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Oscillations of electron Aux in photodetachment of H in an electric field
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Outgoing electron waves produced in the photodetachment of H are propagated to large dis-
tances in a homogeneous electric field, and the electron flux is then computed. It is shown that the
interference of waves propagating along two distinctive paths from the region of the bound state of
H to the same point induces oscillations in the electron flux distribution. Simple analytic expres-
sions are presented for the flux distribution.

I. INTRODUCTION

Experiments' and theories' have now shown that the
total cross section of photodetachment of H in the pres-
ence of a homogeneous electric field is oscillatory when
the polarization of photons is parallel to the applied elec-
tric field. The oscillations can be attributed to the in-
terference of electron waves reflected by the potential
barrier of the electric field and the source of the waves lo-
calized in the regions of the bound state of H, similar to
the oscillations of the absorption spectra of atoms in a
magnetic field.

The photodetachment cross section is proportional to
the integrated outgoing electron flux across a large enclo-
sure in which the bound H sits. Therefore it is clear
that the oscillations in the total cross section reflect the
oscillations in the microscopic electron flux distribution,
whose quantitative description is the subject of the
present paper.

In an earlier treatment of a similar problem, Fabri-
kant used the exact known time-dependent propagator
in a uniform field to obtain the formula for the electron
flux distribution, ignoring the effects of the polarized field
of the atom on the electron. However, since the propaga-
tor in a combined central field and a uniform field is not
known, at present it is not clear how to apply this ap-
proach to the general case.

Our alternative description, following the physical pic-
ture in Ref. 5, takes the polarized central field into ac-
count from the start. When a laser is applied to a nega-
tive ion, like H, in an electric field, the ion may absorb a
photon. When it does, the electron goes into an outgoing
wave of the polarized field. This wave then propagates
away from the atom. SuSciently far from the atom, the
wave propagates according to semiclassical mechanics,
and it is correlated with classical trajectories. The wave
fronts are perpendicular to the trajectories, and the waves
propagate along the trajectories. Eventually the waves
initially propagating in the electric field direction are
turned back by the electric field, which then propagate to
large distances down field to interfere with the waves ini-
tially propagating in that direction, giving rise to a two-
term interference pattern in the electron flux distribution.

To solve the problem, we draw a sphere of radius R
satisfying certain conditions, which will be specified later.

Inside the sphere, the electric field is small and can be
neglected. The outgoing electron wave in the polarized
central field is then computed. On the surface of the
sphere, asymptotic forms of the outgoing wave are used.
The asymptotic form of the outgoing wave is propagated
out semiclassically in the combined polarized field and
the electric field until far away from the atom where the
electron flux is evaluated. The final result is shown to be
independent of the joining radius R, which can be taken
to be zero in the calculations.

The paper is organized as follows. In Sec. II we de-
scribe the details of the initial outgoing electron wave, its
semiclassical propagation, and the formulas for the elec-
tron flux distribution. In Sec. III we discuss the charac-
teristics of the derived electron flux distribution and its
possible experimental observation.

II. THEORY

H = —
—,'V + V~(r)+Fz, (lb)

where V (r) is the polarized central field of the H atom.
The physical solution PF is required to be purely outgo-
ing at large distances.

Imagine a surface I (for example, the surface of a
sphere) enclosing the source region, a generalized
differential cross section do (q)/ds may be defined on the
surface from the electron flux crossing the surface,

and

der(q)
Js

2vrE h' j.n (2a)

The H will be considered as effectively a one-electron
system. Let the initial bound state of H be P, (r), the
binding energy of the electron Eb, and the photon energy
E„h=E+Eb, the steady outgoing electron wave pro-
duced in the photodetachment in the presence of a homo-
geneous electric field pointing in the z direction satisfies
the inhomogeneous Schrodinger equation,

(F. H)g~=DP;, — (»)
where D is the dipole operator, z or (x+iy)I&2, , for
linear or circular polarized photons; the Hamiltonian
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J ——( iiF.VF1i —pF V1 F )
2

