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Series of resonance states of muonic molecules
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Two infinite series of resonance states of muonic molecular ions (ppp)+ and their isotopes con-
verging to the dissociation limit n =2 are theoretically studied within nonrelativistic quantum
mechanics. These resonance states are supported by the attractive long-range dipole potential origi-
nating from the linear Stark effect and behaving as R '. The positions e, (v =0, 1,2, . . . ) of the res-
onances relative to the dissociation threshold satisfy a simple power law e, = Aa" for high U, the
constant a being easily calculable in terms only of the total angular momentum and the masses of
the nuclei and the muon. The size of a muonic molecule in a state e, is —10 ' cm/[4+~@, (eV)~),
which is comparable to (or even larger than) the size of ground-state electronic molecules if the res-
onance lies within a fraction of an electron volt from the dissociation threshold. The theory is use-

ful in the classification of resonances in muonic molecules. The systems (dtp)+ and (ddt)+ are ana-

lyzed as examples.

I. INTRODUCTION

d+ tp(dtp)++ b E (la)

or

d+dp~(ddp)++BE (lb)

between a deuteron in a deuterium and a tp (or dp) atom
in the ground 1s state. This is because the excess energy
4E is small for weakly bound states of the muonic mole-
cule, and is efficiently absorbed by the vibrational-
rotational motion of a hydrogenlike electronic molecule

The d-t and d-d fusion catalyzed by muons without the
need of high-temperature plasmas has been the subject of
increasing experimental and theoretical interest in these
years. It has been established experimentally that a sin-
gle muon can catalyze d-t fusion about 150 times on the
average during its lifetime in a dense mixture of deuteri-
um and tritium under certain conditions. ' In pure
deuterium (without tritium), less efficient muon-catalyzed
d-d fusion occurs. The clue to the mechanism of the ca-
talysis is the formation of muonic molecular ions (dtp)+
or (ddp)+, ' ' which are essentially Coulomb three-body
systems similar to the hydrogen molecular ions Hz+,
D2, HD+, etc. The equilibrium internuclear distances
R, of the muonic molecules are smaller than the R, of
the electronic molecules by a factor of about 207. This
greatly reduces the Coulomb barrier against nuclear
fusion in muonic molecules compared with the barrier for
electronic molecules, thus enhancing the intramolecular
fusion rate by, for example, 95 orders of magnitude in go-
ing from DT+ to (drp, )+. The high intramolecular
fusion rates have stimulated extensive theoretical studies
of bound states of muonic molecules. ' ' Particular at-
tention has been paid to weakly bound states, since they
are considered to be formed efficiently in thermal col-
lisions

d+(dtp)+e e [or d+(ddp)+e e ], in which the
muonic molecular ion (dtp)+ [or (ddp) ] has a much
smaller size than the electron orbitals and plays a role of
a "pseudonucleus" in the electronic molecule.

Most d p atoms and many tp atoms are formed initially
in highly excited states and are then deexcited down to
lower and lower states. In a D2-T2 mixture, tp atoms in
the lower states are also formed in the muon-transfer pro-
cesses

t+dp~d+tp, (2)

which appear to occur with a higher rate for excited
states than for the ground state. ' Therefore, many tp
and dp atoms are expected to be in the metastable 2s
state for quite a long time. An interesting question to be
posed, then, is whether processes (1) occur with a high
rate when the tp (or dp) atom is in the 2s or 2p state. If
they do, they may play an important role in the muon-
catalyzed fusion.

For processes (1) with tp, (n =2) or dp (n =2) to occur
appreciably, the excess energy b,E must be small enough
to be transferred efficiently to some degrees of freedom of
motion, such as the vibrational-rotational motion of an
electronic molecule, just as in processes (1) with ground-
state atoms. In other words, the (dtp)+ or (ddp)+ mole-
cule must have a level or levels lying close to the dissocia-
tion limit d+tp(n =2) or d+d.p (n =2). Such levels
are autodissociating or resonance states, because they are
embedded in the continuum above the dissociation limit
d+tp (n =1)or d +dp (n =1).

The purpose of this paper is to discuss the possibility of
the existence of resonance states of muonic molecules
that might be relevant to muon-catalyzed fusion. In fact,
an infinite number of resonance levels that converge to
the dissociation limit n =2 exist within the framework of
the nonrelativistic quantum mechanics. This is shown in
Sec. II in the Born-Oppenheimer approximation and in
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Sec. III without this approximation. Then, in Sec. IV,
the theory is applied to analyze the recent results of Ref.
14 on resonance states of the (ddt)+ and (dt's)+ mole-
cules. The nonrelativistic quantum mechanics is not
completely satisfactory for studying the resonance levels
of real muonic molecules that lie close to the dissociation
limit n =2, and the corrections that must be taken into
account are discussed in Sec. V.

