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Finite-element calculation of low-lying states of hydrogen in a superstrong magnetic field
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The finite-element method has been applied to the problem of hydrogen in a superstrong magnet-
ic field. Binding energies have been calculated for the low-lying states {1so,2so, 2po, and 2p &) for a
range of magnetic fields from 10' to 10' G. This calculation establishes highly accurate lower
bounds for the binding energy of the excited states.

I. INTRODUCTION

The finite-element method (FEM) for eigenvalue prob-
lems is a numerical algorithm based on a variational prin-
ciple. Unlike conventional variational schemes, the
FEM does not require predetermined, globally defined
trial functions. Rather, the continuum is discretized into
small elements, and the eigenfunction is approximated lo-
cally by a simple polynomial. This flexibile approach
yields well-converged eigenvalues.

It was recently established that the FEM could be used
to provide extremely accurate values for the binding en-
ergy of the ground state of hydrogen in a magnetic field.
In this paper we extend the analysis to obtain values for
the binding energy of the 2so, 2po, and 2p &. While such
an extension is simple in theory, in practice one is faced
with diagonalizing formidably large matrices.

We introduce here two innovations which reduce the
computational effort needed to obtain converged results.
In the standard implementation of the FEM, the un-
known function is approximated piecewise by linear,
quadratic, or cubic polynomials. We have found that the
use of fifth-degree polynomials results in a marked in-
crease in accuracy and more rapid convergence of the en-
ergy. Second, because the wave functions are known to
be of even or odd parity with respect to z, the range
( —z„z, ) can be replaced by the half-range (O,z, ), with
the appropriate boundary conditions at z=0. Although
two calculations (even and odd z parity) must now be per-
formed for each value of m and B, this is still more
efficient than using the full range ( —z„z, ) and obtaining
both even and odd states simultaneously.

In Sec. II details of the finite-element calculation are
presented. Results of the calculations are reported in
Sec. III. Tables II—IV compare the finite-element results
with the upper and lower bounds obtained by Liu and
Starace and the energies obtained by Rosner et al. In
all cases, the FEM lower bounds for the binding energy
of the excited states are the most accurate to date.

II. FINITE-ELEMENT CALCULATION

The Schrodinger equation for hydrogen in a magnetic
field parallel to the z direction is
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Bm—+B +2E g(r, z) =0, (1)

where r and z are the cylindrical coordinates, m is the
magnetic quantum number, and B is the magnetic field
strength; atomic units are used throughout, where B= 1

corresponds to 2.35 X 10 Cs. The unknown function
g(r, z) is required to vanish as r ~~ and +z ~ ~. For a
given value of m and B, Eq. (1) can be solved using finite
elements for the complete spectrum of bound states.

The infinite continuum is truncated by choosing cutoff
values for r and z where it is appropriate to set the wave
function and its derivatives equal to zero. We used the
criterion that the wave function should be about five or-
ders of magnitude smaller near the cutoff values than at
its maximum value. In the r direction, the wave function
decays asymptotically as r" 'exp( —r ln) in the presence
of a weak field; for strong fields (B) 1), the wave function
decays as a Cxaussian, exp( Br l4) In—either . case,
choosing an appropriate value for r, for a given value of
B is quite straightforward.

In the z direction, parallel to the field, the wave func-
tion decays asymptotically as z" 'exp( —

~z~ /n) in the
presence of a weak field. The effect of a strong magnetic
field (B) 1) is subtle and depends on the quantum num-
bers and z parity of the state. Rosner has shown that the
tightly bound states are compressed in the z direction,
while some states with higher quantum number are
slightly elongated in the z direction. In the finite element
calculation, the value of z, was adjusted to accommodate
the compression and elongation of the wave function
where appropriate.

The truncated space is discretized into rectangular ele-
ments. Each element contains nine nodes in a symmetric
3X3 array. (The number of nodes in each element is
determined by the degree of the interpolation function. )

The accuracy of the finite element calculation depends on
the number of elements and the discretization of the grid.
There is a trade-off between increasing the number of ele-
ments and keeping the CPU time manageable. One of
the goals of this calculation has been to show that accura-
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cy of one part in 10 or better is obtainable with only 100
elements, without fine tuning the grid for each calcula-
tion.

Calculations were first carried out (in cylindrical coor-
dinates) for the case 8=0 to determine the accuracy of
the finite element results. As expected, the s states re-
quired a higher concentration of nodes in the region be-
tween 0 and ao since the wave function is strongly peaked
near the origin. The p states were extremely insensitive
to the location of the nodes. Values for the discretization
of the grid are given in Table I. Identical grids were used
for all calculations in low magnetic fields.

