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Detailed theoretical results are presented for the electron-detachment cross section, doubly
differential in both the electron momentum and angle, for the process 0.5-MeV
H™ +He—H(n =2)+e~ +He*. As discussed briefly elsewhere [C. R. Liu and A. F. Starace,
Phys. Rev. Lett. 62, 407 (1989)], the laboratory-frame doubly differential cross sections (DDCS’s) for
electron detachment in the forward direction are shown to depend sensitively on the low-energy
states of the H(n =2)-e ~ three-body system. In particular, the angular dependence of characteristic
cusp and shape resonance features is presented. We find that the projectile frame DDCS for de-
tached electron energies in the vicinity of the shape resonance peak is nearly isotropic. This is due
in part to the 'P symmetry of the resonance feature, which limits the angular distribution to con-
stant and cos’6 terms, and in part to cancellation in the integral over momentum transfer on which
the coefficient of the cos?@ term depends. We also find that the rapid variation of these cusp and
shape resonance features with angle in the laboratory frame requires that experimental angular and
energy resolutions be accounted for in order to obtain good agreement with the measured results of
M. G. Menendez and M. M. Duncan [Phys. Rev. A 36, 1653 (1987)] on the energy spectrum of de-
tached electrons coincident with the formation of H(2p). The DDCS’s for 0.5-MeV
H™ +He—H(ls)+e ™ +He* are also presented. When these latter results are added to those for
producing H(n =2), the sum gives good agreement with the experimental data of M. G. Menendez
and M. M. Duncan [Phys. Rev. 20, 2327 (1979)], which include all final states of the H atom, there-
by confirming the important contribution the H(n =2) states make to the total-detachment cross
section. We present evidence on the sensitivity of these results to the choice of the average excita-
tion energy of the helium target. Finally, we pinpoint the origin of our predicted Gailitis-Damburg
oscillations in the DDCS near threshold as stemming from a rapid decrease of an analytically
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known phase appropriate for long-range dipole fields.

I. INTRODUCTION

The cross section for high-energy H™ detachment col-
lisions, particularly that differential in the energy and an-
gle of the detached electron, depends sensitively on the
low-energy states of the fundamental H-e~ three-body
system. These low-energy states in the H™ frame are re-
lated kinematically to the small-angle (i.e., forward-
direction) behavior of the detachment cross section mea-
sured in the laboratory. These same kinematic relations,
furthermore, magnify the energy scale over which the
fundamental dynamics of the H-e ™~ system may be ob-
served: e.g., for the 0.5-MeV H™ detachment collisions
studied here, features in the H™ frame measured on a
scale of tens of meV appear in the laboratory frame on a
scale of tens of eV. The prime requisite for any theory of
such fast H™ detachment collisions therefore is a reason-
able dynamical description of the low-energy states of the
H-e ™ three-body system.

We present here such a theoretical description for the
following detachment collision process:

0.5-MeV H™ +He—H(n =2)+e~ +He* . (1)

The asterisk on the right-hand side of Eq. (1) indicates
that the He atom may be either in an excited state, bound
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or continuum or in the unexcited ground state. This pro-
cess is particularly interesting because, first, the degen-
eracy of the H(2s) and H(2p) energy levels leads to an at-
tractive long-range dipole potential acting on the de-
tached electron.? Second, one of the 'P’ channels of the
H(n =2)-e~ system has a well-known shape resonance
approximately 18 meV above the detachment threshold.’
We have already discussed briefly elsewhere* how these
dynamical features of the H(n =2)-e ™ system affect the
laboratory-frame doubly differential cross section
(DDCS) in the forward direction. Here we present a
more complete discussion, emphasizing in particular the
angular dependence of the laboratory-frame DDCS.
Although the subject of negative-ion detachment col-
lisions has a long history, the number of experimental
and other theoretical works relevant to the present calcu-
lations is rather limited. Collisional detachment of nega-
tive ions was the subject of a symposium at the Interna-
tional Conference on the Physics of Electronic and
Atomic Collisions (ICPEAC) in Kyoto in 1979.> In par-
ticular, Risley® presented a comprehensive tabulation of
all such processes which had been studied experimentally
and theoretically to mid-1979. More recent reviews are
also available.”® Nearly all of this work up to the early
1980s, however, has been devoted to total detachment
cross sections despite the fact that electron DDCS’s are
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known to provide much more detailed information on
jon-atom collision dynamics than do total cross sections
for electron production.®!°

A notable exception since the late 1970s has been the
work of Menendez, Duncan, and co-workers,!! who have
studied experimentally the doubly differential collisional
electron detachment cross section of H™ by He and relat-
ed processes, primarily at an incident ion energy of 0.5
MeV. Initially, they measured the energy distribution of
the detached electrons at several fixed laboratory angles
for the following process:!!(®~11(d)

H™ +He—H*+He*+e™ . (2)

These experiments did not distinguish among the various
possible final states of excitation of the heavy particles.
A key feature of the experimental data is that for elec-
trons detached at angles close to 0° in the laboratory
frame, the intensity distribution of electrons, as a func-
tion of electron kinetic energy, has two peaks, separated
by about 30 eV, instead of the more usual single peak pre-
dicted by the binary encounter theory.'® The observed
higher-energy peak, which occurs at an electron velocity
equal to the incident H™ velocity, decreases in intensity
with increasing laboratory-frame scattering angle, and it
disappears altogether for angles greater than about 4°.
This experimental work led to a number of theoretical
studies'?7 6 for the dominant process in Eq. (2), i.e.,

H™ +He—H(ls)+He*+e ™, (3)

in which the hydrogen atom is not excited during the col-
lision. Qualitatively, the main features of the experimen-
tal data were understood theoretically. In particular, the
double-peak structure seen experimentally was shown to
arise theoretically from an interference of s and p partial
waves for the detached electron.!?!%16 This interference
is most visible in the projectile-frame doubly differential
cross section.!*!® Furthermore, this interference is more
significant the larger the mean excitation energy of the
target atom or molecule,!!®’ thereby explaining why it is
particularly apparent for He targets.

