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The mean time taken for the degenerate parametric oscillator to quantum tunnel between its
two above-threshold stable states is calculated in the large photon-number limit. The result is

compared with an earlier approximate result using a truncated Fokker-Planck equation in the
Wigner representation. This earlier theory is equivalent to stochastic electrodynamics. Our quan-
tum theory results indicate orders of magnitude faster tunneling far above threshold when com-
pared to the truncated Wigner theory.

The problem of quantum Auctuations in nonthermal
equilibrium systems is an open area of modern physics.
Recently, the discovery of squeezed states' has demon-
strated the existence of new, phase-dependent statistical
properties in laser-driven devices. These types of statisti-
cal properties are not obtainable in thermal-equilibrium
Gibbs ensembles. In fact, in most cases the relevant den-
sity matrix for nonthermal equilibrium systems is only
available through direct solutions of their Heisenberg or
master equations. ' In this Rapid Communication, we
present a treatment of quantum tunneling in a degenerate
parametric oscillator. This provides a new and sensitive
testing ground for theories of nonlinear quantum fluctua-
tions.

An early treatment of the degenerate parametric oscil-
lator was developed by Graham using a Wigner opera-
tor representation. This involved an approximation in
which third-order derivative terms were dropped from the
time-evolution equation. The resulting truncated Wigner
theory is identical to stochastic electrodynamics (SED).
This treatment of quantum fiuctuations is essentially a
hidden variable theory with a classical phase space.
Surprisingly, the truncated Wigner, or SED, treatment is
sufBcient to reproduce the results of squeezing experi-
ments in the below-threshold parametric amplifiers.
However, use of the truncation approximation is question-
able in a tunneling calculation. Graham also omits pump
quantum noise, which has a large effect above threshold.

We present a new calculation of the mean tunneling
time using a coherent-state positive-P representation
which allows the derivation of exact stochastic equations,
since the positive-P representation gives no third-order
terms. Instead, it has extra phase-space dimensions that
allow a stochastic description of the quantum features,
even when coherent-state superpositions occur. Our re-

suits for tunneling times are completely different from
those of the truncated Wigner theory. The tunneling rates
agree in the near threshold limit, but our results give or-
ders of magnitude faster tunneling for driving fields well
above threshold. Of most interest is the fact that the
difference between the quantum mechanical and the trun-
cated Wigner calculation is greatly augmented in the limit
of macroscopic systems.

The behavior of the degenerate parametric oscillator
may be formulated in terms of a simple model consisting
of an optical cavity and two quantized electromagnetic
field modes with frequencies tn and 2co which interact via
a g susceptibility. Both modes are taken to be resonant
with the cavity and losses at the cavity mirrors are includ-
ed. The input pump field has frequency 2ro and is treated
classically. This gives rise to the interaction Hamiltonian
for the system

H ihg(a b —a b )/2+ihE(b —b)+HL.
A A

Here a, ti t and b, b t are the annihilation and creation
operators for the two modes with frequencies ro and 2co,
respectively, and g is the intermode coupling constant.
Thus the first term in the Hamiltonian describes the in-
teraction between the two modes. E is the classical pump
amplitude injected into the pump mode b at frequency 2ra.
The third term, HL, describes the losses for the two modes
at the cavity mirrors, with decay rates y, and yb for
modes a and b, respectively.

This Hamiltonian can be used to obtain an operator
master equation. A Fokker-Planck equation is then de-
rived using the positive-P representation to give positive
definite diffusion. This is equivalent to four Ito stochas-
tic differential equations. These four equations describe
the degenerate parametric oscillator in terms of the vari-
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ables a, at, P, and Pt. They are simplified by adiabatical-
ly eliminating the pump mode b. The two remaining
equations for the subharmonic mode a in the zero-
temperature limit are as follows:

da [—a+at(X, g—a )]dr+(A, —g a )' dW~, (2a)

dat [—at+a(k —g at )]dr+(X —g at )' dW2,

ga
u sin

ga
v sin

+sin

—sin

r

gat

gat

stant diffusion, or additive stochastic noise

(4a)

(4b)

where

(dW;dW)) -Bifdr .

