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An accurate analytic theory is presented for the velocity selection of a two-dimensional needle

crystal for arbitrary Peclet number for small values of the surface-tension parameter. The velocity
selection is caused by the eftect of transcendentally small terms that are determined by analytic con-
tinuation to the complex plane and analysis of nonlinear equations. The work supports the general
conclusion of previous small-Peclet-number analytical results of other investigators, although there
are some discrepancies in details. It also addresses questions raised by a recent investigator on the
validity of selection theory owing to assumptions made on shape corrections at large distances from
the tip.

I. INTRODUCTION

The problem of the growth of a needle crystal in a pure
undercooled liquid in the absence of any boundaries has
received considerable attention in recent literature. In
particular, the growth of a steadily moving interface be-
tween solid and liquid has been studied using both analyt-
ical' and numerical methods. ' When surface tension
is neglected, exact solutions with a parabolic crystal-melt
interface were found earlier by Ivanstov. These solu-
tions form a degenerate set since for given undercooling
and other experimental conditions, only the product of
the tip radius of curvature and the steady dendrite veloci-
ty are determined in contradiction to experimental evi-
dence ' which suggests that each of these are separately
determined for given undercooling far ahead of the inter-
face. This degeneracy is not unexpected since in the ab-
sence of surface tension, there is not enough dimensional
information to predict each of these physical quantities
separately.

When surface tension is taken into account, there is
enough dimensional information to determine each den-
drite velocity and tip curvature in terms of undercooling.
However, this need not imply that a solution exist in this
case. Numerical evidence ' appears to suggest that such
solutions do not exist if we neglect the effect of crystalline
anisotropy.

Earlier, analytic study of phenomenological models ''
of solidification, suggested that solutions do not exist
when anisotropy is neglected. The mathematical equa-
tions arising out of one of the phenomenological models'
has been rigorously studied by Kruskal and Segur. "
They prove that in the limit of zero surface tension, these
model equations do not have any physically acceptable
solutions when crystalline anisotropy is not taken into ac-
count even though the equations admit solutions when
surface tension is exactly zero. This extraordinary situa-
tion arises due to the effect of terms beyond all orders in
an asymptotic expansion for small surface tension.
Kruskal and Segur extend earlier methods' for linear
equations to extract transcendentally small terms in the

asymptotic expansion of the solution to the third-order
nonlinear ordinary differential equation that they study
and show that the leading-order transcendental correc-
tion to a regular perturbation expansion fails to satisfy
the condition on smoothness of the needle crystal right at
the tip. However, when a term modeling crystalline an-
isotropy is included in the equations, a discrete set of
solutions is found to exist ~ However, it is not clear to us
that the simple model equations studied by Kruskal and
Segur should faithfully reAect the properties of the actual
needle crystal, even qualitatively.

In the limit of small Peclet number, Pelce and
Pomeau' reduce the original integro-differential equation
called the Nash-Glicksman equation'" to a simpler set of
equations involving just one parameter. Subsequently
analysis of Ben-Amar and Pomeau' of this equation and
by Barbieri and Langer of a simpler linearized form in
the limit of small values of a certain nondimensional
surface-tension parameter support the conclusions of the
numerical work at arbitrary Peclet number ' that
needle-crystal solutions do not exist in two-dimensional
(2D) or axisymmetric 3D case if crystalline anisotropy is

neglected. On modeling the fourfold crystalline anisotro-

py by a cosine term, the numerical work based on the
Nash-Glicksman equation and analysis based on Pelce-
Pomeau equations suggest that a discrete set of solutions
exists for any nonzero crystalline anisotropy. The analyt-
ical work of Ben Amar and Pomeau formally extends the
Kruskal-Segur" method for extracting transcendentally
small terms to a nonlinear integro-differential equation.
This follows earlier work of Combescot et al. ,

' who use
the Kruskal-Segur method to Saffman-Taylor finger prob-
lem, which again involves a similar nonlinear integro-
differential equation. The work of Barbieri et al. is
based on an approximate linear equation and is based on
Fredholm alternative condition on a nonhomogeneous
linear equation, where WKB approximate methods are
used to find independent solutions to the homogeneous
problem. This work follows the idea of Shraiman, ' who
employed a similar method for the Saffman-Taylor prob-
lem. Despite the apparent deficiency of such an ap-
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proach in that the linear equations are approximate and
that the WKB solutions are not quite correct in the
neighborhood of turning points which must be encoun-
tered in evaluating the Fredholm condition using a
steepest-descent contour in the complex plane, the scal-
ings in the dependence of physical quantities on each oth-
er turn out to be the same as the nonlinear analysis of
Ben Amar and Pomeau, the only discrepancy being in the
values of constants.