Quantitative agreement between the experimental
results!1®~ 11 for process (2) and even the most detailed
calculation'® for process (3), while very good for laborato-
ry angles greater than 4°, is poor for smaller laboratory
angles. Specifically, while for small angles the predicted
lower-energy peak agrees reasonably with the experimen-
tal results, the predicted higher-energy peak occurs
higher in energy and is lower in magnitude than observed
experimentally. Since the theoretical calculations re-
stricted the H atom to the 1s level, they offered indirect
proof of the importance of H-atom excitation states to
the observed-higher energy peak. This conclusion is also
supported by more direct evidence: the calculations of
Wright et al.,'” which include excitation of H to the 2s
level, and the more recent experimental results of both
Duncan, Menendez, and co-workers'!P =111 an4 of An-
dersen, Sgrensen, and co-workers,'® both of which in-
clude specific forward-angle measurements of collisional
excitation of the n =2 states of H.!!(8-11(h).18()

A major result of the calculations reported here is sub-
stantially improved quantitative agreement with the ex-
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perimental results for process (2), in which the final state
of H is not measured, when we add our calculated cross
sections for H(n =2) [process (1)] to our calculated cross
sections for H(1s) [process (3)]. Thus we confirm that
projectile detachment plus excitation is a major contribu-
tor to the equal-velocity peak in the detached-electron
DDCS’s seen experimentally at and near 0° in the labora-
tory. Furthermore, our calculated cross sections for
H(n =2) [process (1)] agree with experimental findings
that near 0° in the laboratory, the electron angular distri-
bution of the equal-velocity peak is isotropic in the pro-
jectile frame.'"? This isotropy may be understood in our
calculations as due to the dominance of the 'P" shape-
resonance channel of the H(n =2)-e~ system and to a
cancellation in the momentum-transfer integral for the
coefficient of the cos’ term of the projectile-frame
DDCS, as we discuss below. In addition, our calculated
DDCS’s for electron detachment with excitation of H(2p)
are in excellent agreement with experiment'!®’ when we
take proper account of the experimental energy and an-
gular resolutions. Finally as discussed briefly elsewhere®
and as presented in more detail here, our prediction of
cusp, shape resonance, and Gailitis-Damburg? oscillation
features in the DDCS’s for process (1) at small electron-
detachment angles are all effects of the low-energy dy-
namics of the H(n =2)-e~ three-body system. These
effects are just beginning to be observed experi-
mentally.!1(h)18(2)

In Sec. IT we present the key approximations employed
in carring out our calculations. In Sec. III we present our
results for both processes (1) and (3). Finally, in Sec. IV
we discuss our results and present our conclusions. In
the Appendix, we present some relevant details concern-
ing the analytic extraction of dipole-field-induced oscilla-
tions of the transition matrix elements.

II. THEORETICAL FORMULATION
FOR THE DOUBLY DIFFERENTIAL
DETACHMENT CROSS SECTION

A detailed theoretical presentation of the DDCS for
process (3), in which the H atom is left in the 1s level in
the final state, has been given by Park et al.'®!® Our in-
terest here is in process (1), in which the H atom is excit-
ed to the 2s or the 2p level in the final state. This
different focus, however, only affects the calculation of
the H™ projectile transition form factor. In the interest
of brevity, therefore, we shall concern ourselves in this
section with those aspects of the theoretical formulation
that are specific to the calculation of the DDCS for pro-
cess (1) and shall otherwise refer the reader to Ref. 16
(and references therein).'”

A. First Born expression for the DDCS
in the closure approximation

The Born approximation result for the DDCS for elec-
tron detachment following collision of the projectile-ion
H™ with the target atom He may be expressed in terms of
the atomic form factor [efs(K)] and incoherent scatter-
ing function [SH¢(K)] for helium as?
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ﬁ=k2ﬁ(k,,,ep) : (4a)
where
8k, 0) =27 fKi'i“:(“;?)J,,,(K,k,,,eP)Ie&"‘(K)—ZIZ%
i_lg K':“(;;“) "7 (K. kp, 60 )si’f,g(x)% .

(4b)

In Eq. (4a), k is the momentum, d w is the solid angle, and
E is the energy of the detached electron in any con-
venient inertial reference frame. 3 (kp,0p) is a Galilean
invariant cross section!# calculated in the center-of-mass
frame and is dependent on the detached-electron’s
momentum kp relative to the H atom as well as on the
angle 6p that kp, makes with the axis defined by the in-
cident projectile (P); nl denotes the final state of the H
atom. 3%(kp,0p) is defined by Eq. (4b), where v; is the
relative velocity of the projectile with respect to the tar-
get (v;=4.471 35 a.u. for 0.5-MeV H ™ incident on He); K
is the momentum transfer,

K=k, —k,, (5)

where k; and k are the initial and final momenta of the
projectile in the center-of-mass frame; K ;. (0) and
K, .x(0) are the appropriate minimum and maximum
values for the momentum transfer for the case in which
the He target remains unexcited, while Iy, in K i, (T )
and K, (T}, ) implies that these latter are computed for
some appropriate average excitation energy Iy, for the
target. The use of Iy, and the closure approximation
substitutes for an explicit summation over each of the ex-
cited states of the target.?! Explicit values for the atomic
form factor and the incoherent scattering function for
helium have been given by a number of authors.?>~2* We
have employed in our calculations those of Hubbell
et al.?® Finally, the function J,,(K,kp,05) is defined by

1 2T -
T (K kp,6p) =~ [ Sleln(Kkp)ldg. 6
In Eq. (6) the transition form factor is defined by

2
> exp(iK-r;)

i=1

e (K, kp) = (Wim, o) @

and corresponds to a transition from the ground state of
H™ to the final state of the H-e~ system in which the
electron is detached with momentum kp relative to the H
atom and the H atom is left in the state H(n/m). The
ground state of H™ is described by the wave function 1,
and the final state of the H-e ~ system is described by the
wave function 1/1,,‘,,"1(1,, where the minus superscript indi-

cates that it satisfies incoming-wave boundary conditions.
Equation (6) contains a summation over the magnetic
sublevels of the H(nlm) state as well as an integration
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over the azimuthal angle ¢ of the scattered projectile in
the center-of-mass frame. This latter integration makes
J,; independent of the azimuthal angle ¢p of the de-
tached electron.

B. Reference frames

The DDCS in any convenient inertial reference frame
is expressed in Eq. (4a) in terms of the Galilean invariant
DDCS 28 (kp,05), which is calculated according to Eq.
(4b) in the center-of-mass frame. In particular, the labo-
ratory (L) frame DDCS is given by

do
dodE

=k, 3C(kplky,0,),0p(k.,0,)) 8)
L

where k; and 6, are the magnitude and polar angle of
the detached-electron’s momentum in the laboratory and
where kp and 6p are expressed as functions of k; and 6, .
In general, the functional dependence of kp and 6, on k;
and 6, is complicated since the projectile in any scatter-
ing process is deflected from its incident direction. In
other words, the reference frame sited on the projectile is,
in general, not an inertial reference frame. To a good ap-
proximation, however, for the fast H~ detachment col-
lisions considered here, it is known that nearly all the
momentum transfer is absorbed by the detached electron
rather than by the H atom.!®'* Hence, the so-called pro-
jectile reference frame'!®!* is approximately an inertial
reference frame.

This approximation simplifies the relation between k;
and kp to

k; =v;,+kp . 9

Furthermore, we may then define a projectile (P) frame
DDCS as'®™*

do
dwdE

=kpZG(kp,0p) . (10)
P

The low-energy dynamics of the H-e ~ system is clearly
exhibited in the projectile-frame DDCS in Eq. (10) and
the simple relation (9) facilitates the subsequent interpre-
tation of the laboratory-frame DDCS in Eq. (8).