For fields B& 1, the wave function in the r direction is
approximately Gaussian; the grid was discretized into
even intervals along r for both s and p states. In the z
direction, the p states are slightly compressed towards the
origin, and less extended in space. As z,, was decreased,
additional nodes were placed at small values of z, retain-
ing the overall number of elements. For the s states, the
situation is slightly more complicated. The 1s state is
strongly compressed in the z direction, and rapidly falls
off to zero. Although the 2s state is also compressed near
the origin, the exponential tail of the wave function is ac-
tually elongated slightly. Hence it is difficult to construct
a grid with 100 elements that has an adequate number of
nodes near z=0 and a sufficiently large value of z, . This
problem becomes more pronounced as the field strength
increases. As a result, the value obtained for the binding
energy of the 2s state at B=1000 is slightly less accurate
than the other results.

Once the finite element grid is established, the
Schrodinger equation is solved in each element by ap-
proximating the unknown wave function with a simple
polynomial. To facilitate this process, a local coordinate
system is introduced into each element N which has the
range —1 to 1 in both directions. Given that the size of
the element is h„Xh, , it is simple to show that the local

coordinates x and y are related to their respective global
coordinates r and z by

r =ra +h„(1+x)/2,
z =zo +h, (1+y) /2,

(2a)

(2b)

where ro and zo are the global coordinates at the corner
x = —l,y = —1 of element N. In terms of the local coor-
dinates, the nine nodes are located at points where x and

y have the value 0 or +1.
The wave function in element N is approximated by a

sum of products of fifth-degree Hermite polynomials in x
and y,

6

P (r, z) = g PkP, (x)P, (y), k =6(i —1)+j . (3)

These polynomial interpolates have the special property
that the 36 expansion coefficients are the values of f,
r)gldr, BQ/Bz, and d Qldr Bz at the nine nodes in the ele-
ment. Substituting Eq. (3) into Eq. (1) and projecting
onto the local basis functions, we obtain

H &y&= EU &y& (4)

where H and U' are symmetric matrices of order 36
and the vector g contains the unknown expansion
coefficients for element N.

All of the integrations (over the element volume) in Eq.
(4) can be done exactly with the exception of the
Coulomb potential term. In performing the calculation,
all integrations were done numerically using 16-point
Gauss quadrature, which is exact for polynomials up to
degree 31. This may appear to be overkill, since all of the
integrals with the exception of the Coulomb term are po-
lynomials of degree 13 or less. However, the binding en-
ergy is extremely sensitive to the error in evaluating the
Coulomb term, particularly near the origin. Using

TABLE I. Finite-element discretization.

7", Z

r, z
0.25
1

0.5
2

B=0,0.0001,0.001,0.01,0.1

2 4 8

8 12 16

B=1

12
20

16
24

20
28

24
32

0.5
0.25
1

1

0.5
2

1.5
1

4

2.5
4

12

3

8

16

4
12
20

5

16
24

6
20
28

7
24
32

0.25
0.25
0.5

0.5
0.5
1

0.75
1

2

1.0
2
4

B=10
1.25
4
8

1 ' 5

8

12

1.75
12
16

2
16
20

2.25
20
24

2.5
24
28

0.07
0.125
0.25

0.025
0.0625
0.125

0.14
0.25
0.5

0.05
0.125
0.25

0.21
0.5
1

0.075
0.25
0.5

B= 100
0.28 0.35
1 2
2 4

B= 1000
0.1 0.125
0.5 1

1 2

0.42
4
8

0.15
2
4.

0.49
8

12

0.175
4
8

0.56
12
16

0.2
8

12

0.63
18
20

0.225
16
16

0.7
24
24

0.25
24
20
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TABLE II ~ Binding energy of the 1so state. TABLE IV. Binding energy of the 2po state.

Liu and Starace Rosner et al.
lower bound lower
upper bound upper

Finite element
lower bound

Liu and Starace Rosner et al.
lower bound lower
upper bound upper

Finite element
lower bound

0.0
0.0001
0.001
0.01
0.1

1.0

10
100

1000

0.5474
0.8167
0.8418

3.7360
3.8027

0.500 500
0.504 975
0.547 526
0.831 169

1.747 797
3.789 1

3.790 3
7.662 1

7.662 7

0.499 999
0.500 049
0.500 499
0.504 974
0.547 525
0.831 168

1.747 79
3.789 78

7.662 36

0.0
0.0001
0.001
0.01
0.1

1

10

0.2557
0.2622

0.4637
0.4638

0.125 4985
0.129 8504
0.162 4104
0.260 0066

0.382 6487
0.382 6518
0.463 6177

0.492 4950

0.125 0000
0.125 0500
0.125 4985
0.129 8504
0.162 4100
0.260 0065

0.382 6498

0.463 6177

0.492 4950

HtP=EUQ . (5)

eight-point Gauss quadrature (which is exact for all in-
tegrals but the Coulomb term) may result in an error in
the final energy as large as 1 part in 10 for the 1so state,
but significantly less for the excited states. Since numeri-
cal error in integration can raise or lower the energy, it is
critical that this numerical integration error does not lead
to false "rigorous bounds. " By comparing the FEM ener-
gy at 8=0 with the exact value, we verified that the error
in the energy due to numerical integration of the
Coulomb term with 16-point Gauss quadrature is less
than 1 part in 10 for the 1so state and even less for the
excited states.