However, for the axisymmetric 3D needle crystal, con-
tradictory analytical evidence has recently been presented
by Xu. ' Rather than working with the Nash-Glicksman
equation, he considers the original partial differential
equations on both sides of the crystal-melt interface and
obtains simplifications for small Peclet number using a
slender body approximation. His analysis is not restrict-
ed to small surface tension. The basic approach used in
his case is as follows. Given a slender axisymmetric 3D
crystal, he finds an expression for the temperature in
terms of an interfacial shape function. To the leading or-
der, as Peclet number tends to zero, this expression is
found to be a local function of the shape function, in con-
tradiction with the Pelce-Pomeau simplification where
the temperature at any point on the interface is expressed
in terms on a global integral expression involving the
shape function. Once the expression for the temperature
on the needle boundary is found in terms of the shape
function, Xu uses the Gibbs-Thompson condition of local
equilibrium to reduce the problem to a second-order non-
linear ordinary differential equation which he then solves
using phase plane analysis. He concludes that axisym-
metric 3D needle crystals exist in the absence of crystal-
line anisotropy and further, even for nonzero surface ten-
sion, each dendrite velocity and tip radius is not a
uniquely determined function of the undercooling. The
degeneracy of the solutions is found to be the same as
that for zero surface tension. Xu explains the discrepan-
cy of his results with others by suggesting that the other
researchers have implicitly assumed that the shape
correction to Ivantsov parabola for nonzero surface ten-
sion tends to zero at infinity and thus have restricted the
class of allowable shapes in their analysis and numerical
computation. Thus the entire selection theory, at least in
the axisymmetric 3D case, has been questioned. Despite
some lively debate, ' this controversy is yet to be settled
conclusively. We find that Xu's objections have some
merit as far as the analytical evidence based on the
Pelce-Pomeau equation even for the simpler 2D needle-
crystal problem, since in the derivation of the Pelce-
Pomeau equation from the original Nash-Glicksman
equation, it appears to be necessary to assume that the
shape modifications to the Ivantsov solution tend to zero
at infinity. Further, in the analytical work based on the
Pelce-Pomeau equation, the integrand is linearized based
on the assumption that the correction to the Ivantsov
solution is small for sufticiently small surface tension.
However, there does not seem to be any a priori reason to
assume that for any small but fixed surface tension, the
shape correction is small for the entire range of integra-
tion in the integral term and so linearization becomes
questionable. As far as numerical evidence, Xu suggests

that by truncating the infinite range of integration to a
finite one and matching to the shape of a parabola at
sufficiently large distances, one implicitly rules out shape
corrections to the Ivantsov solutions that grow at large
distances, though at a rate smaller than for a parabola. It
is not clear to us if this argument has any merit or not.

What is clear from all this is that one needs to resolve
the discrepancy between the work of Xu and other
researchers. Indeed, one can make a direct check on
Xu's leading-order asymptotic expression for the temper-
ature field on the 3D axisymmetric needle boundary by a
careful direct asymptotics of the integral term in the
Nash-Glicksman equation for small Peclet number and
checking if the expression is local or global. If the Pelce-
Pomeau equation holds, then one needs to check the steps
in Xu's analysis leading up to the expression for the tern-
perature field in terms of the shape function to find possi-
ble sources of error. This is currently under study.

In the meantime, we thought it appropriate to recon-
sider the easier 2D needle-crystal problem, where Xu's
objections have some validity as well. Instead of consid-
ering the Pelce-Pomeau simplification for small Peclet
number, we thought it appropriate to consider the Nash-
Glicksman equation for arbitrary Peclet number. When
this paper was first written, we were unaware of any
analytical work at arbitrary Peclet number, though the
problem has been solved numerically. Since then we re-
ceived a preprint of work at arbitrary Peclet number by
Barbieri and Langer' where they consider the needle
crystal at arbitrary Peclet number in 2D as well as 3D us-
ing an approximate equation where the curvature term is
linearized together with the integral term in the Nash-
Glicksman equation. Aside from some quantitative er-
rors in the value of constants that such a linearization
would produce, their work does not address the objection
of Xu as far as a priori assumption on the nature of shape
correction at infinity.

While our analysis is not mathematically rigorous ei-
ther, as we address some of the questions regarding
linearization of the integral term in the Nash-Glicksman
equation with some care. Our final conclusions suggest
that the selection theory, at least in 2D, is correct. The
second-order nonlinear differential equation that arise in
connection to calculating the leading-order transcenden-
tally small correction is found to be about the same as
that coming out of the Ben Amar and Pomeau' analysis
though their starting point was the simpler Pelce-Pomeau
equation valid only for small Peclet number. We disagree
with Ben-Amar and Pomeau on several fine points in the
analysis of these nonlinear equations particularly when
the crystalline anisotropy is nonzero. In particular, the
predicted quantitative constant for the first branch of
solution corresponding to the dendrite with the largest
velocity is found to be a little different from what we pre-
dict because we believe they use an analytic expression
valid only for the higher branches of solution.

