PHYSICAL REVIEW A

VOLUME 40, NUMBER 9

NOVEMBER 1, 1989

Oscillations of electron flux in photodetachment of H™ in an electric field
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Outgoing electron waves produced in the photodetachment of H™ are propagated to large dis-
tances in a homogeneous electric field, and the electron flux is then computed. It is shown that the
interference of waves propagating along two distinctive paths from the region of the bound state of
H™ to the same point induces oscillations in the electron flux distribution. Simple analytic expres-

sions are presented for the flux distribution.

I. INTRODUCTION

Experiments' and theories' ~> have now shown that the
total cross section of photodetachment of H™ in the pres-
ence of a homogeneous electric field is oscillatory when
the polarization of photons is parallel to the applied elec-
tric field. The oscillations can be attributed® to the in-
terference of electron waves reflected by the potential
barrier of the electric field and the source of the waves lo-
calized in the regions of the bound state of H ™, similar to
the oscillations of the absorption spectra of atoms in a
magnetic field.

The photodetachment cross section is proportional to
the integrated outgoing electron flux across a large enclo-
sure in which the bound H™ sits. Therefore it is clear
that the oscillations in the total cross section reflect the
oscillations in the microscopic electron flux distribution,
whose quantitative description is the subject of the
present paper.

In an earlier treatment of a similar problem, Fabri-
kant? used the exact known time-dependent propagator
in a uniform field to obtain the formula for the electron
flux distribution, ignoring the effects of the polarized field
of the atom on the electron. However, since the propaga-
tor in a combined central field and a uniform field is not
known, at present it is not clear how to apply this ap-
proach to the general case.

" Our alternative description, following the physical pic-
ture in Ref. 5, takes the polarized central field into ac-
count from the start. When a laser is applied to a nega-
tive ion, like H™, in an electric field, the ion may absorb a
photon. When it does, the electron goes into an outgoing
wave of the polarized field. This wave then propagates
away from the atom. Sufficiently far from the atom, the
wave propagates according to semiclassical mechanics,
and it is correlated with classical trajectories. The wave
fronts are perpendicular to the trajectories, and the waves
propagate along the trajectories. Eventually the waves
initially propagating in the electric field direction are
turned back by the electric field, which then propagate to
large distances down field to interfere with the waves ini-
tially propagating in that direction, giving rise to a two-
term interference pattern in the electron flux distribution.

To solve the problem, we draw a sphere of radius R

satisfying certain conditions, which will be specified later.
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Inside the sphere, the electric field is small and can be
neglected. The outgoing electron wave in the polarized
central field is then computed. On the surface of the
sphere, asymptotic forms of the outgoing wave are used.
The asymptotic form of the outgoing wave is propagated
out semiclassically in the combined polarized field and
the electric field until far away from the atom where the
electron flux is evaluated. The final result is shown to be
independent of the joining radius R, which can be taken
to be zero in the calculations.

The paper is organized as follows. In Sec. II we de-
scribe the details of the initial outgoing electron wave, its
semiclassical propagation, and the formulas for the elec-
tron flux distribution. In Sec. IIT we discuss the charac-
teristics of the derived electron flux distribution and its
possible experimental observation.

II. THEORY

The H™ will be considered as effectively a one-electron
system. Let the initial bound state of H™ be ¢,;(r), the
binding energy of the electron E,, and the photon energy
E ,=E +E,; the steady outgoing electron wave pro-
duced in the photodetachment in the presence of a homo-
geneous electric field pointing in the z direction satisfies
the inhomogeneous Schrodinger equation,

(E—H)WL=D¢, , (1a)

where D is the dipole operator, z or (x +iy)/V2, for
linear or circular polarized photons; the Hamiltonian

H=—1V*+V, (r+Fz, (1b)

where V,(r) is the polarized central field of the H atom.
. . t . .

The physical solution ¥ is required to be purely outgo-

ing at large distances.

