressed-oscillator representation. If it is
used as a final state in the lowest-order transition matrix
element (40), and if no constraint is put on z it leads to a
transition-rate formula for elliptically polarized light
which has been derived previously from the KFR ap-
proach and also from quantum electrodynamics' by
taking the large-photon-number and nonrelativistic lim-
its.

If we use the final scattering state (66) in the lowest-
order transition matrix element (40) in combination with
the constraint z =m —n, we can construct a differential
transition-rate formula for ionization of electrons which
have absorbed q =l —m photons. The result is

=(2m,'co')' '(2m) 'IC';(P —qk)l'q'(q E&ico—)' '

(70)

where 4, (P —qk) is the Fourier transform of the initial-
state wave function, corresponding to the binding energy
E~. The angular and polarization dependences of the
rate (70) are determined by P —qk in @, and by the argu-
ments (53) of the two elliptically polarized Bessel func-
tions 8, . Equation (70) deviates from the original KFR
formula ' in two respects: l —n —z is replaced by q and
the resulting rate is multiplied by the modulation factor

According to Eqs. (58), (65), and (66), the rate (70) can
also be obtained in the large-photon-number and nonrela-
tivistic limits from the transition matrix element

provided we set z =m —n in +p „.Otherwise T vanishes.
This result has a simple physical interpretation. The in-
teraction element containing V represents the ionization
of the electron into the field by absorption of j=l —n

photons. The overlap factor thus represents the probabil-
ity of finding the electron in the free-electron plane-wave
state P& when the electron "suddenly" leaves the field.
Thereby it stops to jitter by converting its ponderomotive
energy zm into that of m —n emitted photons. The net
effect is the absorption of q =j—z =I —m photons, such
that the electron enters the detector with kinetic energy
Ef q fly Eg This interpretation is consistent with the
formal scattering approach in Sec. II which incorporates
energy conservation for the complete system of photons
and electrons throughout the entire MPI process, with
the field turned off in the remote past and future.

Until now we have considered the condition z =m —n
to be literally true. In reality, this condition should only
be interpreted in an average sense, i.e., z,„=(m —n),„,
where the average depends on the kind of photon statis-
tics and mode configurations that are used to character-

ize the field. In this model, the integer orders of the
Bessel functions which occur in the transition-rate for-
mula (70) are replaced by real numbers. Furthermore, a
realistic description of the laser pulse may require the in-
troduction of time- and position-dependent density ma-
trices and characterization of its temporal and spatial be-
havior.

In order to examine whether the MPI process must be
treated as a single-step process, it might be of interest to
compute the rate (70) for some test cases, and to compare
the results with the KFR rate. The simplest choice of z
would be to take it equal to the integer which is nearest
to the ponderomotive energy divided by the frequency, at
various representative intensities. The crucial point is
whether Eq. (70) leads to a suppression of low-order ATI
peaks at high intensities. Whereas KFR and related
models attribute this suppression to the constraint
q )z+Ez /~, it can in the present formulation only come
from the overlap factor IP, I

in combination with the
factor (q Es Ice)—'~, which vanishes for qco=Es.

IV. CONCI. USIONS

The application of formal time-independent scattering
theory to the MPI process in a quantized single-mode
electromagnetic field leads to the result that in the nonre-
lativistic and large-photon-number limits the final
scattering state based on the photon-electron interaction
vanishes unless the ponderomotive energy per unit fre-
quency is an integer. If this condition is fulfilled, the
final-scattering-state wave function becomes proportional
to a single Volkov solution. These results hold whether
the Coulomb field is included or not. A transition-rate
formula has been derived in the limit of vanishing
Coulomb field. It modifies the results of the Keldysh-
Faisal-Reiss approach in accordance with energy conser-
vation during the entire multiphoton ionization process.
Whether the present approach leads to improved agree-
ment between theory and experiment in the long-pulse re-
gime ' remains to be seen.
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APPENDIX

1. Proof of Theorem 1

The plane wave has the form Igp, , m )
= V,

' e' 'y', Im ). Direct calculation leads to

&0'p,„leap, , m ) = n, Dpg, 1+e y y,'. m 5(P' —P+jk —zk),(2vr) t gg 0

V,
' ' 2kP

(A 1)
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where j =m —n.
In addition to energy conservation,

E +jQ) —E +z co

we also have momentum conservation:

(A2)

If jWz, Eq. (A5) requires F. '=P,'c (in ordinary units),
which is clearly incompatible with lP'lc (E' for a parti-
cle with U (c. The argument in the 5 function of Eq.
(Al) therefore cannot vanish simultaneously with
6' —8 =0.

P

P'+ jk=P+zk .

The four-momentum conservation reads

P'+(j —z)k=P . (A4)

2. Proof of Theorem 2

( F. ' P,' ) a—(ij —z ) =0 . (A5)
I

We square both sides of Eq. (A4) and after cancellation
have

We introduce an interaction picture that can be called
the photon momentum picture, by shifting the wave func-
tion by a factor exp(iN, k r). This transformation leads
to

0'p, „~e " 0'p,„=V, ' exp[i[P r+(n+ —,'+z)k r]I 1+e Dptln &,y, ,2kP
tN kr

e a
ly &

—i[m +(1/2)]k rip

iNak. r —iN k.r 0V~e ' Ve = —eye A,

(A6)

where A=g(ea+e" a ), independently of the spatial coordinates. In this picture it is easily seen that the following re-
lation holds:

&% p l Vlgp' ', m &
= n Dp)(, 1+e ( ey. A)y,'—m 5(P' —P+jk —zk)

(2n )' t Ak

e C

(A7)

The same reasoning as in the proof of Theorem 1 leads to
the same conclusion here.

The I
qi I are linearly independent, whence we have

&e,lvly„&=0 (c,=@„). (A12)

3. Proof of Theorem 3

(1) Necessary condition Let. On the other hand, by using condition (i) just proven,
N+„can always be expressed as

Nle„&= y le„&&q„ly„&=o. (A13)

then we have

Nle„& = ly„&+
[e.& & ~.l vip„}

V p v
(A8)

By using the completeness relation, we have

Nle„& = lP„&— (A14)

Operating on Eq. (A8) with &4„ l, which has the same
energy eigenvalue 6'„=6„we find condition (i) [Eq. (49)]:

(A9)

We apply (6„—K —V) to both sides of Eq. (A8) again,
and obtain

Comparing with Eq. (A8), we see

(@„—~.p)& qi. ly„& =&%',
l vip„& (6.w6„) . (A15)

Combining this result with the 6„=6„caseof Eq. (A12),
we have, in general,

—vip„&+ y lq. & & e, l vip„& =o . (A 10)
(~,—~„)& ~.ly„& =

& ~.l vip„& . (A16)

By the completeness relation g l%' & &'P,
l
=1, Eq. (Alo)

is equivalent to

(A 1 1)
V

This result is equivalent to

& q, l(1».
.—sc') ly„& =o, (A17)

whence condition (ii) [Eq. (50)] is proven.

(2) Sufhcient condition From condi. tion (ii) [Eq. (A17)]
we have
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(@ ~P„&(g„—g„)=(+.([K + V) —K]~t()„&

=&~„IVI'„& .

For 6' W6„ this equation leads to

(~.I VI@„&" =(~,~y„& (~„~~„).

Condition (i) yields

(A18)

(A19)

Combining the two preceding equations, we have

or

(A21)

V

V P

(A20)

X%„=(5„+P VP„,
1

which completes the proof.

(A22)
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