Resonance states of the (dt's)+ molecule are also stud-
ied in Ref. 15. These states are reported to lie several
electron volts above the dp (n =1) threshold, i.e., far
below the tp (n =2) threshold, and appear to be formed
by a mechanism dift'erent from that discussed in this pa-
per.

II. BORN-OPPENHKIMER APPROXIMATION
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The Born-Oppenheimer approximation is quite good
for low-lying electronic states, but is numerically inaccu-
rate for muonic molecules. Nevertheless, it is sometimes
useful as a zeroth-order approximation for understanding
the basic physics of muonic systems, provided that one is
we11 aware of its limitation. For the purpose of the
present paper the inspection of the vibrational-rotational
levels (U, N) of electromc states of H2+ is instructive. In
the Born-Oppenheimer approximation each potential-
energy curve V„(R) of the muonic molecules (ppp)+,
(pdp)+, (ddp)+, (dtp)+, etc. , as a function of the inter-
nuclear distance R is equivalent to a potential-energy
curve V, (R) of the electronic molecule H2+, if the muon
atomic units are used for the former and the electron
atomic units are used for the latter. In other words the
two potentials are related to each other by

m m
V(R)= "V, "R

m,
' m,

(3)

in terms of the muon-to-electron mass ratio
m„/m, =206.76826. ' The absolute value of a rnuonic
potential is larger than the corresponding electronic po-
tential by the factor m„/m„and the range is smaller by
m, /m„. Since the strength of a potential is roughly pro-
portional to the absolute value times the square of the
range, muonic potentials are much weaker than electron-
ic potentials. This explains the fact that much less vibra-
tional levels are supported by the ground 1sa muonic
potential than by the corresponding electronic potential.

Our present concern is about possible muonic molecu-
lar states lying close to the dissociation limit n =2.
Therefore, attention is paid to those H2 potential curves
that correlate with the 2s and 2p states of the H atom in
the separated-atom limit R ~ao;' ' see Fig. 1. There
are six of them, of which, two repulsive curves 2scr and
3po.„behave asymptotically as V, (R)——0. 125+3/R
a.u. , and another repulsive curve 3d m as
V, (R) ——0. 125+0(R ) a.u. The other three curves,
namely, the 2pn. „, 3do, and 4fo„potential energy
curves are attractive and support vibrational levels.

The 2pn. „curve has a weak maximum at R =26 a.u. ,
behaves asymptotically as V, (R) ——0. 125+6/R3 a.u. ,
and correlates with the sep'arated-atom state H(2p). For

FIG. 1. The adiabatic potential energies, including the inter-
nuclear Coulomb repulsion, of the H~+ molecule and its iso-
topes converging to the dissociation limit n =2. The energy
scale shown on the right-hand side and the internuclear-
distance scale shown on top are for electronic molecules, and
the scales on the left-hand side and on the bottom are for muon-
ic molecules. The energies are measured relative to the dissoci-
ation limit n =2. For homonuclear molecules the 3dcr, 3dm,
and 2so states are gerade states and the 2pvr, 4fo, and 3po.
states are ungerade states.

V (R)——0. 125 —3 R
mp m,

P m, m
(4)

in atomic units according to Eq. (3).
A particle having a mass m and an angular-momentum

quantum number l has an infinite number of bound states
in a centrally symmetric potential that decays asymptoti-
cally as —(fi /2m )yr, if y ) (1+—,

'
) . This holds true

regardless of the form of the potential at smaller dis-
tances; only the asymptotic behavior is essential. It fol-
lows from this that the 3do and 4fo „curves of H~+

a rotational-angular-momentum quantum number N of
unity, this potential supports a resonance state above the
dissociation limit —0. 125 a.u. and 12 vibrational states
below it. ' For the (ppp)+, (pdp)+, (ptp)+, (ddt)+,
(dt's )+, and ( tt p)+ molecules this potential supports one
even-parity bound state with N =1 and one odd-parity
vibrational state with N =0 [except for (ttp)+, for which
there are two vibrational states with N =0] in the Born-
Oppenheimer approximation. Recent nonadiabatic,
completely three-body calculations also show that each of
these molecules has one even-parity bound state with a
total-angular-momentum quantum number J of unity. '

This bound state is interpreted to be associated with the
adiabatic 2p m „potential.

The 3do and 4fcr„curves have no maximum, behave
asymptotically as V, (R ) ——0. 125 —3/R a.u. , and
correlate with linear combinations of the separated-atom
states H(2s) and H(2p). ' For muonic molecules these
potentials behave asymptotically as
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TABLE I. Critical angular momentum J, (or N, ) such that,
for J ~ J, (or for N ~ N, ), there exist an infinite number of reso-
nance states below the dissociation threshold n =2. BO: Born-
Oppenheimer approximation, for which N and N, are
rotational-angular-momentum quantum numbers. Three-body:
asymptotic full three-body treatment of Sec. III, for which J and
J, are total-angular-momentum quantum numbers.