Imagine a surface I' (for example, the surface of a
sphere) enclosing the source region, a generalized
differential cross section do(q)/ds may be defined on the
surface from the electron flux crossing the surface,

27E
dU(g): ph j‘ﬂ 2a)
ds c

and
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where q is the coordinate on the surface I', n is the exte-
rior norm vector at q, and ds is the differential area on
the surface. The total cross section may then be obtained
by integrating the differential cross section over the sur-
face

o(E,F)= fr%lds : (20)

It can be shown that the total cross section defined in (2¢)
is equivalent to the conventional definition involving a
summation over the dipole matrix elements® with the
help of the spectral representation of the Green’s func-
tion’ and the Gauss theorem.

A. The outgoing wave in the absence of the electric field

In the vanishing limit of the electric field F the outgo-
ing wave d}TF:O(r) satisfies

[E +1V2—V,(N]¥k_o(r)=D¢, . 3

Since ¢; is an S state for H™, it is readily shown that for r
outside the source region,

1
S C,(k)Y,,(0,p) A" (kr) (4a)

m=—1

Yk _oln)=

with
C,,(k)=—2ki [ j,(kr)Y},,(6,9)D (1), (rdV (4b)

where in Eq. 4), j,(kr) and k" (kr) are the regular and
outgoing spherical Bessel functions.’ In obtaining (4a)
and (4b), the small phase shift of the p wave caused by
V,(r) is neglected. This is a good approximation for H™.
In general, however, the regular and outgoing Bessel
functions should be replaced by the corresponding regu-
lar and outgoing functions in the central field ¥, (r).

Using ¢, =B exp(—k,r)/r with B =0.31552 and
K,=0.234488 3 as previously used,>!® and writing the
dipole operator D in the form

i+ (x—ip)+a®
v2 T
—r |9 (sind)e ¥+ I (sind)e 7 +acosd) ()
% % ’
then one arrives at!!
4k2Bi
Yh_y)=— 2L
TE=0 (kE+k?)?
X Q(sin@)e""’-kg—_—(sinme_'@
V2 %
+a°(cost) {1 (kr) . 6)

At large 7, using the asymptotic form

h(l“(kr)~ﬁ[expi(kr—7r)], F— (7)
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Eq. (6) becomes

¢}=O<r,9,¢)=U(k,9,(p)5’iRg"—) , (8a)
where
4k2Bl a+ . i a . —i
U(k,9,¢)m l‘/—i(sme)e ?+ —‘/—E(sme)e 4
+a°(cos9)] . (8b)

IIII::O in Eqgs. (8) represents the outgoing electron wave
produced in the detachment of H™ in the absence of the
electric field. Choosing the surface I' as the surface of a
sphere centered at the origin and using ¥ _, in Egs. (2),
the correct zero-field differential and total cross section
may be obtained, which of course agree with the results
computed directly from the dipole matrix elements. > '°

B. The outgoing wave in the presence of the electric field

In the presence of the electric field, the asymptotic
form of the zero-field outgoing wave in (8) still represents
the outgoing wave in the region

1 k?

r Sr<<og - 9)
Such a region exists provided the photon energy and the
electric field strength F satisfies 1/k <<k?/2F, which ex-
cludes the photon energy very close to the threshold.

As the electron wave in (8) propagates out to large r,
the electric field becomes more and more important.
Fortunately, the wave function away from the nuclei is
semiclassical in nature and semiclassical methods may be
used to propagate the wave function in (8) by computing
the trajectories of an electron in an electric field.

Details of the semiclassical method have been de-
scribed elsewhere.'? Here we follow the procedure given
in Ref. 6, which takes the cylindrical symmetry into con-
sideration, thereby simplifying the formulas.

We first draw the surface of a sphere of radius R cen-
tered at the origin. R may take any value in the range of
Eq. (9). The final result for the electron flux will be
shown to be independent of the value of R.

Let the polar angle of the initial velocity perpendicular
to the surface of the sphere be 6; then the trajectory go-
ing out from the sphere at time zero may be written in
cylindrical coordinates as

p(t)=R (sinf)+ k (sinf)t ,
z(t)=R (cosO)+k (cos@)t —Ft%/2 .