(2b) Eq. (6) becomes

where q is the coordinate on the surface I, n is the exte-
rior norm vector at q, and ds is the differential area on
the surface. The total cross section may then be obtained
by integrating the differential cross section over the sur-
face

where

o(r, g, (p)= U(k, g, qr)
kr

4k Bi a, ; aU(k, g, y) z 2 2
—(sing)e'++ —(sing)e

(kb+k2)2 2 2

(8a)

o(E F)= I ds .da(q)
I ds

(2c) +a (cosg) (8b)

It can be shown that the total cross section defined in (2c)
is equivalent to the conventional definition involving a
summation over the dipole matrix elements with the
help of the spectral representation of the Green's func-
tion and the Gauss theorem.

A. The outgoing wave in the absence of the electric field

In the vanishing limit of the electric field F the outgo-
ing wave PF o(r) satisfies

[E+—V V (r)]P~ o(r)=DQ— (3)

Since P, is an S state for H, it is readily shown that for r
outside the source region,

o(r) = 1

C (k) Y', (O, g) h', "(kr)
m = —1

(4a)

with

C (k)= —2ki Jj, (kr)Y*, (O, p)D(r)P, (r)dV, (4b)

D = —(x +iy)+ —(x iy)+a—zv'2 v'2

=r =(sing)e'~+ —(sing)e '"+a (cosg)
a+ . ; a
v'2 v'2

where in Eq. (4),j,(kr) and h', "(kr) are the regular and
outgoing spherical Bessel functions. In obtaining (4a)
and (4b), the small phase shift of the p wave caused by
V~(r) is neglected. This is a good approximation for H
In general, however, the regular and outgoing Bessel
functions should be replaced by the corresponding regu-
lar and outgoing functions in the central field V (r)

Using P; =B exp( —kbr ) Ir with B =0.315 52 and
Kb =0.2344883 as previously used, ' and writing the
dipole operator D in the form

o in Eqs. (8) represents the outgoing electron wave
produced in the detachment of H in the absence of the
electric field. Choosing the surface I as the surface of a
sphere centered at the origin and using PF o in Eqs. (2),
the correct zero-field differential and total cross section
may be obtained, which of course agree with the results
computed directly from the dipole matrix elements. ''

B. The outgoing wave in the presence of the electric field

In the presence of the electric field, the asymptotic
form of the zero-field outgoing wave in (8) still represents
the outgoing wave in the region

1 k—«r «
k 2F (9)

Such a region exists provided the photon energy and the
electric field strength F satisfies 1/k «k /2F, which ex-
cludes the photon energy very close to the threshold.

As the electron wave in (8) propagates out to large r,
the electric field becomes more and more important.
Fortunately, the wave function away from the nuclei is
semiclassical in nature and semiclassical methods may be
used to propagate the wave function in (8) by computing
the trajectories of an electron in an electric field.

Details of the semiclassical method have been de-
scribed elsewhere. ' Here we follow the procedure given
in Ref. 6, which takes the cylindrical symmetry into con-
sideration, thereby simplifying the formulas.

We first draw the surface of a sphere of radius R cen-
tered at the origin. R may take any value in the range of
Eq. (9). The final result for the electron fiux will be
shown to be independent of the value of R.

Let the polar angle of the initial velocity perpendicular
to the surface of the sphere be 0; then the trajectory go-
ing out from the sphere at time zero may be written in
cylindrical coordinates as

then one arrives at" p(t) =R (sing)+k (sing)t,

z(t)=R (cosg)+k(cosg)t Ft l2 . —
(loa)

( 1ob)
(ki, +k )

X —(sing)e'"+ —(sing)ev'2 v'2

Figure 1 shows the trajectories described by (10) with
varying 0. The whole space is divided into classically al-
lowed and forbidden regions by the caustic surface given
by

+a (cosg) h', "(kr) .