(ppp)+
(pd p)+

(ptp)+

(ddp)+
(dtp)+

(ttp)+
(ppe )

(pde )+

(pte )+

(dde )+

(dte ).+

(tte )+

BO
N,

8
73
85

90

104
114

127

Three-body
Dissociation limit

p+pp (n =2)
p+dp (n =2)
d+pp (n =2)
p+tp (n =2)
t+pp (n =2)
d+dp (n =2)
d+tp (n =2)
t +dp (n =2)
t+tp (n =2)
p+H (n ——2)
p+D (n =2)
d+H (n =2)
p+T (n =2)
t+H (n =2)
d+D (n =2)
d+T (n =2)
t+D (n =2)
t+T (n =2)

5
5
6
6
6
7
7
7
8

73
85
85
90
90

104
114
114
127

support an infinite number of vibrational levels for any
N ~ 73. ' For muonic molecules in the Born-
Oppenheimer approximation these two potential curves
support an infinite number of vibrational levels only for
smaller N, e.g., for N ~4 for (@pe)+; see Table I for the
critical values of N for the six muonic molecules and for
six electronic molecules. Recent nonadiabatic three-body
calculations indicate that the (ddt)+ and (dt's)+ mole-
cules have about ten levels with J=O and about ten with
J= 1 associated with the adiabatic potentials 3d cr and
4fo „. These levels are discussed in Sec. IV.14

III. ASYMPTOTIC FULL THREE-BODY PROBLEM

We now consider the full three-body problem without
the Born-Oppenheimer approximation. The region of the

configuration space that is most crucial to our arguments
is the asymptotic region where particle 3 with positive
charge +e and mass M3 lies far from the atom consisting
of particle 1 with charge +e and mass M, and particle 2
with charge —e and mass M2, —e is the charge of an
electron. We define a set of Jacobi coordinates (r, R), r
being the position vector of particle 2 relative to particle
1, and R being that of particle 3 relative to the center of
mass of the atom (1,2).

Let JA and MA be the total angular momentum and its
z component. To describe the angular part of the wave
function of the three-body system we form eigenfunctions
PIt '(r, R) of (JA) and MR with eigenvalues J(J+1)A'
and Mfi from spherical harmonics Yt (r) and Yt (R).
The space-part wave function 4' '(1,2, 3) of the three-
body system may be expanded in terms of these angular
functions and the radial wave functions g„l(r) of the
atom (1,2) as

O' I'(1,2, 3)= g F„'tt', (R)g„t(r)P'tt. '(r, R) .
n, 1, l'

(5)

2 2 A+k2 F= F (for R ~a)
2P3 J2 dR 2P3 I2 R

with

For energies close to the level n =2 of atom (1,2), the
only channels in expansion (5) that are important in the
asymptotic or large-R region are those with n =2, name-
ly, channel 1 with (n, l, l')=(2, 0,J), channel 2 with
(2, 1,J —1), and channel 3 with (2, 1,J + 1 }. (Channel 2
vanishes for J =0, leaving only two important channels. }
Substituting Eq. (5) with only these three channels into
the Schrodinger equation for the three-body system, pro-
jecting the Schrodinger equation onto the angular func-
tions and the atomic radial wave functions, expanding the
potential matrix in terms of inverse powers of R, and re-
taining only the leading term, we obtain three coupled
equations

J(J+1)
P&J/(2J+ I)

—P&(J + 1 }/( 2J + I }

6P3 12
7

Pi2

M3 (M) +M2 )
P3, 12

1 2 3

P&J/(2J + 1) —f3&(J + 1)/(2J + 1)
J(J—1) 0

0 (J+ l)(J+2)

M, M2
812

1 2

(10}

I

where (A'k) /2p»2 ( =e) is the energy of the three-body
system relative to the level n =2 of atom (1,2), and a is
some large distance at and beyond which the terms in the
potential of higher order than R are negligible. This is
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straightforward extension of the formulation for
electron-hydrogen scattering developed in Ref. 23.

The diagonal elements of A represent the usual centri-
fugal potential. The off-diagonal elements represent the
dipole potential that couples the 2s channel with the 2p
channels. This long-range coupling potential arises from
the leading term in the asymptotic expansion of the sum
of the positive Coulomb potential e /~r, —

r3~ between
particles 1 and 3 and the negative Coulomb potential—e /~rz —r3 ~

between particles 2 and 3.
Equation (6) may be diagonalized by a unitary transfor-

mation of the channels. This leaves three uncoupled
single-channel equations with potentials X;(A., + 1)/R
(i = 1,2, 3) in units of fi /2@3 &z, where

A, , (A, , +1)=J(J+I),
X~(A~+1)=J +J+1—(2J+1)x,
A3(A3+1)=J +J+1+(2J+1)x,

P~=(3m /m, ) [I+O(5)]=3.03 X 10

For the muonic molecules, p is much smaller. Thus, the
critical J at and below which the muonic molecule
(ppp, )+, for example, has an infinite number of states
below the threshold n =2 is five in the three-channel ap-
proximation of Eq. (6). Table I includes the critical J for
six muonic and six electronic molecules.