(10a)
(10b)

Figure 1 shows the trajectories described by (10) with
varying 6. The whole space is divided into classically al-
lowed and forbidden regions by the caustic surface given
by

172

k*  2kz

F* F

Pmax ™

(10c)

for z <0. It is easy to show that for any given point in
the classically allowed region, (p,z,¢), there are two dis-
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FIG. 1. Outgoing electron trajectories in the photodetach-
ment of H™ in a homogeneous electric field F in the z direction.
Trajectory 1 and 2 cross at the point p=500.0a,,
z = —1000.0a,.

tinctive trajectories given by (10) with the initial angle 8,
and 6, arriving at the point. In the limit of zero R, the
two angles may be shown to satisfy

k? Fp 2F |
cotdy=—— |1+ 1—7%—7 , (11a)
p.
172
2 2.2
e I (11b)
p.

Equations (11) are valid in the region z <0 and for
P = Pmax 01 is the velocity angle of the trajectory that ini-
tially goes in the same direction of the electric field while
0, is the velocity angle of the trajectory that initially goes
in the opposite direction of the electric field. In the limit
of zero p, 6, and 6, approach O and 7, respectively. Once
the initial angles of the two trajectories are determined,
the time duration along the trajectories ¢; and ¢, from
the surface of the sphere to the same final point (p,z,¢)
can be found from Eq. (10a).

The wave function at (p,z,¢) can be written as a sum

J
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of the contributions from the two trajectories,‘/"12
t ot
Yr(p,2,0)= 3 Yr—o(R,0,,0)4,(p,z,p)
i=1
Xexp |i S,-(p,z,w)—,u,-l;— ) (12a)
where the amplitude
172
R’k
A;(p,z,p)= , (12b)
PEETT V(R +kt, 2|k — Ft,cos6, |
and the phase accumulated along the trajectory
t
Sip.z@)= [ 'pdq
=k?t;—k(cos6,)Ft}+F*t}/3 . (12¢)
u; is the Maslow index of the ith trajectory. In the

present case, because the caustic is a fold, u; takes only
two possible values, O or 1, corresponding to the positive
or negative sign of (k — Ft;cos0; ).

Now using 111}:0 of Eq. (8) in Eq. (12) and the right in-
equality in Eq. (9), one can show that the different choice
of R results in a negligible error in 1,[;}. The consistence
of the formulation demands w;- to be independent of R.
Because of this fact, R may be taken as zero.

C. Oscillations in electron flux

In the presence of a homogeneous electric field, there
are two distinctive trajectories along which the electron
waves produced in the photodetachment in the bound-
state region of H™ propagate to arrive at the same point
(p,z,@) in the classically allowed region. The resulting
wave function, given quantitatively in Eqgs. (12), is there-
fore a sum of two terms. When inserting Eq. (12) in Eq.
(2), the differential cross section is seen to exhibit a typi-
cal two-term interference pattern. The situation is very
similar to the double-slit experiment discussed in the be-
ginning of most quantum mechanics textbooks. '3

Now consider a plane surface perpendicular to the
electric field that intersects the z axis at z(<0). The
differential cross section defined on this plane may be
readily evaluated from Egs. (12) and (2) as

d?%o( ,Z, @) 2m(E, +E) -
pdﬁdcpqo - ¢ 1911201, + 19,120, + (v, +0,, Re($h,93 )cos 51_52_—2 + 2 , (13a)
where
Y, = 4k32p [(a*/V2)sin6;e'®+(a~ /V2)sinb;e ~'9+a’cos6;] i =1.2 (13b)
Tkt k2)? (R +kt,)|k —Ft,cos0,|'/? s I=1,2.

v,, and v,, are the z component of the electron velocities
of trajectories 1 and 2, respectively, at (p,z,¢). Note that
v,, and v,, are negative, ensuring that the differential
cross section in (13) is positive.