At large r, using the asymptotic form
Pmax

k4

F2
2kz

' 1/2

(10c)

hIi '(kr) — [expi(kr —vr)], r~ ~(i) 1

kr
(7)

for z &0. It is easy to show that for any given point in
the classically allowed region, (p, z, qr), there are two dis-
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400 of the contributions from the two trajectories, '
2

QF(p, z, k)= g WF=o(R, O, , V )A (p, z, V )

O
O

IV

- 500

Xexp i S;(p,z, y) —p, —

where the amplitude

(12a)

A, ( p, z, &p)=
R k

(R +kt, ) lk Ft, c—osO, l

(12b)

—IOOO
800 600 400 200 0

p (a, )

I I I I I

200 400 600 800 S;(p,z, y) =
and the phase accumulated along the trajectory

pdq
0

FICs. 1. Outgoing electron trajectories in the photodetach-
ment of H in a homogeneous electric field F in the z direction.
Trajectory 1 and 2 cross at the point p =500.Oao,
z = —1000.0a&.

tinctive trajectories given by (10) with the initial angle Oi

and 02 arriving at the point. In the limit of zero R, the
two angles may be shown to satisfy

=k t, —k(cosO;)Ft, +F t, /3 . (12c)

p, is the Maslow index of the ith trajectory. In the
present case, because the caustic is a fold, p; takes only
two possible values, 0 or 1, corresponding to the positive
or negative sign of (k Ft; cosO—; ).

Now using 1tz ii of Eq. (8) in Eq. (12) and the right in-

equality in Eq. (9), one can show that the different choice
of R results in a negligible error in P~. The consistence
of the formulation demands Pz to be independent of R.
Because of this fact, R may be taken as zero.

2 F2 2

cotO, = 1+ 1—
pF, k

2Fz
k

1/2

(1 la) C. Oscillations in electron Aux

1/2
F2p2 2Fz

cot02 = 1 — 1—
pF k4

(11b)

Equations (11) are valid in the region z (0 and for

p p,„, 0, is the velocity angle of the trajectory that ini-

tially goes in the same direction of the electric field while
02 is the velocity angle of the trajectory that initially goes
in the opposite direction of the electric field. In the limit
of zero p, 01 and 02 approach 0 and m, respectively. Once
the initial angles of the two trajectories are determined,
the time duration along the trajectories t, and t2 from
the surface of the sphere to the same final point (p, z, y)
can be found from Eq. (10a).

The wave function at (p, z, q&) can be written as a sum

I

In the presence of a homogeneous electric field, there
are two distinctive trajectories along which the electron
waves produced in the photodetachment in the bound-
state region of H propagate to arrive at the same point
(p, z, y) in the classically allowed region. The resulting
wave function, given quantitatively in Eqs. (12), is there-
fore a sum of two terms. When inserting Eq. (12) in Eq.
(2), the differential cross section is seen to exhibit a typi-
cal two-term interference pattern. The situation is very
similar to the double-slit experiment discussed in the be-
ginning of most quantum mechanics textbooks. '

Now consider a plane surface perpendicular to the
electric field that intersects the z axis at z((0). The
differential cross section defined on this plane may be
readily evaluated from Eqs. (12) and (2) as

d2o. (p, z, p) 2n.(Eb+E) P 177 P27T
lit|il vi, + lgql v2, +(vi, +v2, )Re(g, it|~ )cos S, —S2 — +

pGpdcp c 2 2

where

(13a)

4k 3~&g [(a + /+2)sinO;e '++ (a /V2)sinO, e '++a DcosO; ]
i =1,2.

(kb+k ) (R + kt; ) l
k Ft; cosO, l

'i— (13b)

u „and u2, are the z component of the electron velocities
of trajectories 1 and 2, respectively, at (p, z, &p). Note that
u„and v2, are negative, ensuring that the differential
cross section in (13) is positive.

III. RESULTS AND DISCUSSION

For z = —1.0X 10 a0, F =500 kV/cm, and D =z
(a+ =a =0, a =1), we plotted in Fig. 2 the difFerential
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