C. H™ wave functions

1. General boundary and normalization conditions

In order to calculate the H™ transition form factor in
Eq. (7), we require the incoming-wave normalized wave
function describing a final state in which asymptotically
the H atom is excited to its nlm level and the detached
electron is departing with relative momentum kp. That
is, we wish this wave function to satisfy the boundary
condition

Vnimk, (T1:T2) ~ (2m) 73 2r 1Py () Yy (F2)

ry—®
Xexp(ikpr))+ - (11

where the ellipsis represents incoming spherical waves,
and, to be normalized to a § function in momentum,
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[ d’r fd3r2(¢;,,rmlklp)f¢ﬁmk,,
=6nn'811'8mm’8(k1’_k;’) . (12)

As usual, it is convenient theoretically to express this
wave function in terms of a spherical wave expansion

Ynimk,, (rpn)=k 123 3 Yirk, ()il

I'm' LM
X {LM|ImI'm") Y}, (kp)
(13)

In Eq. (13), ¢”7kFLM(r1,r2) is the wave function appropri-

ate for a final state comprising the H atom in the n/ level
plus the detached electron having energy 1k} and having
an angular momentum /’. The orbital angular momenta
of the detached electron and the H atom are coupled to
form the total orbital angular momentum L with azimu-
thal quantum number M. We ignore spin; S =0 always.
Also, the spherical harmonic Y, (kp) pro;ects the state
I'm’ onto the d1rect10n kp, (LM|Iml'm"') is a Clebsch-
Gordan coefficient, i’ is a phase factor needed for the
incoming-wave boundary condition, and kp !/? is needed
to ensure the momentum normalization in Eq. (12).
Ordinarily the calculation of ¢,7,kPLM from the two-

electron Schrodinger equation is straightforward. A
complication for the case of interest here is that the 2s
and 2p levels of the H atom are degenerate. This degen-
eracy leads to a long-range dipole interaction between the
H(n =2) states and the detached electron.! This long-
range interaction is not diagonal in the individual angular
momenta / and !’ of the H atom and the detached elec-
tron. Rather it is diagonal in the so-called dipole
representation,”>3® which is why we choose a basis of
functions which reduces asymptotically to the dipole rep-
resentation.

2. Adiabatic hyperspherical representation

In our calculations we describe the H(n =2)-e ™ three-
body system in an adiabatic hyperspherical representa-
tion?>~?7 since this is known to describe fairly accurately
the key dynamical features of this system*?® and since
this representation is known to diagonalize asymptotical-
ly the long-range dipole interaction for this system.?>23
Accordingly, the wave functions 1/117',(1, Lum are expanded in

a complete set of adiabatic eigenfunctions dependent on a
hyperradius R =(r3+r2%)!/? and the five angular vari-
ables a=tan"'(r, /r,), T, and T,,

- _ — A A
Virkpm (1L 1) =3 ¥ (R,,T),T,)
u

xe*lgﬂAL,(”I)e—i(l/Z)‘nI' , (14a)

where the hyperspherical function for the uth channel is
1/f;kp(R,a,?1,/f2)——_-(R 32c0sa sina) !

X $,(R,a,%,7,)F (R)e '™ . (14b)

In Eq. (14b), the prefactor on the right-hand side is a
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weight factor;? ¢, is the adiabatic hyperspherical angle
function, which is a function of the five angles a, T,, and
T, and is dependent only parametrically on R; F, #kp(R) is

an energy-normalized radial function of R for the uth
channel and 7, is its phase shift, which is defined later
below. In Eq. (14a), §, is an analytically known phase,
also defined later below, which characterizes the asymp-
totic behavior of the radial function F #"p(R)’ and A is

the matrix which diagonalizes the long-range dipole in-
teraction in the basis of angular-momentum pairs (II’).
The adiabatic hyperspherical approximation is de-
scribed in detail elsewhere.?’~?7 Furthermore, it has
been reviewed for the calculations for process (3) in Ref.
16. For our present purposes we therefore only summa-
rize its key features here and refer the reader to these
other references for further details. The angle functions
¢, satisfy an angular equation®~?7 having eigenvalue
U,(R). Here u labels a particular solution of this angu-
lar equation for specified values of total orbital and spin
angular momentum. [We have suppressed the
specification of these total angular-momentum quantum
numbers on the right-hand side of Eq. (14a) for simplicity
of notation.] The radial functions F,ukP(R) satisfy a set of

coupled radial equations;>>~2’ however, in the adiabatic
approximation®® all but the diagonal coupling matrix ele-
ments are dropped so that each F, ka(R) satisfies a one-

dimensional radial Schrédinger equation

dZ
dR?

—V,(R)+k?*|F,,(R)=0. (15)

In Eq. (15) the effective radial potential V,(R), which
characterizes the dynamical features of a particular hy-
perspherical channel u converging to the nth level of the
H atom, is defined by

U,(R)+ 1+

_ Y 4
—V#(R)ZT'F

d’¢,
w dRZ
where (¢,,,d 2z)ﬁﬂ/dRz) is the R-dependent diagonal cou-
pling matrix element for the uth channel. Since the

long-range dipole 1nteract10n due to the degeneracy of
the H(n =2) states' is diagonal in the hyperspherical rep-

+L,  ae
n

resentation,?>?8 the asymptotic form of the effective radi-
al potential is
_ 2
(R) AfA,+1)/R*. (17)

R—

Here K# is an effective orbital angular momentum, which
may be real or complex depending on the channel u. Fi-
nally in Eq. (14a), the matrix 4 with elements 4,
transforms the dipole interaction eigenstate channels u to
the basis (/1').

3. Asymptotic forms

We give here the asymptotic forms of the adiabatic hy-
perspherical angle and radial functions, since these are
needed to verify the boundary condition in Eq. (11) for
the total wave function. The energy-normalized radial
wave functions satisfying the incoming-wave boundary
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condition tend asymptotically to

F”k(R)R:w(Z/'n'k)”Zsin(kR +&,+m,), (18)
where 7),, is the phase shift in the uth channel and §, is an
analytic phase dependent on the effective angular
momentum A, characterizing the long-range dipole in-

teraction of the H(n =2)-e ~ system.?® For real values of
A

l‘}

Eu=—3mA,, (19a)
while for complex values of A,,, one may write, quite gen-
erally,?

xﬂ=—%+ia# , (19b)
in which case?
§u=—47+6,, (19¢)

where

Yirkem(T1T2) ~wi(r,r2)_'(21rk)_'/22 P (r)Y 7.0 (BT (e
e

1=

where the scattering matrix in the (//') basis is defined by

T = —i(l/2al 4 —ig St T, —i(172)ml’
Samam=2e A7) .8 S e Ay ame
"
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tan[a, In(k /2)+x ]
6,=—tan"! £ =
W T anh(ra, /2) (194
and
x,=argl'(1—ia,) . (19¢)
The angular functions tend asymptotically to*
Su(R,a,T,T) ~ 12 3 Puy(r)Y a0,y
rl — G
XA, - (20)

In Eq. (20), P,/(r,) is the radial wave function for the nl/
level of atomic hydrogen and ¥ ., ,,(%,,T,) is defined by

C.VH:LM(?'Z,?'I)E 2 Y,m(?z)Ypm:(?l)(lml'm'lLM) .