III. RESULTS AND DISCUSSION

For z=—1‘0><10300, F=500 kV/cm, and D =z
+ -

(a a~ =0, a’°=1), we plotted in Fig. 2 the differential
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FIG. 2. Differential cross section of photodetachment of H™
defined on the (p,) plane at z = —10%z, and photon energies
(a) E,+0.26 eV, (b) E,+0.27 eV, (¢) E,+0.28 eV, and (d)
E, +0.29 eV for linear polarization.

cross section in (13) as a function of distance from the z
axis, p, for four different photon energies. There are
three or four oscillations in the differential cross sections.
As the photon energy is changed, the amplitude near the
z axis (p~0) varies. On the other hand, the oscillation
patterns at large p remain similar in shape, but are shift-
ed slightly for different photon energies. The electron
flux at small p and large p may, therefore, be identified
with the weak oscillations and the strong background in
the total cross section. >

The semiclassical approximation for the electron flux
in Eq. (13) breaks down at the right edge of Fig. 2. Very
close to p... the two trajectories approach each other
and the quantity |k —Ft;cos6;| approaches zero. The
problem is very similar to the WKB approximation of the
eigenfunction in one dimension, and it can be fixed by us-
ing an Airy function, which is joined smoothly on to the
valid semiclassical approximation at smaller p. As a test
of accuracy, we have compared the numerically integrat-
ed differential cross section derived here with the total
cross section derived earlier® using different methods, and
found the difference is, in general, a few percent.

In Fig. 3 we plotted the differential cross section as in
Fig. 2 except now D =(x +iy)/V2(at=1,a =a’=0).
One observes that unlike Fig. 2 for the linear photon po-
larization, the electron flux for circular polarization near
the z axis remains small at different photon energies, re-
sulting in a nonoscillatory total cross section. !>

It should be pointed out that the minima in the elec-
tron flux shown in Figs. 2 and 3, in general, are not zero.
There are a few physical reasons for this fact. First, the
amplitude of the initial radial outgoing electron wave is
angular dependent; second, the waves propagating along
the two paths spread by different amount; and third, the
two final velocities are not the same. From Eq. (13) it is
clear that the minima are not zero. However, as z goes to
— oo, the minima approach zero.

plag)

FIG. 3. Same as in Fig. 2 except the photons are circularly
polarized D =(x +iy)/V2.

Earlier, in a general discussion of the photodetachment
of a negative ion in a homogeneous electric field, Fabri-
kant®> considered particularly the propagation of elec-
trons from an isotropic point source and found formulas
for the resulting two-term interference flux. Based on
this result, Demkov. Kondratovich, and Ostrovskii'* sub-
sequently pointed out that the scale of the interference
pattern can be large, and under favorable conditions it
could be observed in a direct experiment. Such observa-
tion might provide more accurate information about the
negative ion.

The direct consequences of the above simplified but un-
realistic assumptions about the electron source are that
the minima in the electron flux are always zero and that
the height of the peak at larger p is higher, both of which
are inconsistent with our findings. By using the exactly
known time-dependent propagator in an electric field, Fa-
brikant? was able to remove some of the simplified as-
sumptions. The interference electron flux formulas ob-
tained then involve quantities defined as three-
dimensional integrals. It is not known at present how to
extend the time-dependent Green’s function approach to
the case where the polarized field is strong and cannot be
neglected, since the analytic form of the time-dependent
propagator in a combined central field plus an electric
field is not known.

Our present approach takes the final interaction into
account in a straightforward way by dividing the whole
space into two regions. In other applications, the effects
of the long-range Coulomb field were included.

In summary, we have analyzed the electron flux pro-
duced in the photodetachment of H™ in a homogeneous
electric field. It has been shown that outgoing electron
waves propagating along the distinctive trajectories from
the region of the bound state of H™ to the same point in-
terfere to produce oscillations in the electron flux distri-
bution described quantitatively by Eq. (13). A direct ob-
servation of the large scale oscillations may be possible.
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