(2b)

In (2), g g/(2Z, Z&)'~ is the coupling scaled by the
geometric mean of the mode decay rates. In the following
calculations we take g «1, corresponding to the current
experimental limits of large threshold photon numbers.
The time ~ is measured in cavity lifetimes y, . Also,

( gE ) /(y, yb) is the pump amplitude scaled so that the
threshold condition of parametric oscillation is at X 1.
The terms d8'~ and d8'2 are independent, &correlated,
real noise variables which have a Gaussian probability dis-
tribution. The complex variables a and a are stochasti-
cally independent in the positive P representation, al-
though they represent the Hermitian conjugate operators
a and a and have conjugate expectation values and mo-
ments.

The steady-state limit is well known from the complex-
P representation solution for the equivalent Fokker-
Planck equation. However, Wolinsky and Carmichael
have recently shown that the dynamics of the quantum
stochastic equations are simpli6ed by the existence of a
real, bounded subspace in which any stochastic trajectory
can be trapped. ' Given that a trajectory starts in this
eal subspace of g a (g and g at (g inspection of the

terms in Eq. (2) shows that both the drift and noise terms
will remain real, so that the trajectory must stay on the
real plane. The trajectory is prevented from crossing the
boundaries at g a X and g2at2 A, , because there the
quantum noise transverse to it vanishes. Thus the trajec-
tory must follow the deterministic flow inwards or be
driven along the boundary by the other noise component.
On this manifold, the complex and positive P representa-
tions are identical.

Although the manifold is bounded, it has regions in
which the stochastic equations become unstable to com-
plex fluctuations. These could be caused by phase fluctua-
tions in the pump or by thermal noise. The eigenvalues
controlling the stability can be obtained by expanding the
stochastic equations (2) to first order in their imaginary
parts about the real manifold. They are

w ~ —(I+2g2aa t) W [(g —g2a )(g —g at )] ~ (3)

Above threshold the unstable regions stretch from the
a —a t corners of the manifold across the saddle point at
a at 0. This saddle point is the region through which
a trajectory is most likely to travel while tunneling from
one state to the other. While in our model this does not
cause problems, it suggests that for very small g, correc-
tions due to phase fluctuations or nonzero temperatures
could have relatively large effects on tunneling times.

We now transform the variables a and a to give con-

These new variables are constrained to have a range
such that

~
u

~

—
~

v
~

~ ~/2. Referring back to the vari-
ables a and a' it can be seen that the u axis represents the
classical subspace of the phase space, where a at. Thus
the variable v is a nonclassical dimension which allows the
creation of quantum features. The stochastic equations
corresponding to these variables are

u+v u v
du - csin(u) —a tan +tan

2 2

+E2gdW„,

PdT

(sa)

u+vdv- ~ —
A, sin(v) —o tan

2

+J2gdW„.

u v—tan
2

dr

(sb)

Here cr 1 —g /2. These Ito equations have a corre-
sponding Fokker-Planck equation and a probability distri-
bution in the limit as ~ of

P(u, v) N exp[ —V(u, v)/g ],
where the potential V(u, v) is

V(u, v) —2o ln ) cos(u) +cos(v) ) +icos(u) —icos(v) .

(7)
Above threshold the potential has two minima corre-

sponding to the stable states of the oscillator. These mini-
ma have equal intensities and amplitudes of opposite sign,
and are at classical locations with a at:

or
(uo, vo) -(~ 2sin '[(X —o) ' '/WZ], 0),

gao- ~ (X —1+g') '~'.

(Sa)

(gb)

x X+o.

ra k(k —cr) ' exp [Z —a —cr ln(Vcr)]2

g 2

There is also a saddle point at (u„v, ) (0,0). An im-
portant feature to note is that along the u axis the second
derivative of the potential in the v direction is always posi-
tive. The classical subspace (v 0) is therefore at a
minimum of the potential with respect to variations in the
nonclassical variable v. This valley along the u axis be-
tween the two potential wells is the most probable path for
a stochastic trajectory in switching from one well to the
other. Since there is only one such path on the manifold,
the switching rate between them wil1 be dominated by the
rate due to trajectories along this route. Using the
method of Landauer and Swanson" the mean time taken
for the oscillator to switch from one state to the other in
thelimitof g «1 is'
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We note that increasing the pump amplitude A, in-
creases the switching time, as does reducing g . Small g
corresponds to large threshold photon numbers.