The wave functions G(R) of these states in channel
& =2 satisfy the single-channel Schrodinger equation

A, ~(A,~+ 1)
G(R)= G(R) (R ~a), (16)

dR R

where the binding energy
~
e has been expressed as

(Av) /2@3 fp The mock angular momentum kz may be
written as —

—,'+iv with a real constant v according to
the condition (14). The physical solution to Eq. (16) is
that linear combination of two linearly independent solu-
tions which decays to zero at infinity, and is expressible
as

or
G(R)=constX&RK;, (xR) (R ~a) (17)

&p= —
—,'+ [(J—

—,
'

) —(2J+ 1)(x —1)]'i

&3= —
—,'+[(J+—', ) +(2J+1)(x—1)]' ~,

with

(12)

2

2J+1 +1
1/2

For the Hz+ ion with J =0 the asymptotic potential

(A' /2@3,~)A., (k;+ 1)R

is 0 for i =1, —[3+O(5)]R a.u. for i =2, and
[3+O(5)]R a.u. for i =3, where 5 is the electron-to-
proton mass ratio m, /m, in agreement with the conse-
quences of the Born-Oppenheimer approximation ex-
plained in Sec. II. In particular, the transformed channel
i =2 with the gerade property corresponds to the adia-
batic potential curve 3do. , and that with the ungerade
property to the potential 4fo„.

The condition for the existence of an infinite number of
states in the potential

in terms of a modified Bessel function K; of the second
kind and of imaginary order.

Now we consider the J7 matrix at R =a to obtain the
energy eigenvalues e„and hence ~„and the correspond-
ing wave functions G, (R). Here, u is an integer to label
the full three-body states that converge to the dissocia-
tion limit n =2, and has the meaning of the vibrational
quantum number if Mz is much smaller than M, and M3.
In the following we sometimes refer to v as the vibration-
al quantum number and the corresponding state a vibra-
tional state for convenience, even when the Born-
Oppenheimer approximation breaks down. The A ma-
trix is defined by the full three-body wave function in the
inner region R ~a. Because only the long-range poten-
tials behaving as -R are important near R =a (and
beyond) in the energy region of interest, and because of
the uncoupling discussed above (which is valid also for
the inner-region wave function close to R =a), we consid-
er only the diagonal element Azz(v„a ) of the A matrix
for the transformed channel i =2. For smooth connec-
tion of the inner-region wave function to the outer-region
wave function G, (R), the A-matrix element Azz(v, ;a)
must satisfy the relation

(fi /2p, 3,~)A, ;(A,;+1)R A~~(~„a ) = G„(a )/[aG,'(a)] . (18)

1s

(A,;+—,') (0 (14)

It follows from the power-series expansion of the
modified Bessel function that Eq. (18) may be rewritten as

according to the rule mentioned in the last paragraph of
Sec. II. This condition is satisfied by channel i =2, if

g p, Im[(2m +i v)F, ]
[A~~(sc, ;a )] '=

—,'+
gp, ImF,

(19)

P &(J +3J+—')(J —J+—') (15)
where

This is consistent with the result of the Born-
Oppenheimer approximation that the adiabatic potentials
3d os and 4fo „ofHz+ support an infinite number of vi-
brational levels for any % ~ 73, because

p„=(v,a )/2,

exp[i(vine, —r))]
F,

m!~1 (m+ I+iv)~ (21)
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I (m+ 1+iv) is a I function, g is its phase, and the sum-
mation in Eq. (19) over m is taken from zero to infinity.

Because we are considering only a small region of ener-
gy close to the level n =2 of atom (1,2), we may neglect
the dependence of the A matrix on the energy; in general,
the % matrix varies smoothly across the threshold for a
new channel. For Eq. (19) to be unchanged with U for
small p„ it must satisfy the relation

—vlnp, =u~+const . (22)

In other words, the binding energies
~ e„~ must satisfy the

relation

ln
~ e, ~

= —2U ~/v+ const . (23)

Therefore, the level positions E„z+e, converge to the
n =2 dissociation limit E„zas u ~ ~ as

E„=2+eU En =p+ ~ &

where

(24a)

a=exp[ —27r/v] & 1 . (24b)

IV. RESONANCES IN MUONIC MOLECULES

When the coupling with the open 1s channel is taken
into account, the bound vibrational states discussed in
the preceding section change into resonance states. Their
energy positions and the dominant part of the wave func-
tions, however, are hardly affected by this coupling for
the following reasons. This coupling is extremely weak,
since the spacing between the levels n =1 and 2 of atom
(1,2) is large, for example, —2 keV for muonic atoms pp,
dp, and tp. The coupling remains weak relative to ~e, ~

even for high v; the probability distribution of the wave
function G, (R ) is concentrated close to the classical turn-
ing point R„, which is proportional to ~E, ~

' (see the
last paragraph of this section), so that the strength of the
1s -2p coupling potential behaving asymptotically as
-R is effectively proportional to ~e„~. The ls-2s cou-
pling potential is of short range and is negligible for high
u.

