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Stratified continuum percolation is a percolation model based upon self-similarity that can de-
scribe correlated transport and connectivity problems. It is demonstrated that this construction of
correlated percolation retains some of the properties of random percolation. Most importantly,
the critical threshold remains well defined, independent of changing correlations. These results
introduce a new approach to understanding correlated flow systems.

A wide variety of patterns occurring in nature frequent-
ly have spatial correlations. Examples of spatially corre-
lated patterns include self-similar fractal structures gen-
erated through fragmentation and aggregation processes. '

Despite early success in applying real-space renormaliza-
tion groups to correlated percolation systems, much of
recent percolation theory has continued to deal with stan-
dard uncorrelated percolation. One reason for this is that
correlations can occur in arbitrary variety, and depending
on the form or strength of the correlations, the system
may or may not be in the same universality class. More
importantly, correlations alter critical thresholds. In this
paper, a correlated continuum percolation model is
presented which retains many of the properties of stan-
dard uncorrelated percolation. Correlations are intro-
duced naturally by recursively scaling up successive strata
of standard percolation patterns. Using real-space renor-
malization, it is demonstrated that this correlated con-
struction retains a well-deflned critical threshold.

Stratified continuum percolation was initially developed
to describe the patterns generated by the flow of fluid
through natural fractures in granite rock. ' The flow pat-
terns were found to be highly correlated, with fractal di-
mensions that changed with changing stress on the frac-
ture. This model was also applied to the problem of the
dependence of the flow on deformation of the fracture as
the void space is closed. These appLications clearly re-
quired a continuum model, because of the continuous dis-
tribution of void apertures and the absence of any under-
lying lattice in a fracture. Furthermore, the model had to
include spatial correlation to adequately describe the frac-
tal patterns measured experimentally.

Strati6ed percolation patterns are constructed recur-
sively as a hybrid between standard random continuum
percolation and a random Sierpinski carpet. The Sierpin-
ski carpet provides the self-similar skeleton upon which
successively smaller tiers of standard percolation patterns
are applied. The strati6ed percolation construction is
shown graphically in Fig. 1. The construction begins by
de6ning an initial square region, called the 6rst tier.
Within this tier, N sites are randomly selected. Around
each site, a square region is de6ned with linear dimension
reduced in scale by a factor of b from the size of the 6rst
tier. These N smaller squares constitute the second tier.
The construction then continues recursively with N
squares, reduced again by the scale factor b, de6ned

within each of the squares making up the second tier. The
recursive construction is terminated when the size of the
square regions reaches a minimum cutoff. At this level,
solid squares are plotted within the 6nal tier, allowing
overlap. The strati6ed percolation pattern is defined by
the 6nal set of plotted squares. On the 6rst tier wrap-
around periodic boundary conditions are applied in which
points positioned beyond a boundary of the 6rst tier are
plotted within the opposing boundary. This operation
speci6es the 6rst tier size as the upper cutoff of the scaling
pattern. A strati6ed percolation pattern is shown in Fig. 2
for 6ve tiers, N 7 and b 2.37. A total of 7 16807
points have been plotted in the 6gure. The fractal dimen-
sion of the pattern was measured using the two- int
correlation function F(R) (f(r)f(r +R )) R
between the upper and lower cutoffs where D is the fractal
dimension. The fractal dimension in Fig. 2 was measured
to be D 1.84 ~ 0.02. The two-point correlation function
operates on the entire pattern, and must be distinguished
from the pair-connectedness function g = (p —p, ) "used
in the statistical analysis of percolation clusters.

The pattern in Fig. 2 is above the percolation threshold.

~ ~

FIG. 1. Recursive construction of stratified percolation for
three tiers, N 5 and b 4. The large square is the first tier.
The five smaller squares located randomly within this square are
the second tier, reduced by a factor of 4. Within each of these
smaller tiers, five more squares are located, again reduced in

scale by a factor of 4. Within the third tiers, five solid squares
are finally plotted to construct the pattern. A total of 5 125
squares are plotted in this figure.
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where a denotes the area fraction per tier. A recursive ex-
pression for the total area fraction of the stratified per-
colation pattern can be defined by applying Eq. (1) for the
changing area fraction of each successive tier. For n tiers
this recursive expression is

A(n, N) 1 —[1 —A(n —1,N)/b ]

A(1,N) a(N, b) .
(2)

FIG. 2. Stratified percolation pattern for 5 tiers, N 7 and
b 2.37. The total area fraction occupied (colored black in the
figure) is 0.64. The fractal dimension is D 1.84. This pattern
is slightly above the percolation threshold.

The area fraction occupied (black) is 0.64, already re-
duced from the critical area fraction A, 0.7 of standard
continuum percolation. The spatial correlation introduced
by the recursive construction has lowered the critical
threshold. This lowering of the critical threshold can be
understood qualitatively through the tendency of the
correlation to "clump" the percolation clusters. Connect-
ed clusters therefore develop for relatively small occupan-
cies. The stronger the correlation, the more the sites
clump into connected clusters, and the lower the perco1a-
tion threshold becomes. The strongly correlated structure
of Fig. 2 can be seen more easily by considering the densi-
ty of sites, plotted in Fig. 3. White denotes the absence of
sites. Black denotes the highest density of points.