21

Substituting Eqgs. (18) and (20) in Eq. (14), we find that the
wave function for the LM partial wave tends asymptoti-
cally to

—i[kr (1/2)7]"] +ilkr, —(1/2)al’
! S“t _877,8”re ! ]

(TT, ) ), (22

(23)

and where the scattering matrix in the adiabatic hyperspherical representation is diagonal and defined by

gt = _2”,#
S, =e .

(24)

4. The final- and initial-state wave functions

In terms of the adiabatic hyperspherical basis functions that we calculate, our final-state wave function is obtained by

substituting Eq. (14) into Eq. (13) to get

Vi, (Lot =k 2 3 3 3 U (Roastpfyle # A oy (LMIImI'm" Y ¥ (Kp)

I'm' LM pu

(25)

where the hyperspherical channel function 1/1;kp is defined in Eq. (14b), the phase §,, is defined in Eq. (19), and the ma-
trix elements A4, ;) are defined in Eq. (14a). Substituting Eq. (22) in Eq. (13), we may now verify the general boundary

condition in Eq. (11),

Yuimi (T1,T2) ~ (277')"3/2r{1P,,,(r2)Y,m(’fz)exp(ik-r,)+(27r)_3/2(r1r2)_’2Pny(rz)YTW(?z)fT,_n',m(k’,k)e ,
e Tm

1=

where the scattering amplitude is defined by

—ikr,

(26)

SramEO=Qmi/k) 3 33 Y E)TmI m'|LM)

T I'm' LM

i(/2)wl ot _ 1 \(LM)
Xe ("= ar

and where

k' =K%, .

e ATy (&) (Iml'm’|LM ) 7

(28)

Finally, we use the same initial-state wave function for H™ that was used in the calculations of Park et al.,'® namely,

Y1, 1) =(R*?cosa sina) "'¢,—o(R,a,%,,%,)F,,—o(R) ,

(29)

where u=0 is the lowest adiabatic hyperspherical 'S channel, #,~0 becomes proportional as r; — o to the H(1s) wave
function, and F,,_,(R) is the lowest energy radial solution for the =0 channel.!®
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D. H™ transition form factor

With Egs. (25) and (29) for the final- and initial-state wave functions, we are now prepar_ed to evaluate the H™ transi-
tion form factor in Eq. (7). Note first that the adiabatic hyperspherical angle functions ¢, in Eqgs. (14b) and (29) are nor-
mally calculated using an expansion in one-electron spherical harmonics,?

6,= 2 gl (Ra)¥, 1 1u(®T0) s (30)
1112

where Y, ; ;1 1s defined in Eq. (21) and where the total angular-momentum quantum number L is appropriate for the
2°t

channel u. Substituting Egs. (14b), (25), (29), and (30) in Eq. (7), expandil?g the integrand in Eq. (7) in partial waves, and
carrying out all angular integrations (over T, and T,) analytically, we obtain

YK p) Y0 (K)explilaL)

_ ) oL
eﬁllm(KykP)Z‘hrz22(_1)1+1+M[L] 12 !m m’ -M

I'm' LM p
X A<11'),yei(§”+"“)Qﬁo(K,kp) ) (31)
where we have used the symbol [x]=2x + 1 and where Q ,110 is defined as3°
QL (K, K)=[L)(4mk)~ '/ fo‘” dR F (R)Fo(R) 5 (K,R) . (32)
In Eq. 32), I ,’;O(K »R) represents the integral over the hyperspherical angle a,!
L — 172 > I L p/a 0 ; ; ;
I,,(K,R)=2 3 [1,] 00 0 (—1) fo dctg,l,l (R,a)[g,‘t,z(R,a)]L(KR sma)+g,‘;,l (R,a)j (KR cosa)] . (33)

i1,
E. Calculation of J,,(K,kp,0p)

The function J,;, defined in Eq. (6), is needed to compute the doubly differential cross sections in Eq. (4). It is calcu-
lated by taking the absolute square of the H™ form factor in Eq. (31), summing over the magnetic quantum number m
of the final state of the H atom, and integrating over the azimuthal scattering angle ¢. We indicate here briefly the
many steps involved in doing this calculation. First, when Eq. (31) is squared, one obtains products of spherical har-
monics having the same arguments. One rewrites these products as a linear combination of single spherical harmonics
with the same angular argument.3? Second, one is then able to sum over the magnetic quantum numbers m’ and M in
Eq. (31) [as well as the corresponding ones in the complex conjugate of Eq. (31)] using a standard relation for the sum
over four 3j symbols; one obtains an expression having a summation over a dummy angular momentum a and its mag-
netic quantum number, ma.33 Third, summation over m, and m may then be carried out using a standard orthogonali-
ty relation for 3j symbols.>*®) Fourth, summation over a may then be performed using a standard sum rule for 6;

coefficients.>*® Finally, one may then employ the spherical-harmonic addition theorem.?* The result is
- X , I''I" A|[|I' T" A||L L A ~ o~
Elenlm(K’kP)l :(_1) 2_2_%[1\] L L— 1 0 0 0 00 0 PA(kP‘K)XII'L(K7kP)XITVE(K,kP) ’
m I'T"LL
(34)

where P, is a Legendre polynomial and the coefficients X, 1 are defined by

Xy (K, kp)=(—1)"TL1'] 2exp(itnL)S A, pexpli(§,+7,)105 (K, kp) . (35)

m
In the special case of H(n/m)=H(1s), Eq. (34) reduces to the absolute square of Eq. (29) of Ref. 16.
Performing now the integral over the azimuthal angle ¢ in Eq. (6), we obtain finally
Ju(K kp,0p)=F[AUA(K,0p)M (LK, kp) , (36)
A
where
_ 1 27 A A

I,(K,0p :Efo P (K-kp)do 37

and
_ , ' A||{I' TA||LL A ;
MA(lyK;kp):(_l) IIET’LZZ L l_, l O 0 O 0 O 0 X”'LXIT'E . (38)
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In our calculations we include 'S, 'P, and !D partial
waves, so that 0<L, L <2, and hence 0<A <4. The
evaluation of the integrals I, is carried out using an addi-
tion theorem for Legendre functions.>® The result is

I,(K,0p)=P(5)P,(cosbp) , (39)

where § is the z component of the momentum-transfer
unit vector K [cf. Eq. (5)]

_ k,-—kfcosef _ kiz_k}+K2 . K
t= K T 2kK

min

T2k K

(40)

Note that k;, the momentum of the incident H™ projec-
tile, has been chosen as the z axis, and k ¢ is the final
momentum of the H(n =2)-e ~ system.