These considerations justify application of relation (24)
to the infinity of resonances lying below the level n =2.
This result is consistent with the result of Ref. 24, which
discusses the resonances in scattering of electrons by hy-
drogen atoms by studying the dependence of the K ma-
trix on the scattering energy. The theory developed so
far in this paper is a generalization of the theory of Ref.
24 for arbitrary masses of the three particles by use of the
knowledge of the wave functions themselves. It also fol-
lows from a generalization of Ref. 24 that the width of
the resonance decreases with u with the same ratio
exp[ —2m/v] as the resonance position, and that neigh-
boring resonances do not overlap for any high u.

For homonuclear molecules (1,2,3) there are two
infinite series of resonances converging to the same limit,
namely, the gerade series (which is supported by the adia-
batic 3do.

~ potential if Mz is much smaller than M& and
M3) and the ungerade series (supported by the 4fcr„po-
tential if Mz «M„M3). These two series are uncoupled

-100-
(i6p
J=0

—10—

I

2 4 6 8 0
V

0

2 4 6 8

FIG. 2. Resonance energies of the (ddt)+ molecules relative
to the level n =2 of the dp atom. U, "vibrational" quantum
number; J, total-angular-momentum quantum number; g,
gerade; u, ungerade; o and D, results of the full three-body cal-
culations of Ref. 14;,Eq. (24) with the parameters given
in Table II.

to each other because of the well-defined gerade-ungerade
property.

For heteronuclear molecules (1,2,3), for which no
rigorous gerade-ungerade property exists, there are two
closely spaced dissociation limits 3+(1,2) (n =2) and
1+(2,3) (n =2). If M, )M3, the former lies below the
latter. The spacing between the two dissociation limits is
33.677 eV for (pdp)+, 45.687 eV for (ptp)+, and 12.010
eV for (dtp)+. There exists an infinite series of reso-
nances converging to each dissociation limit. The lower
and upper series may sometimes overlap in terms of ener-
gy. However, they are almost uncoupled to each other,
because, for high-lying resonance states, the effective in-
ternuclear distance is so large that the overlap between
the wave functions of the two different arrangement
channels is negligible. It is instructive to note that, if Mz
is much smaller than M, and M3, the resonances belong-
ing to the lower series are supported by the (almost
gerade) adiabatic 3dcr potential, and those belonging to
the upper series are supported by the (almost ungerade)
adiabatic 4fo potential. Even when the Born-
Oppenheimer approximation is inaccurate, as with the
muonic molecules, an approximate gerade-ungerade
property is still expected to be preserved with the inner
(or small-R) part of the wave functions for resonances ly-
ing not too close to their series limit. This is because the
difference between M

&
and M3 has a relatively weak

effect on the wave function when particle 2 interacts
strongly with both nuclei having the same charge. There-
fore, a resonance having a dominant gerade character, if
any, may be classified into the lower series, and that hav-
ing a dominant ungerade character into the upper series.

Table II shows the values of the parameters E„z and
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a in Eq. (24a) for six muonic molecules calculated with
the masses of particles taken from Refs. 16 and 25. This
table also includes the coeScient of the long-range poten-
tial proportional to R both in the Born-Oppenheimer
approximation and in the asymptotic three-body formula-
tion. Even for the lightest isotope (ppp)+ the adiabatic
potentials relative to the adiabatic dissociation limit are
seen to be a fairly good approximation to the asymptotic
potential in the channel i =2 relative to its dissociation
limit.

Equation (24a) with the values of a given in Table II
may be tested with the results of Ref. 14, and the con-
stant A may be determined. In this reference full three-
body Hamiltonian matrices are calculated mainly for the
(ddp, )+ and (dry)+ systems using the spheroidal coordi-
nates. The eigenvalues of Hamiltonian matrices of some
different sizes are compared, and stable ones are chosen
in a manner similar to the stabilization method that was
devised to calculate resonance energies in atomic phys-
ics. ' The eigenvalues chosen in this manner are as-

sumed to represent resonance positions.
The positions of all the gerade resonance levels of the

(ddp, )+ molecule with 1=0 and 1 calculated in Ref. 14
are plotted in Fig. 2. As for the ungerade resonances, the
lowest one with J =1 is reported to have a dominant vr„
character and to be associated with the 2p~„potential
curve, whereas the other ones that are calculated are re-
ported to have a dominant O. „character. This strongly
suggests that only the latter resonances belong to the
series in the channel i =2 that converges to the dissocia-
tion limit n =2. Therefore, the plot of ungerade reso-
nances in Fig. 2 excludes the lowest resonance with J =1
and adopts renumbered U.