It is easy to see that, by construction, standard continu-
um percolation patterns arise within every tier. This
presents the possibility of defining an area fraction per tier
which is calculated in the identical manner as for standard
continuum percolation. For N squares of reduced size b
plotted within a square region of unit area, the result from
standard continuum percolation is

a(N, b) -1—(1 —1/b')

FIG. 3. Density of sites for the pattern in Fig. 2. White
denotes unoccupied sites. Black denotes the highest density of
sites.

A simpler, nonrecursive approximate expression is ob-
tained by expanding Eq. (2) as

A(n, N) a[a+(1 —a)a ]"

The approximate expression for the fractal dimension is
derived in a similar fashion as

in[a+(1 —a)a ]
lnb

(4)

The critical percolation threshold for stratified percola-
tion was determined through Monte Carlo simulations us-
ing the real-space continuum renormalization group.
The probability that the patterns with N points per tier
percolated within test squares of linear size s is given by
the percolation probability R(N;s). The fixed point in the
percolation probability defines the percolation threshold
N such that R (N;s ) R (N;s') is invariant to
changes in the scale s s' of the test regions. The per-
colation probability is conventionally written as a function
of the occupied area fraction R(A;s). The critical area
fraction is then given by A, A(n, N*). To determine if
a specific pattern percolated, the continuum pattern was
first "digitized" into a 300X300 array. The digitizing
resolution was set so that the smallest black square con-
sisted of 16 occupied sites. This fine resolution ensures
that the continuum properties are maintained at the
smallest level, yet at the same time allowing the use of site
percolation algorithms. A pattern was deemed to per-
colate within a test square with linear size s if a connected
path existed top to bottom or side to side in the test
square. ' The connected path was identified using a clus-
ter numbering algorithm. "

Percolation probabilities R(A;s) for stratified percola-
tion were tabulated by varying the number of points per
tier N. The results for 100 simulations of three tiers with
b 4.22 are shown in Fig. 4(a), plotted for s 1, s
s 3 and s 6 as functions of total area fraction. The
fixed point in the percolation probability occurs at
A, 0.53 ~0.02, reduced significantly from A, 0.7 for
standard continuum percolation. By including correlation
into the percolation problem, a well-defined fixed point
has been lost. This is a general feature of all correlated
percolation problems. Stratified percolation, on the other
hand, incorporates correlations while keeping the essential
features of standard continuum percolation. In particular,
the area per tier, a(N, b), plays a key role in the stratified
percolation construction. The percolation probability of
Fig. 4(a) is replotted in Fig. 4(b) as R(a;s), a function of
the area per tier. The striking result of the plot is that the
critical threshold occurs at a, 0.71 ~0.02, which is the
canonical value from standard percolation to within the
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FIG. 4. Percolation probability of three-tier stratified percolation patterns calculated using real-space renormalization for four grid
sizes: s 1, s j, s —,', s f . The fixed point defines the percolation threshold. This is shown in (a) as a function of occupied area
fraction. The threshold for three tiers is A, -0.53. The percolation probability is plotted as a function of area fraction per tier in (b).
Plotted in this way, the percolation threshold has remained invariant at the canonical value of 0.7.

accuracy of the simulations. Monte Carlo results for 350
simulations of 6ve tiers with b 2.37 also indicate
a, 0.71 +' 0.01. Therefore, the strati+ed percolation
construction retains the well-dined axed point As.
correlations are changed within the constructs of stratified
percolation, the critical threshold (stated in terms of the
area fraction per tier) remains invariant within the com-
putational uncertainty.

Strati6ed percolation may be expected to be in the same
universality class as standard percolation because it al-
ready retains many of the standard features. Evidence for
universality class is obtained by considering the critical
exponent v of the pair-connectedness length. This ex-
ponent is derived from R(a;s) by the expression '

In(s) —ln(s')
ln [dR(a;s)/da], , —ln [dR(a;s')/da], ,

where the derivatives are evaluated at the critical thresh-
old. Evaluating the Monte Carlo R(a;s) at a, leads to a
value of v 1.7+0.4. The magnitude of the computa-
tional uncertainty makes it impossible at this time to draw
any conclusions about the universality class of stratified
percolation. Further simulations are necessary to reduce

the uncertainty in this value.
In conclusion, stratified continuum percolation is a new

model that can describe transport and connectivity prob-
lems that possess self-similarity, such as How-through
fractures. Most importantly, this construction of correlat-
ed percolation retains many of the results from standard
percolation. In particular, the critical threshold of
stratified percolation remains well de6ned, independent of
changing correlations. This correlated percolation model
was not originally motivated by magnetic problems, or by
dynamic aggregation processes such as cluster-cluster ag-
gregation or surface island formation. However, work is
in progress to determine if this recursive construction of
percolation networks has a wider applicability to general
self-similar percolation processes. If so, then the ease with
which the critical threshold can be recognized in stratified
patterns promises a powerful tool for many correlated per-
colation problems.
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