
PHYSICAL REVIEW A VOLUME 40, NUMBER 8 OCTOBER 15, 1989

Squeezed-state wave functions and their relation to classical phase-space maps
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Coordinate wave functions for the one-mode squeezed states produced by the quantum analog of
the general linear transformation in phase space are calculated. The probability density [~ ti)(q)

~ ] for
these states is Gaussian with center predicted by the classical transformation. The quantum image

(which includes the traditional two-mode squeeze operator) of a three-parameter symplectic map in

two-mode phase space equally generates squeezed states having Gaussian ~t[)(q), q) )~ . The center of
the two-mode Gaussian is again predicted by the classical mapping.

INTRODUCTION

Although Yuen derived many of the properties of these
squeezed states and Schleich and Wheeler give a wave
function for the eigenstates of (1), most attention has been
focused (partly because of their greater experimental
desirability) on minimum uncertainity states (MUS)
whose annihilation operator has the form

b =a cosh', +a sinhA, (3a)

Squeezed states of the electromagnetic field, introduced
independently by Stoler' and Lu, have in recent years re-
ceived considerable attention, both theoretical and ex-
perimental. Yuen discussed squeezed states as eigen-
states of the operator

b =pa+va

where a and a are, respectively, photon annihilation and
creation operators and p and v are arbitrary complex
numbers satisfying

phase space form a natural language for squeezed states.
Indeed, operator (4a) may be recast in the intuitively ap-
pealing form

U(A. ) = 1

277

p+p
2

q'= Aq+Bp,
p'= Cq+Dp,

(6a)

(6b)

where )M=e, ~~ ) is the coherent state in canonical phase
space representation. q and p may be identified with the
amplitudes of the two quadriture components of the field
or alternatively with the position and momentum of a
harmonic oscillator (with units of time, length, and mass
chosen to make A'=m =co= 1). The rescaling q~)Mq and

p ~p/p is evident in this expression.
In a recent submission' we have investigated the more

general phase space map

or the slightly more generaly squeezed state having

b =a cosh', +e' a sinhA, , (3b)

subject to AD BC=1. The Hi-lbert space image U, of (6),
takes the form

with k and L9 real.
A closer connection to experiment can be made by not-

ing that the squeezed state is obtained by squeezing the
coherent state. The squeezing performed by apparatus
such as a pumped parametric oscillator is represented by
a squeeze operator acting on the coherent input state.
The simplest such (two-photon) squeeze operator takes
the form

and was shown to transform the annihilation operator ac-
cording to

U(r, s)aUt(r, s) =sa+ra

U(g) —eX[(a ) —a l/2 (4a) where

and produces eigenstates of (3a), while the slightly more
general form

s =
—,'[( A +D)+i (B —C)], (9a)

U(g) —e [g(at) —/*a ]/2 (4b) r =
—,
' [(D —A ) i ( B +C)], — (9b)

with g=k,e' produces eigenstates of (3b). When the re-
sult of a single squeeze is an eigenstate of (3b), sequential
squeezing (two successive squeezes may be feasible) result
in eigenstates of (1).

As pointed out by Han et al. , linear transformations in

and ~s~2 —
~r~ =1. (g) is in fact precisely the form of the

general squeezed-state annihilation operator (1).
In Sec. I of this Brief Report we derive the coordinate

representation wave function of the squeezed state pro-
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duced by the action of U(r, s) on the coherent state. We
show that the displacement of the coherent state in phase
space caused by squeezing is exactly that predicted by the
classical mapping giving rise to U. The width of the re-
sulting gaussian is also easily related to te classical map.
In consequence, if the effect of squeezing on the quadri-
ture amplitudes of the field are known, the uncertainties
follow trivially. In Sec. II the wave function of the states
implied by the generalization of Ref. 10 for the two-mode
squeezed state is obtained. The two-mode density leads
again to remarkably simple results when expressed in
terms of the classical mapping parameters.

I. ONE-MODE SQUEEZED-STATE WAVE FUNCTION

In Ref. 10 the operator (7) was integrated to obtain

U(r, s)=s '~ exp (at) exp a aln-r 1

2$ s

X exp a
2$

(10)

The squeezed state ~a;r, s ) produced by the action of this
operator on the coherent state ~a ) is

ra
~a;r, s) = U(r, s)~a) =s '~ exp

2s
exp a a ln —exp

1

s

2

/a)
2$

=s ' exp
r*a

2s

V

/a/' ra t
xp

+a~
exp

s
lo) .