Each straight line in Fig. 2 has a slope determined by
the value of a defined by Eq. (24b) and given in Table II.
Only the height is adjusted to fit each line to the reso-
nance positions. The constant A in Eq. (24a) determined
in this way is included in Table II. In this fitting pro-
cedure the deeply bound resonances are neglected, be-
cause they are considered not to satisfy the approxima-

TABLE II. Parameters for the asymptotic potentials E„=2+C/R and for the resonance positions E„=&+e„=E„2+Aa" for
muonic molecules.

System

(ppp)+

(pd p)+

{pdp)+

(ptp)+

(ptp)+

(ddp)+

(dtp)+

(dtp)+

(ttp)+

Dissociation
limit

p+pp (n =2)

p+dp (n =2)

d+pp (n =2)

p+tp {n =2)

t +pp (n =2)

d+dp (n =2)

d+tp (n =2)

t +dp (n =2)

t+tp (n =2)

(eV)

—632.124

—665.800

—632.124

—677.811

—632.124

—665.800

—677.811

—665.800

—677.811

Angular
momentum

JorN

C
BO

(eV A ')

—0.1106
—0.1023
—0.0857
—0.1106
—0.1043
—0.0919
—0.1106
—0.1043
—0.0919
—0.1106
—0.1050
—0.0939
—0.1106
—0.1050
—0.0939
—0.1106
—0.1064
—0.0981
—0.1106
—0.1071
—0.1002
—0.1106
—0.1071
—0.1002
—0.1106
—0.1078
—0.1022

C
Three-body'

(eV A')

—0.1191
—0.1118
—0.0970
—0.1138
—0.1080
—0.0964
—0.1201
—0.1146
—0.1035
—0.1120
—0.1068
—0.0963
—0.1205
—0.1156
—0.1058
—0.1148
—0.1109
—0.1031
—0.1130
—0.1097
—0.1031
—0.1151
—0.1119
—0.1054
—0.1134
—0.1107
—0.1054

0.3175
0.3057
0.2800
0.3557
0.3461
0.3251
0.3754
0.3667
0.3479
0.3730
0.3641
0.3451
0.3993
0.3917
0.3753
0.4337
0.4274
0.4140
0.4614
0.4561
0.4449
0.4679
0.4628
0.4520
0.5018
0.4977
0.4891

gerade
(eV)

—360
—345

—375
—360

ungerade
(eV)

—21.7
—20.6

( —23.9)'
( —23.0)'

'The atomic unit of energy is 27.211 396 eV (Ref. 16). The masses of p, d, t, and p are taken from Refs. 16 and 25.
Sum of the asymptotic form (4) of the adiabatic potential and the centrifugal potential with the angular momentum NA for the rela-

tive motion between nuclei 1 and 3.
'Asymptotic form of the potential in the transformed channel i =2 with the total angular momentum Jfi.
"Determined by fitting to the resonance energies given in Ref. 14.
'Determined from a single data point as is explained in the text.
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tion made in Sec. III. In particular, they are supported
by that part of the potential which is weaker than the di-
pole potential behaving as -R, so that the data points
representing their positions lie below the straight lines in
Fig. 2. In fact, the straight lines reproduce well even the
resonances as far as —10 eV from the series limit, al-
though the semilogarithmic plot gives an impression of
better agreement than a linear plot. The position of the
calculated highest-lying (largest-U) resonance in each
series has not completely converged. ' Unconverged ei-
genvalues are known empirically to lie often, but not al-
ways, above the true resonance positions, the more in er-
ror for the higher resonances, although there is no
upper-bound principle for resonance energies of Ref. 14.
This empirical rule is consistent with the result that the
calculated resonance positions close to the series limit lie
slightly below the straight lines in Fig. 2.

In plotting the resonances in the (dt's)+ molecule in-
formation on the approximate symmetry property of the
wave functions is particularly useful. Among the nine re-
ported resonances with J=O the sixth [lying at 11.41 eV
below the level tp (n =2), or at 23.42 eV below the level

dp (n =2)] has a large ungerade component, whereas the
other resonances have a large gerade component except
for the highest resonance, which exhibits strong g-u mix-
ing. ' This suggests the following. First, the sixth reso-
nance is associated with the adiabatic 4fo potential, and
belongs to the upper series of resonances converging to
the limit dp (n =2). Second, all the other resonances but
the highest are associated with the adiabatic 3do. poten-
tial, and belong to the lower series converging to the limit
tp, ( n =2 ). Third, appropriate classification of the
highest calculated resonance is unknown from the wave
function only. On the temporary assumption that it also
belongs to the lower series, all the calculated members of
this series are plotted in Fig. 3(a) just like the plot in Fig.
2. A straight line with a slope determined by a in Table
II accurately reproduces most resonance positions includ-
ing the highest. This justifies the assumed classification.
The constant A is determined by fitting the straight line
to the calculated resonance positions.