F. The laboratory-frame doubly and singly differential
cross sections

The Galilean invariant DDCS may now be expressed
in terms of Legendre functions of cosfp by substituting
Eqgs. (36) and (39) into Eq. (4b) to get

4
38(kp,0p)= 3 [A]A(nlkp)P,(cosbp) , (41)
A=0
where
K ax (O
AA(nI,k,,E—B%fK o) PAOM (LK kp)
Ui min

dK
H "2
X | et (K)—2] ©

87T Kmax(il-{e)
+ )7 me(THa Po(OM (LK, kp)
dK
xS,-ﬁﬁ(K)F . (42)

The laboratory- and the projectile-frame DDCS’s are
then obtained easily from Egs. (8) and (10).

The laboratory-frame singly differential cross section
(giving the angular distribution of detached electrons) is
then calculated as

=

L

do
dwdE

do
do

L

k max

=fk:m dky k2=8(kp(k;,60.),0p(k;,0,)),
L
(43)
where dE; =k, dk; .
III. RESULTS

A. Numerical matters

Many of the numerical details of these calculations are
presented in the doctoral theses of Park®’ and Liu’® as
well as in the article by Park et al.!'® In particular, the
values for K., and K,  in Eq. (42) are calculated as in
Sec. III B of Ref. 16 except that in our calculations the

binding energy of H™ must also take into account the en-
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ergy for excitation of H(n =2). As in Ref. 16, we employ
an average binding energy for the helium target Ty, equal
to 35 eV. However, we also illustrate below the sensitivi-
ty of our results to this value. In our calculations, six
adiabatic hyperspherical channels u were included (as
discussed in detail in Ref. 4): u=!S(K==+1), 'P+,
'P(pd), and 'D +. Finally, the phase shifts 7, for the
uth adiabatic hyperspherical channel, which are defined
by Egs. (18) and (19), may be calculated accurately by us-
ing the known analytic asymptotic behavior of the regu-
lar and irregular Bessel functions.?® Specifically, the solu-
tions of Eq. (15) in the asymptotic region [for which the
effective potential is given by Eq. (17)] may be represent-
ed as a linear superposition of z!/%J (z) and z12Y (2),
where z=kR, v=A,+1, and J,(2) and Y (z) are the reg-
ular and irregular Bessel functions, whose asymptotic
forms are given by Egs. (9.2.5), (9.2.6), (9.2.9), and (9.2.10)
of Ref. 39.

B. Projectile-frame DDCS
for 0.5-MeV H™ +He—»>H(n =2)+e~ +He*

In Ref. 4 we discussed in detail the influence of each of
the six adiabatic hyperspherical channels u included in
our calculations on the projectile- and laboratory-frame
DDCS’s defined in Egs. (8) and (10). Briefly, the u="'P+
channel has a large shape resonance just above threshold
which dominates the low-energy projectile-frame DDCS.
This channel, however, has a real value for the effective
angular-momentum A, [cf. Eq. (17)], so that its detach-
ment cross section is zero at threshold.* Three of the oth-
er eigenchannels, however, have attractive long-range di-
pole potentials corresponding to complex values of )‘u‘4
Hence the threshold value of the DDCS due to these
channels, while small, is nevertheless nonzero in the pro-
jectile frame. Since

do
dodE

do
dodE

ki
kp

L

(44)

P
a finite value for (do /dw dE)p for kp =0 leads to a cusp
in the laboratory-frame DDCS. Reference 4 discussed
these effects on the forward-direction DDCS in both the
projectile and laboratory frames. Here we present a more
complete picture of the angular distribution for the
DDCS in both frames.

Our result for the projectile-frame DDCS for process
(1) is presented in Fig. 1. The dominant feature of the
DDCS is the peak just above threshold due to the 'P+
shape resonance.* As found experimentally,'!">11") the
angular distribution of the DDCS in the projectile frame
is close to being isotropic.

This isotropic angular distribution may be understood
as a result of a cancellation in one of the relevant in-
tegrals over the momentum transfer K, as follows. First
if we ignore all channels other than the dominant 'P+
channel, then only the coefficients 4, for A=0 and 2
contribute to the Galilean invariant cross section in Eq.
(41). This result follows from the observation that the ab-
solute square of the sum of !P partial-wave transition am-
plitudes X, for L =1 [cf. Eq. (35)] only contributes to
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the coefficients M, in Eq. (38) for the cases A=0 and 2
[due to the 3j symbol involving L, L, and A in Eq. (38)].
Second, P,(§) for A=2 causes a cancellation in the
second (and usually largest) integral in Eq. (42) for 4, —,.
This result may be understood as follows. In the collision
of interest here, small momentum transfers dominate, so
that Eq. (40) reduces to {=K,;,/K. But P,(K_;,/K)
changes sign at K =~3'/2K_. . which is just above the
value of K at which the remaining part of the second in-
tegrand in Eq. (42), M,SH¢(K)/K, has its maximum
value, thereby causing a large cancellation in the second
integral in Eq. (42) for A=2. [The first integral in Eq.
(42) for A=2 gives an order of magnitude smaller contri-
bution to the Galilean-invariant cross section in Eq. (41)
than does the A=0 term.] Hence, for the collision of in-
terest here, the isotropic part of the DDCS is dominant.
Note, however, that since K, is sensitive to the average
excitation energy of the target atom, this cancellation and

0.188

PROJECTILE FRAME DDCS (a.u.)

0.188]

0.127

PROJECTILE FRAME DDCS (a.u.)

FIG. 1. Doubly differential cross section (DDCS) for electron
detachment vs electron momentum kp=(kp,0p) in the projec-
tile (P) frame. (a) and (b) show the high- and the low-energy
sides, respectively, of the 'P+ shape-resonance peak in the
DDCS. The 6,=0.3° and 0.7° trajectories in (a) and the
0; =0.3° and 0.5° trajectories in (b) on the DDCS surface trace
the projectile-frame DDCS contributions to the laboratory-
frame DDCS as a function of electron momentum k; in the lab-
oratory for fixed laboratory angles 6;. The results shown em-
ploy an effective excitation energy Iy, of 35 eV for the helium
target. Note that the DDCS is small but finite for kp =0.
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hence the resulting isotropic angular distribution of the
projectile-frame DDCS in the neighborhood of !P + reso-
nance may not occur for H™ collisions with other targets.
We are currently investigating the DDCS for H™ detach-
ment collisions on other rare-gas targets in order to eluci-
date this matter further.