The switching time calculated by us for the degenerate
parametric oscillator is markedly different to a previously
calculated result which used the Wigner representation.
This had only a classical phase space, with coordinates x
and p, and could therefore be written as a function of a
single variable a x+ip. In general, an exact Wigner
distribution can develop negative values. In the trunca-
tion approximation it is positive, with 0 I

0 1

I t

W(p, x) -exp[ —y(x+ip)], (10) pump st.rength A.

(11)
Above threshold this potential has two minima, at

a + (X, —I)'~. In the limit of large threshold photon
numbers, these minima are very close to those obtained in
(8). After taking the different operator correspondences
into account, the Graham theory and the positive-P
theory predict identical results for small linear fluctua-
tions near threshold. However, the result for the tunnel-
ing time using this approximate Wigner distribution is

1 X, +1
4~y, X(k —1)' exp

1
, (X —1)' .

, g
(12)

Comparing this to (9), we see that the terms in the ex-
ponential are very different in character. The result of
(12) predicts slower switching above threshold. Since the
differences can be many orders of magnitude (see Fig. 1)
it should be easy to experimentally observe this difference.

The approximate Wigner calculation involves the drop-
ping of third-order derivative terms in order to get a
second-order Fokker-Planck equation. As noted by one of
us, the effect of the dropping of higher-order derivative
terms in Fokker-Planck equations is highly representation
dependent. Although it is often a good approximation for
linear fluctuations, it can change switching times by many
orders of magnitude. Our calculation in the positive-P
representation involves no such truncation, and gives an
exact second-order Fokker-Planck equation. There is
however an enlargement of the classical phase space. The
exact Wigner function solution can be obtained by con-
volving the exact P function with a complex Gaussian.
The equation of motion of this exact solution therefore has
identical eigenvalues and tunneling rates to our result.

An interesting feature of the truncated Wigner
Fokker-Planck equation is that the diffusion term is iden-
tical to that for classical thermal noise, with an occupation
number of half a photon per mode. The quantum noise
appears to be caused only by losses at the cavity mirrors
which couple to vacuum fluctuations. In this sense, the
truncated Wigner theory is identical to stochastic electro-
dynamics. However, the higher-order derivatives in the

where

y(x+ip) -x'+p'+ I —,
' g'(x2+p')' —k(x' —p') .

FIG. 1. This figure shows the variation in the logarithm of
the tunneling time with the pump amplitude A, . The solid line is
the truncated Wigner result and the dotted line is our positive-P
result. With g 0.1, a unit difference on the vertical log scale
is equivalent to a difference in switching times of a factor of e ' .

Wigner Fokker-Planck equation are dependent on the in-
teraction strength g, so that the true nonlinear character
of the quantum noise is removed when these are neglected.
This does not occur with the exact positive P Fokker-
Planck equation. In fact, in normally ordered P represen-
tations the quantum noise is solely due to the interaction,
because normally ordered vacuum fluctuations vanish
identically at zero temperature.

Thus, the neglect of third-order derivatives implies that
the resulting SED-type theory is not equivalent to quan-
tum mechanics for this nonlinear problem. With pump
noise included the Wigner theory should be accurate for
linear fluctuations. Above threshold these additional
pump noise terms are very large and cannot be neglected,
even for linearized calculations. However, the inclusion of
pump quantum noise violates the potential conditions on
the Wigner Fokker-Planck equation. They are omitted in
Graham's treatment. We will compare our result with the
full SED theory elsewhere.

These two results indicate the difference between the
rates of classical thermal activation and true quantum
tunneling. Classical thermal activation rates are slower
than quantum tunneling rates far above threshold, be-
cause for large barriers the thermal trajectory must go
over the barrier. However, a quantum process can
shortcut this by tunneling. Our calculations indicate that
care must be taken with a stochastic electrodynamics ap-
proach to vacuum fluctuations. An experimental mea-
surement of the tunneling rate would provide direct evi-
dence to distinguish quantum mechanics from the earlier
theory, in a situation with a relatively large or macroscop-
ic number of photons present in the quantum system. '

This would be observable as a random telegraph signal in
the output detected with a local oscillator. '
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