Only a single resonance that appears to belong to the
upper series is known. Therefore, rather than testing Eq.
(24) on it, we may assume this resonance to be the lowest
member of the upper series satisfying Eq. (24), and may
examine if it is reasonable. We note that the low-v reso-
nances in the lower series of the (dry)+ molecule have
values of e, similar to, but slightly lower than, those of
the gerade resonances of the (ddt)+ molecule with the
same v. We expect similarity between the upper series of
the (dtp)+ molecule and the ungerade series of the
(ddt)+ molecule. Indeed, the value —23.42 eV relative
to the level dp (n =2) for the (dtp) resonance in ques-
tion is close to and slightly lower than the values —21.16
eV (J =0) and —20. 12 eV (J = 1) for the lowest
ungerade (ddt)+ resonances. We also note that all the
ungerade resonances in Fig. 2 of the (ddt)+ molecule
with J =0 and 1 including the lowest satisfy Eq. (24) well,
but that the best A values estimated are slightly (by about
0.5 eV) lower than eo. This suggests a preliminary esti-
mate of A of —23.9 eV for the upper series of the (dtp)+

0
~ fH
~ IM
K0

-100—

dt's
J=0

(b)

—10:

I & I

0 2 4 6 8 0
V

0
1 I I ) I I IX I

2 4 6 8
V

FIG. 3. Resonance energies of the (dt's)+ rnolecules relative
to the level n =2 of the tp atom. u, "vibrational" quantum
number; J, total-angular-momentum quantum number; o, re-
sults of the full three-body calculations of Ref. 14;,Eq.
(24) with the parameters given in Table II.

molecule. Then the second member of this series would
be at 11.2 eV below the level dp (n =2), or at 0.8 eV
above the level tp (n =2), which is in the region of ener-
gy where stable eigenvalues of the Hamiltonian matrices
are not carefully searched for in Ref. 14. This must be
the reason why only one resonance is found to have a
large ungerade component. The highest calculated reso-
nance with strong u-g mixing lies far from any value
satisfying Eq. (24) for the upper series.

Ten resonances are found in Ref. 14 for the (dt's, }+ sys-
tem with J =1. Among them the fifth, lying at 19.16 eV
below the level tp (n =2},has a large ~„c omp one nt and
is strongly related to the even-parity bound state associat-
ed with the 2@m„adiabatic potential. The other nine res-
onances may be analyzed in a manner similar to the
analysis for J =0. The seventh resonance, lying at 10.51
eV below the level tp (n =2), has a large ungerade com-
ponent. Being close to eo of the other three cr„-type
series of the (ddt)+ and (dtIJ, )+ systems, the level posi-
tion —22. 52 eV relative to the series limit dp (n =2) is
reasonable as the lowest member of the upper series. A
value of A of —23.0 eV is estimated in the same way as
for J=0. This leads to an estimate of the second reso-
nance level of —10.6 eV relative to d p (n =2), or +1.4
eV relative to tp (n =2), lying outside of the energy re-
gion where stable eigenvalues are carefully searched for.
The eight resonances in the lower series are plotted in
Fig. 3(b), which is similar to Fig. 3(a).

Once A and a are determined for a particular series,
the positions of high-lying resonances follow immediately
from Eq. (24), and the corresponding channel wave func-
tions G, (R) are easily calculable from Eq. (17). Figure 4
shows examples of the (dry)+ resonances in the lower
series with J =0. The maximum amplitude of each wave
function is normalized to a constant. The resonance posi-
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FIG. 4. Resonance levels e„of the (dtp) molecule relative
to the level n =2 of the tp atom and their channel wave func-
tions G, (R). The total angular momentum is zero and the "vi-
brational" quantum number v is from 5 to 12. Each horizontal
line represents both a resonance position and the internuclear-
distance axis for the plot of G„(R); the values of G„(R) are plot-
ted to a linear scale. V&(R ) is the asymptotic potential
(A /2p3, iz)kz(kz+ 1)R for G, (R ).

R, (cm) —10 '/[4+~@, (eV)~] (25)

for all resonance states of muonic molecules in the table.

V. DISCUSSION

The theory developed in Sec. III not only proves the
presence of two infinite series of resonances converging to
the level n =2 of rnuonic atoms but also provides simple
and useful formulas such as Eq. (24) for the resonance po-
sitions, Eq. (17) for the channel wave functions, and Eq.
(25) for the size of the muonic molecules. The theory has

tions have been determined in Sec. III on the assumption
of a constant logarithmic derivative (independent of the
energy) at R =a. Figure 4 clearly illustrates that, for any
R larger than a certain fixed distance and far from the
classical turning point R„, the channel wave functions for
all high-lying resonances are practically the same within
a constant factor and have almost the same logarithmic
derivatives. The wavelengths of each wave function in-
crease rapidly as R increases towards R, and the peak
closest to R, has the largest probability distribution; note
the logarithmic scale for R. The position of this peak
may be regarded as the size of the muonic molecule. This
size R„of a state at e, is about 20% less than R, or
0 8+C/e.„where C is given in Table II. Reference to
this table indicates that the size is about

also been found useful in the classification of resonance
states by associating them with particular adiabatic
potential-energy curves. The applications of the theory
to the (ddp)+ and (dt's). molecules in Sec. IV have
proved the reliability of both the present theory and the
resonance energies of Ref. 14.