Figure 1 also indicates how the projectile-frame DDCS
affects the features observed experimentally in the labora-
tory frame. For a fixed angle 0, in the laboratory, de-
tached electrons are detected having a range of kinetic
energies %ki according to the kinematic Eq. (9). These
allowed values of laboratory-frame kinetic energies lie on
a trajectory in the projectile frame, as illustrated in Fig. 1
for the laboratory angles 6; =0.3°, 0.5°, and 0.7°. [Note
that in the projectile frame, the He target is the “in-
cident” particle and its direction determines the positive
z axis with respect to which 6 is measured. Hence in the
laboratory frame, 60, =0° corresponds to lower detached
electron energies than does 8, =180°. These purely kine-
matic relationships are illustrated in Fig. 2, in which we
have plotted kp and 8, as functions of E; (=%k£) and
6,.] Figure 1 shows that for 6; =0.3°, there should be
two 'P+ shape-resonance peaks in the laboratory frame
(with the higher-energy peak slightly greater in magni-
tude than the lower-energy peak). For 6; =0.3° the tra-
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FIG. 2. Kinematic relationship of the detached-electron
momentum kp=(kp,0p) in the projectile frame to the corre-
sponding momentum k; =(k;,60;) in the laboratory frame ac-
cording to Eq. (9). (a) kp(E;,6.), where E,_E%kf. (b)
Op(E;,0;).
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jectory in Fig. 1 crosses the value of kp at which the 'P+
shape resonance occurs but never samples kp=0; only
6; =0.0° does that. Hence only at 6; =0.0° does one get
a cusp singularity due to the finite DDCS at kp =0 in the
projectile frame, as discussed in Ref. 4. Figure 1(b) shows
that the trajectory for 6; =0.5° does not extend to as
small values of kp as does 6; =0.3°. Hence while the
1P+ shape-resonance peaks in the laboratory frame
should be approximately the same magnitude for both
6; =0.3° and 0.5°, the minimum value of the DDCS be-
tween the peaks should be of much greater magnitude for
0.5° than for 0.3°.

As shown in Fig. 1(a), for 8; =0.7° the trajectory just
reaches the top of the P+ shape resonance, thereby in-
dicating that for all angles 6; =0.7° only a single peak
due to the P+ shape resonance will be observed in the
laboratory. Actually, the critical angle at which the
double-peak structure in the laboratory frame changes to
a single-peak structure is highly dependent on the energy
location of the !P+ shape resonance in the projectile
frame. In our adiabatic hyperspherical calculations, as
well as in those of Lin,?® this resonance is predicted to
occur at about 40 meV above threshold. More accurate
calculations®®>*’ show that the resonance occurs at
about 18 meV above threshold; this is consistent with ex-
perimental measurements.*! Kinematic considerations
predict that for a resonance peak at 18 meV, the double-
peak to single-peak transition in the laboratory frame will
occur for ; =0.47°. This was shown in the semiempiri-
cal calculations of Maleki and Macek.!* We conclude
that laboratory measurements of the DDCS for H™ de-
tachment as a function of 6, provide a very sensitive
determination of the location of the !P+ shape-
resonance peak for the H(n =2)-e ~ three-body system.

C. Laboratory-frame DDCS
for 0.5-MeV H™ +He—H(n =2)+e~ +He*

The qualitative features of the laboratory-frame DDCS
for process (1), discussed above in connection with the
structure of the projectile-frame DDCS, are shown here
quantitatively. Figure 3 shows the DDCS for producing

-
(42
T

— 0 =0.0°
----6.=0.3°
--- 0 =0.4°
—---6 =0.7°

-
o

LABORATORY FRAME DDCS (a.u.)
3]

o
250 260 270 280 290
DETACHED ELECTRON ENERGY (eV)

FIG. 3. Laboratory-frame DDCS’s for detachment plus exci-
tation of H(n =2) vs detached-electron kinetic energy for the
five fixed-electron ejection angles 6, =0.0°, 0.3°, 0.4°, 0.7°, and
1.0°
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H(n =2) for five laboratory-frame angles 6,. As expect-
ed on the basis of the above discussion, we see that for
6, =0.0° there is not only the double-peaked structure
due to the !P+ shape resonance but also a cusp in the
cross section at the equal-velocity position (=~272 eV).
This cusp behavior is not evident in the 6, =0.3° curve;
instead there is a local minimum in the cross section at
the equal-velocity position. This minimum rises as 6, in-
creases (cf. the 6; =0.4° curve) until it disappears at
6, =0.7°, leaving only a single peak at the equal-velocity
position due to the 'P+ shape resonance. This single
peak diminishes rapidly as 6; increases further (cf. the
6, =1.0° curve).

In order to analyze the angular dependence of the cusp
feature, we show in Fig. 4 our results for the DDCS ig-
noring the 'P+ shape-resonance channel. For 6, =0.0",
the laboratory-frame DDCS is singular. For 6; =4.0°,
however, there is still a peak at the equal-velocity posi-
tion arising from division of the finite DDCS in the pro-
jectile frame by kp for small values of kp [cf. Eq. (44)].
For 6; >0.8°, however, this cusp feature disappears.

Our predictions for the separate H(2p) and H(2s) cross
sections for process (1) are presented in Fig. 5 for four
values of ;. While our predictions for 8, =0° show
cusps at the equal-velocity position,* the results in Fig. 5
for angles 6; =0.3° show no sign of any cusp features, as
is to be expected from the results shown in Fig. 4. We
observe that the cross sections for H(2p) achieve magni-
tudes that are factors of 2—-4 greater than those for
H(2s). By 6, =4.0°, however, these cross sections are
both essentially zero.

Our predictions for the H(2p) cross section may be
compared with the experimental measurements of
Menendez and Duncan,!!® who measured the DDCS for
process (1) at 6; =0° in coincidence with Lyman-a pho-
tons from the decay of H(2p). Their results, shown in

w
T

n
T

LABORATORY FRAME DDCS (a.u.)

0 s A L
240 260 280
DETACHED ELECTRON ENERGY (eV)

FIG. 4. Angular dependence of the cusp feature in the
laboratory-frame DDCS’s for detachment plus excitation of
H(n =2). These DDCS’s have been calculated omitting the
'P+ shape-resonance channel in order to display clearly the
cusp feature at the equal-velocity position. They are plotted vs
the detached-electron kinetic energy for the five fixed-electron
ejection angles 6; =0.0°, 0.1°%, 0.2°, 0.5°, and 0.8°.
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FIG. 5. Laboratory-frame DDCS’s for detachment plus exci-
tation of H(2p) and H(2s) vs detached-electron kinetic energy
for the four fixed-electron ejection angles 6, =0.3°, 1.0°, 1.5°
and 4.0°. (a) DDCS for H(2p). (b) DDCS for H(2s).