To obtain the wave function in coordinate representation, we calculate (q ~a;r, s ), where ~q ) is the coordinate eigen-
state with Fock space representation

~q ) =~ ' exp[ —
—,'q ++2qa —

—,'(at) ]~0) . (12)

Thus
r

(q~a;r, s) =s '
vr

' exp —I/2 q +~a~ — a 0 exp(&2qa ——'a )exp
s 2

r t'2(a)+—a 0
2$ $

(13)

Inserting the overcompleteness relation for the coherent state ~z ), f d z n '
~z ) (z

~

= 1, into (13) and using the identity
~0) (0~ =:e ' ': (where:: denotes normal ordering), we integrate by means of the integration-within-ordered-products''
(IWOP) technique to obtain for the matrix element in (13):

(0~exp(&2qa —
—,'a )exp (a") + —a ~0)

2$ s

= (0~exp(&2qa —
—,'a ) f d z~ '~z ) (z ~exp — (a") +—a ~0)

2$ s

=(0~ f d zn ':exp —
~z~ +&2qz —

—,'z +za — (z*) +—z'+z*a —a a:~0)
2s s

=(1—r Is) '~ exp
1

s —r
a 2

&2qa — —rq
2s (14)

The wave function then becomes

(q ~a;r, s ) =~ '~ (s —r) '~ exp [(s+r)q 2&2qa ——a (r*—s*)]—
2(s r)— 2

2

(15)

Calculating the probability density p=
~ (q ~a;r, s ) ~

with the aid of (7), we obtain the simple result

p(q) = 1
exp

[~( W '+B')]'"
[q —&2(a, A +a2B )]

(3 +B )
(16)

where a] and az are, respectively, the real and imaginary
parts of a. If we denote the expectation value
(a;r, s~Q~a;r, s) of the position operator Q
=[(a +a )/&2] in the squeezed state as Q' and expecta-
tion values of Q and P =[(a —a ) /i&2] in the coherent
state by Q =&2a, and P =&2a2, the argument of the ex-

ponential in (16) may be written as
—(q —Q') l(A +B ), where Q'= AQ+BP. The classi-
cal transformation (6a) is apparent in the displacement of
the probability density. The wave function in momentum
representation is similarly given by
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&p ~a;r, s ) =~ '"(s+r)
—1

X exp [(s —r)p +2V'2ipa
2(r +s)

2—a (r +s*)]—
2

to give the probability density

1

[m.(C +D )]
p(p) =

[p —&2(a,C+ a2D) J
X exp (C+D )

(18)

Its mean mimics the classical map (6b).
For any state ~g), &g~g~l() = f q)(quilt') ['dq and

(@[g (l() =f q ((q(l() ) dq, whence, from (16) we ob-

tain the variance for the squeezed state

(Aq) =
—,'(A +B )

and from (18) the analogous result

(hp) =—'(C +D )

giving the uncertainty product

(bq)(bp)= —,'[(A +B )(C +D )]'i2 .

(19)

(20)

(21)

B=C= —sinhksinO . (22)

In retrospect, we note that these results for the expec-
tation values, expressed in terms of p and v, of (1) were
obtained from the commutator relation [b, b ]= 1 in Ref.
5. The traditional squeezed state resulting from squeez-
ing the coherent state ~a ) by the two parameter squeeze
operator (4b) is recovered by setting

A =cosh', —sinhA. cosO, D =cosh', + sinhA, cosO,

II. TWG-MODE SQUEEZED-STATE WAVE FUNCTIQN

It was shown in Ref. 10 that the two-mode squeeze
operators (26) form a subset of the unitary operators
engendered by the symplectic two-mode phase-space
mapping

I

A+D A —D B —C B+C
1 A D A +D B+C B —C 9'2

p& 2 C —B B+C A +D D —A p&

B+C C —B D —A A+D
Pz P2

The unitary operator image U' '(r, s),

(23)

r 1U' '(r, s)=exp ——a,a2 exp (a,a, +a2a2+1)ln—

r
Xexp a&a2

s

of this mapping (23), generalizes the squeezed annihila-
tion operators as b, = U' 'a, ( U' ') =sa, + ra 2 and

b2 = U' 'a2( U' ') =sa2+ra
&

(25)

where the subscripts indicate which mode they act on.
(The parameters A, B, C, and D, have been redefined
from Ref. 10 in order that the traditional (two-parameter)
two-mode squeeze operator

=e (26)with (=A.e'

may be recovered when the expressions (22) are substitut-
ed in (9). This change replaces s' and r of Ref. 10 by s
and r.)—