The resonances discussed in this paper may have an
infiuence on various aspects of muon-related physics. In
the study of this inAuence two peculiar properties of
these resonances, especially high-lying resonances, must
be kept in mind. One is the extremely large size of the
muonic molecules. Figure 4 shows that the size of the
(dry)+ molecules in resonance states lying within about
an electron volt from the series limit is a few tenths of an
angstrom or larger. Equation (25) says that the same is
also true for other muonic molecules with small J.
Therefore, a muonic molecular ion in any of these high-
lying resonance states is not small enough to be regarded
as a "pseudonucleus" in an electronic molecule. This is a
property different even from that of the weakly bound
muonic molecular ions briefly mentioned in Sec. I. The
difference is due to the much longer range of the poten-
tials in the channels n =2 than the potential in the chan-
nel n =1.

The other peculiar property that is absent from bound
rnuonic molecules concerns the strong effects of the
corrections to be made on the nonrelativistic theory. To
discuss this we stress again that the results of Secs. III
and IV are consequences of the long-range dipole poten-
tial proportional to R . The mathematical origin of
this potential has been explained in Sec. III. Its physical
origin is the linear Stark effect, which follows from the
perturbation theory for degenerate states. The degenera-
cy of the 2s and 2p levels, which are coupled by the dipole
operator, is essential for the theory of Sec. III. Such de-
generacy occurs only for two-body hydrogenlike atoms
and not for atoms with more than two particles. There-
fore, infinite series of resonances never occur for four-
body or larger systems below a limit of dissociation into a
nonhydrogenic neutral atom and an ion (or any charged
particle); the optical potential of the longest range in this
channel is the dipole polarization potential asymptotical-
ly proportional to R

We may expect that the three-body muonic molecules
(ppp)+, (pdp), (pry), (ddt), (dtp), and (ttp, )

have infinite series of resonances produced by the same
mechanism as has been discussed so far and converging
to the threshold of each principal quantum number n of a
muonic hydrogenlike atom.

We have considered purely nonrelativistic Schrodinger
equation. For accurate description, however, we must
take into account the relativistic corrections, the nuclear
effects, and the quantum-electrodynamic corrections.
Then, the degenerate levels with n =2 of the hydrogen-
like muonic atoms pp, dp, and tp split into six or seven
nondegenerate levels, of which the two 2s, &2 rnetastable
levels lie lower than the 2p levels by AE2---0. 2 eV due
mainly to the vacuum polarization effect. Consequently,
the asymptotic form of the optical potential is now pro-
portional to R, and there exist only a finite number of
resonances. For intermediate R for which the potential is
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much stronger than EE2, however, the level spacings are
negligible and the potential in the transformed channel
i =2 still behaves as R . For this reason resonances
satisfying the inequality ~e, ~

&&b,E2 in the nonrelativistic
approximation are affected only little by the level split-
ting. Nonrelativistic resonances with ~e, ~

of the same or-
der of magnitude as AE2 may be strongly influenced by
the relativistic and quantum-electrodynamic effects. As
for nonrelativistic resonances lying within about AE2
from the dissociation limit, the mechanism of supporting
them is now absent, and calculations of the conventional
types based on the Schrodinger equation do not even
serve as a starting point of perturbative approaches to
these high-lying resonances in general. These considera-
tions cast doubt on the existence of muonic molecular
resonances with ~e, ~

S0.2 eV. Probably there exist reso-
nances within about an electron volt from the dissocia-
tion limit n =2, or within a few vibrational quanta of
an electronic "hydrogen-isotope molecule, " e.g. ,
d+(dtp)+e e or d+(ddt)+e e for which the vibra-
tional quantum is about 0.3 eV. If so, these resonance
states may be formed with a high rate in processes (1),
and may play an important role in muon-catalyzed
fusion. A definitive proof of their existence has to await

calculations of three-body resonances including the rela-
tivistic and quantum-electrodynamic effects. Further-
more, for studying their relevance to muon-catalyzed
fusion, six-body treatment of the electronic molecules,
rather than the approximation to regard them as pseudo-
hydrogen-isotope molecules, is necessary because of the
large size of the (dt's)+ and (ddt, )+ ions.

Note added in proof Eq. uation (18) is valid when the
off-diagonal elements of the % matrix are negligible.
When they are not, a quantity varying slowly with energy
must be added to the left-hand side of Eq. (18). Then, the
left-hand side of Eq. (19) must be modified accordingly,
but all the following equations remain unchanged.
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