Once the local matrix equations have been calculated
for each element, the elements must be joined in such a
way that the wave function and its derivatives are con-
tinuous at the boundaries. Such continuity of the wave
function is achieved by mapping the local matrix equa-
tions for each element onto a single global matrix equa-
tion,

Equation (5) has the form of a standard generalized eigen-
value problem, where the components of the vector g are
the values of the wave function and its derivatives at all
the nodes in the grid. The global matrices H and U are
symmetric and banded.

In order to satisfy the boundary conditions, com-
ponents of the vector g which correspond to r = r, or
z =z, are set equal to zero. This guarantees that the
wave function (and its derivatives) vanish asymptotically.
Since we are working on the half-range (O,z, ), boundary
conditions must also be imposed at z=0, depending on
the z parity of the state. For the odd z-parity state 2po,
the wave function (and dgldr) must vanish at z=O; for
the even z-parity states, the derivative of the wave func-
tion with respect to z (and 8 g/Bz Br) are set equal to
zero. These boundary conditions are quite trivial to im-
plement, and result in a further reduction of the size of
the global matrices, without destroying symmetry or
bandedness.

The reduced global matrices can now be solved by
standard algorithms. Subspace iteration, a routine
developed for finite element calculations, is particularly

TABLE III. Binding energy of the 2so states.

0.0
0.0001
0.001
0.01
0.1

1.0

10

0.0873
0.1503
0.1357
0.1594

0.2555
0.2565

0.125 4965
0.129 6516
0.148 0892

0.160 4689

0.208 89
0.208 99
0.256 170
0.256 189
0.295 855
0.295 859

Liu and Starace Rosner et al.
lower bound lower
upper bound upper

Finite element
lower bound

0.125 000
0.125 050
0.125 496
0.129 651
0.148 089

0.160469

0.208 951

0.256 179

0.295 85

Liu and Starace Rosner et al.
lower bound lower
upper bound upper

Finite element
lower bound

0.0
0.0001
0.001
0.01
0.1

10
100

0.1882
0.2013
0.4524
0.4595

0.125 9970
0.134 7012
0.200 8457

0.456 5971

1.125 422
2.634 74
2.634 80
5.638 41
5.638 44

0.125 0000
0.125 1000
0.125 9970
0.134 7011
0.200 8456

0.456 5969

1.125 422
2.634 758

5.638 416

TABLE V. Binding energy of the 2p &
state.
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efficient, exploiting both the symmetry and banded nature
of the matrices. It is more efficient than vector iteration,
because it does not require orthogonalization of the
eigenvectors until the approximate subspace has con-
verged to the subspace spanned by the lowest eigenvec-
tors.

III. RESULTS

Equation (1) was solved for the four low lying states:
m=0, even z parity, 1s,2s; m=O, odd z parity, 2po,'

m = —1, even z parity, 2p &, with values of B corre-
sponding to 10 —10' G. The energies reported in the
tables are rigorous lower bounds to the binding energy,
but the last digit is not necessarily converged. Tables
II—V compare the results obtained using finite elements to
the calculation of Liu and Starace and Rosner et al.
The results of Larsen, Santos and Brandi, and Balderes-
ci and Bassani are not included in the tables because
they are significantly less accurate than the recent works
and cover only a small range of magnetic fields. Never-
theless, they are noteworthy calculations because they
mark the first attempts to calculate rigorous bounds for
the excited states.

Tables II—IV clearly show that the lower bounds ob-

tained via the FEM are far superior to those obtained us-
ing a conventional variational approach. (Note that the
upper bound obtained by Liu and Starace for the 2po
state at B=100 is incorrect. ) Although the modified
Hartree-Fock approach of Rosner et al. does not
guarantee rigorous bounds to the true energy, it is in-
teresting to note that their values agree extremely well
with the finite element results for fields up to B=1. For
higher fields, the finite element results lie between the
upper and lower limits of the Hartree-Fock energy. It is
apparent that the results of the Rosner group are as accu-
rate as they have claimed.

In conclusion, we have shown that the use of piecewise
interpolation functions for solving the Schrodinger equa-
tion is clearly superior to the standard variational ap-
proach when the wave function cannot be readily approx-
imated by simple global basis functions. In other words,
the FEM succeeds in cases where standard variational
and perturbative calculations fail.
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