Denoting the two-mode coherent state by ~a, P) we ob-
tain, as in the one-mode case, the wave function of the
two-mode squeezed state U' '(r, s)~a, P) by inserting the
completeness relation, and integrate using the I&OP
technique,

r*
&q, , q2~ U' '(r, s)~a, p) =s '&q„q2 ~exp ——"a,az exp (a,a, +a&a&)ln —exp aP la, p)

s s s

=s 'm ' exp[ —
—,'(q, +q2+ ~a~ + ~P~ ](0,0~exp(&2q, a, +/2qzaz —

—,'a, —
—,'az)

X f d z&d z2n ~z&, z2)(z&, zz~exp ——"a&a&+—a&+ —a2+ aP ~0,0)
s

=s '~ ' exp[ —
—,'(q, +q2+~a~ + ~P~ )](0,0~ f d z, d z2~ exp( —~z, ~

—
~z2~

—
—,'z, —

—,'zz)

Xexp &2q, z, +V 2q2zz ——z', z2 +—z,'+ —z2 —a,a, —a2a2+

=[a(s —r )] ' ex — — +
(s —r )

—
—,'(s +r )(q & +qz ) —2q&q2rs

~2 p2 +&2P(q2s+ q) r )

+v'2a( q, s +q z r ) +a13( r *s—rs *
) (27)
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In an attempt to gain some feeling for this rather
formidable-looking expression, the squared modulus of
(27) was plotted using a personal computer for various
values of the complex parameters s, r, a, and I3. On in-
spection of a number of these graphs it was soon evident
that the squeeze operator mapped the centers of the prob-
ability densities in accord with the classical mapping (23),
i.e. , for Qz = &2a&, Q&

=&2P& and P
~

——V'2az,
Pz = &2)33z one finds empirically that

X'=(ai+a i+az+az )/2&2, is sufficient to describe the
coordinate uncertainity of the state. For our more gen-
eral state, two uncertainties, (b,x) =(A +B )/2 and
(Ay) =(C +D )/2, are required. Defining u
=2 '

(P 1+Pz) and u =2 ' (P, —Pz), the Probability
density in momentum space is similarly given by

[( A 2+B2)(C2+D2)]i/2

Q'i =
—,'[( A +D)Qi+( A —D)Qz

+(B —C)P, +(B +C)Pz],
(28)

(u —U)X exp (C+D )

(u —V)

(A+B) (30)

(x —X)X exp (A+B)
(y —E')'

(C+D )
(29)

with X = [ A (a& +P&) +B(a z+P )z] and I'—[D(a& —P&)—C(az —Pz)]. The mapping (28) in terms of Q, and Qz
now follows immediately; the means are mapped directly
by the first two lines of (23). The variances of the distri-
bution along the principal axes can now be immediately
read from (29). It is to be noted that as the traditional
two-mode squeeze operator has only two free parameters
(it requires B =C in addition to AD BC=1), a sin—gle
variance, (hx ), of the two-mode quadrature operator'

Qz =
—,'[( A —D)Q, +( A +D)Qz

+(B+C)P, +(B C)P—z] .

Encouraged by this result, we attempted, as in the one
mode case, to express the probability density in terms of
the classical map parameters 3, B, C, and D. The obser-
vation that every two-mode squeezed state has its major
axis at 45 to the q, and qz axes led us to try expressing
the argument of the exponent of the density p(q, qz ) in
terms of the rotated coordinates x=2 ' (q&+qz) and

y =2 '/ (q, —qz) to obtain, after some lengthy but
straightforward algebra, the seductively simple expres-
sion for p(q, , qz)= )(q, , qz ~a, P;r, s ) (:

1

[(A +B )(C +D )]'

with U =[C(a, +/3, )+D(az+pz)] and V=[ —B(~,—P&)+ A (az —Pz)]. Again we find the means mapped by
(23), this time by rows 3 and 4. The uncertainity prod-
ucts are now easily obtained,

Qi+Qz
v'2

1+ 2 [( A 2+B2)(C2+Dz)]l/2
v'2 2

(31)

CONCLUSION
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In this Brief Report we have shown that the squeeze
operators engendered by the classical linear phase-space
transformation maps the coherent state to a squeezed
state with Gaussian probability density whose mean, in
position as well as in momentum representation, is given
precisely by the action of the classical linear transforma-
tion on the coherent state's mean position and momen-
tum. This relationship holds for both single- and two-
mode squeezed states. In the two-mode case, the mode
mixing produced by squeezing is clearly evident in the
classical image of the quantum-mechanical squeeze
operator.
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