Fig. 6, do not show the cusp or 'P+ shape-resonance
features we have predicted4 for 6, =0°. However, their
results have an energy resolution of AE; /E; =0.02 and
an angular resolution of A@; =0.85° which must be taken
into account.!!'®42 When we fold our theoretically pre-
dicted DDCS’s for detachment plus excitation to H(2p)
with the experimental energy and angular convolution
functions,*? we obtain the result shown by the solid curve
in Fig. 6. Agreement with the experimental results is ex-
cellent.

D. Comparison with experiments
for 0.5-MeV H™ +He—>H*+e " +He*

The key discrepancy between the experimental
measurements'® ™4 for process (2), in which the state
of excitation of the H-atom final state is not measured,
and the theoretical calculations'>~ !¢ for process (3), in
which the H-atom final state is assumed to be H(ls), is
that the experimental values for the higher-energy peak
are much greater than those predicted theoretically for
6; =4.0°. This apparent evidence of the importance of
excited final states of the H atom may now be verified by
adding our current results for process (1), in which the
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FIG. 6. Comparison between the experiment of Menendez
and Duncan [Ref. 11(g)] for the energy spectrum of detached
electrons at 8; =0° in coincidence with Lyman-a photons from
the excitation and subsequent decay of H(2p) resulting from
process (1) and our theoretical predictions for the DDCS for
H(2p) in the laboratory frame as folded with the experimental
angular and energy convolution functions.

H-atom final state is assumed to be H(n =2), to the pre-
vious results of Park et al.!®! for process (3), in which
only the H(1s) final state is taken into account. We have
recalculated the DDCS’s for process (3) according to Ref.
16 and have included all corrections.!” The results are
shown in Fig. 7. One sees clearly the double-peaked
structure for 6; =4.0° due to an interference of s and p
partial waves.!> 1416

We compare our present results for processes (1) and
(3) with experimental results'!® for process (2) in Fig. 8.
The dashed line shows our predictions for leaving the hy-
drogen atom in H(ls), the dashed-dotted line shows the
results for leaving it in H(n =2), and the solid line gives
the sum of these results. The triangles show the relative
experimental measurements, which include all possible
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FIG. 7. Laboratory-frame DDCS’s for process (3) vs electron
kinetic energy for the five fixed detached-electron ejection an-
gles, 6; =0.0°, 1.0°, 1.7°, 4.0°, and 10.2°.
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final states for the H atom. The relative experimental re-
sults were normalized to our solid curve at the energy of
the lower-energy peak. The comparison for 6, =0.3°
shows that the experimental resolution is not sufficient to
resolve the 'P+ shape-resonance features centered about
the equal-velocity energy. Clearly, however, the magni-
tude of these predicted features explains much of the pre-
vious discrepancy between experiment and the calcula-
tions which included only the H(1s) final state.’?”1® The
comparison for 6; =1.5° is more straightforward since
the structure due to the 'P+ shape-resonance channel
has disappeared at this relatively large laboratory-frame
angle (cf. Fig. 5). Clearly, experiment is in much better
agreement with the present theoretical predictions, which
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FIG. 8. Laboratory-frame DDCS’s vs detached-electron ki-
netic energy at two fixed detached-electron ejection angles: (a)

6, =0.3° and (b) 6, =1.5°. — — —, present theoretical predic-
tions for 0.5-MeV H +He—H(ls)+e +He* — —.—.,
present theoretical predictions for 0.5-MeV

H™ +He—H(n =2)+e~ +He*; , sum of the present
theoretical predictions for H(1s) and H(n =2) final states; A,
relative experimental measurements of Menendez and Duncan
[Ref. 11(b)] for 0.5-MeV H™ +He—H*+e~ +He*, where H*
includes H(1s) as well as all excited states. Experiment is nor-
malized to the solid theoretical curve at the energy position of
the lower-energy peak.
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FIG. 9. Singly differential cross section (SDCS) for electron
detachment vs detached-electron scattering angle in the labora-
tory frame. Curves and symbols defined as in Fig. 8.

include the H(n =2) states. Whether the remaining
discrepancies are due primarily to the experimental angu-
lar resolution, which may permit sampling of the much
larger cross sections at smaller angles, or due primarily to
the theoretical neglect of H(n =3) and higher final states
of the H atom, is an open question.

Figure 9 shows a similar comparison of experimen
with our results for the singly differential cross section
(SDCS), which is calculated according to Eq. (43). Our
present calculations for process (3) (dashed curve), for
process (1) (dashed-dotted curve), and for the sum (solid
curve) are compared with the experimental data for pro-
cess (2), which do not distinguish the final state of the H
atom. These experimental measurements for the SDCS
are absolute.!!®” The peak in the theoretically calculated
H(n =2) results for 0< 0, <1°is due to the 'P+ shape
resonance. The H(n =2) results also are singular at
6, =0° due to the cusp behavior of the DDCS at this an-
gle. The solid curve representing the sum of the theoreti-
cal predictions for H(ls) and H(rn =2) is 20%-30%
below the measured SDCS for 6; >4°, which may be due
in part to inclusion of excited H-atom states with n > 2 in
the experimental measurements. However, it may also be
due in part to our use of a fixed average excitation energy
for the helium target, as discussed in Sec. IV. The
discrepancy between theory and experiment for §; =0°
may also require a detailed analysis of the experimental
angular resolution due to the cusp singularity for 6, =0°.
This may explain the sharp rise in the experimental mea-
surement near 0°. Clearly the present results give
significantly improved agreement with experiment due to
our inclusion of H(n =2) final states.

tll(b)

IV. DISCUSSION AND CONCLUSIONS

A. Gailitis-Damburg oscillations

In Ref. 4 we presented the first quantitative predictions
of the expected Gailitis-Damburg? oscillations in the
DDCS’s for excitation of H(n =2). These oscillations
are an effect of the long-range dipole field seen by the de-
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tached electron due to the degeneracy of H(2p) and
H(2s).2 As shown in Fig. 5 of Ref. 4, these expected os-
cillations can only be observed for detached-electron en-
ergies of a few meV or less in the projectile frame due to
the obscuring effect of the strong P+ shape resonance,
which peaks at 18 meV.

We point out here that the predicted oscillations in our
calculations are due to rapid variation of the analytic
phase 6, [cf. Eq. 19(d)] for those adiabatic hyperspherical
channels g having complex values of the effective
angular-momentum A, [cf. Eq. (17)]. Because of the at-
tractive dipole field, these channels have finite cross sec-
tions at threshold in the projectile frame.* This analytic
phase 6, appears explicitly in the phase factor included in
the transition amplitudes [cf. Egs. 19(c) and (35)]. Figure
10 shows the rapid variation of the analytic phase 6, for
the three hyperspherical channels p=1S(K = +1), 1P—
and 'D+, all of which correspond to complex values of
A,. These 6,’s vary rapidly over a very small range of the
detached electron momentum k near the detachment
threshold.

The long-range dipole field also induces rapid oscilla-
tions in the effective normalization of the final-state wave
function for the H(n =2)-e~ system. These additional
oscillations may be extracted using generalized quantum
defect theory by representing our adiabatic hyperspheri-
cal radial wave functions as*

F i (R)=N,(K)F),(R) , (45)

where the normalization factor N,(k), defined in the Ap-
pendix, describes most of the varlatlon with k of F,.(R)
and where F 0k(R) is a more smoothly varying functxon
of k. Figure 11 shows the oscillatory behavior of N, (k)
for the three adiabatic channels u='S(K =+1), 1P—

and 'D+. While the oscillations for the 'D+ channel
are large, this channel gives the smallest contribution to
the DDCS for small values of k. The oscillation ampli-
tudes for the u='P— and !S(K =+1) channels are of
the order of only tenths of a percent of the average ampli-

0, (rad)

-9 -7 5 -3 -1
énk (a.u.)

FIG. 10. Analytic phase 6, [defined in Eq. 19(d)] vs Ink,
where k (a.u.) is the detached-electron momentum in the projec-
tile frame, for the three adiabatic hyperspherical channels
u='S(K=+1),'P—,and 'D+.
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FIG. 11. (a) Normalization factors N,(k) [cf. Eq. (45)] for the
three adiabatic hyperspherical channels u='S(K =+1), 'P—
and 'D + vs Ink, where k is the detached-electron momentum in
the projectile frame. (b) Same as (a) but with an enlarged verti-
cal scale to show more clearly the oscillations in N,(k) for

=IS(K=+1)and 'P—.

tude. Thus, none of these oscillations contributes visibly
to the Gailitis-Damburg oscillations shown in Fig. 5 of
Ref. 4; those oscillations are due entirely to the rapid
changes in the analytic phase 6, shown in Fig. 10.

B. Sensitivity of the DDCS’s to Iy,

The commonly used closure approximation, which is
employed to simplify the summation over the He target
states, introduces a dependence of the theoretical calcula-
tions on the parameter Iy, the average excitation energy
of the He target. There are a number of prescriptions for
choosing Ty,: one suggests setting Iy, equal to the ener-
gy needed to excite the lowest excited state, another
suggests the use of an angle-dependent Iy..>* For the
small angles of interest in the present calculations, we
have followed Wright et al.** and Park et al.'® and used
Ty =35 eV in the present work. We examine here the
sensitivity of our results to this choice.

Figure 12(a) shows the laboratory-frame DDCS for
process (3), in which the hydrogen atom is left in the 1s
final state, for four values of Ty, and for 6; =1.5°. One
observes a significant sensitivity of the magnitude of the
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DDCS on Iy,: the smaller the value of Iy, the larger
the value of the DDCS. Furthermore, the location of the
lower-energy peak shifts to lower energies as Iy, in-
creases. The location of the higher-energy peak, on the
other hand, is relatively insensitive to the value of I, He-
We have chosen Ty, =35 eV since for this value the loca-
tion of the lower-energy peak coincides with that mea-
sured experimentally. Note that the relative experimen-
tal results shown in Fig. 12 are normalized to our calcu-
lated DDCS for Ty, =35 eV at the energy of the lower-
energy peak.

Figure 12(b) shows the laboratory-frame DDCS for
process (1), in which the hydrogen atom is left in the
n =2 state, for the same four values of Iy, and for
6; =1.5°. One observes a much weaker sensitivity of the
magnitude of the DDCS on Iy;,. As expected, there is no
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FIG. 12. Dependence of theoretically calculated DDCS’s on
T, the average excitation energy of the He target for 6, =1.5°.
—oey Tye=21eV; —.—.—. , Tye=28 eV; — | T;.=35 eV;
———, Ty =42 eV. (a DDCSs for 0.5-MeV
H™ +He—H(1ls)+e~ +He*. The triangles are the relative ex-
perimental measurements of Menendez and Duncan [Ref. 11(b)]
for 0.5-MeV H™ +He—H*+e +He*, where H* includes
H(1s) as well as all excited states. (b) DDCS’s for 0.5-MeV
H™+He—H(n=2)+e~ +He*.

significant sensitivity of the energy position of these
DDCS’s for projectile excitation on the target parameter
The.

The difference in sensitivity of the H(1s) and H(n =2)
DDCS’s can be understood as follows: As discussed in
detail by Macek et al,''”’ the DDCS for H(ls) is
governed by an interference of s and p partial waves
whose magnitude is proportional to K., the minimum
value of the momentum transfer. Furthermore, K, is
very sensitive to Iy.. On the other hand, since the
DDCS for H(n =2) is not governed by interferences of
the various partial waves, its sensitivity to K, is greatly
reduced. Furthermore, the large excitation energy of the
H(n =2) state reduces the sensitivity of K on the
value of Ty,.

In summary, we believe the value Iy, =35 eV to be the
best one to use for the small electron-detachment angles
of interest in these detachment collisions. For larger an-
gles, however, an angular dependence for Ty, may be ap-
propriate.? In particular, use of an angle-dependent Iy,
may improve agreement of the theoretically calculated
SDCS’s shown in Fig. 9 with experiment for the larger
angles 6, shown.

min

C. Conclusions

We have presented here in detail theoretical results for
detachment of 0.5-MeV H™ ions in collision with a He-
atom target in which the H atom is excited to H(2p) or
H(2s). The results are very sensitive to the detached-
electron’s angle of ejection in the laboratory frame. This
sensitivity makes this process an ideal probe of the dy-
namics of the H(n =2)-e ~ three-body system for low en-
ergies in the projectile frame. In particular, laboratory-
frame measurements of the DDCS’s for small ejection an-
gles may be directly related to long-range dipole interac-
tions and shape-resonance effects in the projectile frame.

The present results for H(n =2) final states, when
combined with the present calculations for the DDCS’s
in which the H atom is left in the H(1s) final state, also
give greatly improved agreement with the experimental
results that do not measure the final state of the H atom.
This is true also for the SDCS’s. Nevertheless, experi-
mental measurements with higher angular resolutions for
electron ejection in the forward direction are required to
confirm in detail many of the theoretically predicted
features presented here.
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APPENDIX: NORMALIZATION FACTOR N (k)
FOR THE DIPOLE POTENTIAL

The oscillatory energy-dependent normalization factor
N, (k) is defined as follows:*°

N, (k)=[B,cos’n,+B ' (1+82)sin’y,

]1/2 , (Al)

—§,sin2n,
where 7, is the phase shift in the uth channel [cf. Eq.
(18)] and where B, and §, are analytic functions defined
by43
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B = sinhwa, (A2a)
k" coshma, —cos2[a,ln(k /2)+x,] ° 2

—sin2[a,In(k /2)+x,] (AZb)

no coshma,, —cos2[a,In(k /2)+x,]
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