II. MATHEMATICAL FORMULATION

In the frame of the steadily moving needle crystal, we
fix the origin of the coordinate system (x,z) =(0,0) at the
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tip. Let the z axis be aligned in the direction of the crys-
tal axis and the x axis perpendicular to it. A point on the
needle boundary is described by the parametric represen-
tation (x (g),z(g)), where g is the interval (

—~, ~) and

z(g) = —
—,'g',

x (g) =g+xR (g), (2)

where xR (0)=0 in order that tip of the dendrite to be at
(0,0). The above parametric representation (x(g),z(g) } is
found to be rather suitable for avoiding nonuniformity in
the linearization of the Nash-Glicksman integral expres-
sion for the temperature as shall be seen shortly. The
Nash-Glicksman equation for determination of the den-
drite boundary can then be written as

b, —do[ I+a[1—cos(40) )K

=—J dg'[I+x &(g')]e '~' '~')Ko(P~r~), (3)

where

xR( ) —xR( ')
r =(g—g') 1+—,'(g+g') +2

2 1/2

(4)

In (3), 8 is the angle between the normal to the interface
and the positive z direction and ~ is the curvature of the
interface (x(g), z(g)) given by

Ua

2D
(8)

where U is the velocity of the advancing interface, a the
radius of curvature at the tip for the dendrite correspond-
ing to the zero-surface-tension solution, D the tempera-
ture diA'usion constant. do is the dimensional capillary
parameter given by

pcTm
do 2I a

where y is the surface tension, c the specific heat per unit
volume; T is the melting temperature, I the latent heat.
In this paper, it will be assumed that for any given P, do
is small enough so that do/P (&1. This is not a severe
restriction since the theory presented here is valid for

z p

tanO=
1+x~(
1+xRg kxRgg

(I+2xR(+x„~+/ )
~

where the subscript with respect to g denotes derivative
with respect to g. Note that

8( (I+xR~)
1 —cos(48) =

( I+2xRg+xRg+g )

In Eq. (3), P (Peclet number) is defined as

small do. The parameter b, in (1) is the nondimensional
undercooling defined as

b, = —(T —T ),
I

(10)

where T„denotes the temperature at z = ~ far ahead of
the finger. Note that each of x and z appearing in (3) are
nondimensionalized by a. Also note that for nonzero do,
the tip radius of curvature is not a but a [I+xR&(0)] as
can be seen from (6). Also, in the definition of r in (4), the
choice of a specific branch of the square root is made so
that r ~ 0 for g ~ g' and r & 0 otherwise for g and g' on the
real axis. Thus the absolute value ~r~ appearing in (3) is
needed to be in accordance with the Nash-Glicksman
derivation. The choice of a specific branch in (4) is made
for the purposes of analytic continuation of (3) to the
complex x plane as shall be seen later.

When surface tension is neglected, i.e., do =0, Ivantsov
found exact solutions for a steadily growing dendrite with
a parabolic interface shape with tip radius a (which is ar-
bitrary). In our notation and nondimensionalization, this
corresponds to the exact solution

P' e erfc(P' ) . (12)

Thus, when surface tension is neglected, it is clear from
(8) and (12) that for given undercooling and other experi-
mental conditions, only the product of dendrite velocity
U and the tip radius of curvature a are determined.
However, experimental evidence ' suggests that each of
these two quantities are each separately determined as a
function of the undercooling for other given experimental
conditions. Thus, for an adequate theory, the degeneracy
of these solutions needs to be removed. As pointed out
ear1ier, any amount of surface tension introduces another
parameter do into the problem and therefore there is then
enough dimensional information for unique determina-
tion of each of U and a separately. However, this does
not guarantee that such a solution will exist and indeed
our results suggest that in accordance with earlier numer-
ical and analytical results (for restricted cases), solutions
exist only when the crystalline anisotropy parameter
+&0.

We now would like to simplify the integral expression
on the right-hand side of (3). We will assume that for
small do and fixed g, xR is small. However, as shown in

the Appendix, the boundary condition that the nondi-
mensional temperature on the interface approach 5, a
constant, as g~+~ can allow for the interface shape
correction function xR to grow with g at a rate like g
where s )0. Thus xz need not uniformly be small. How-
ever, it is reasonable to assume that xz& is small uniform-

ly for all g, and thus from expression (4) for r on applica-
tion of the mean-value theorem on the quantity

z„=0
to (3). This is not immediately obvious on substitution of
(11) into (3). However, Pelce and Pomeau have verified
that (11) is indeed the solution to (3) provided the under-
cooling 6 is related to the Peclet number P by the rela-
tion
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x~ (g) —xR (g')

it is clear that the deviation of I from ro is small for small

dp for all g and g', where

(13)

Thus it is legitimate to linearize the right-hand side of (3)
for any given P for sufficiently small do. If we subtract
off the Ivantsov solution, we find that to linear order in
xz on the right-hand side:

—do[1+a[1—cos(46)I~= —f dg' xz&(g')e ('~' '~')Kp(P~rpi)

+ f" dg"('~'-'~' ' '
(g —g)[ (g )

— (g)] (14)
77 oo lrpl

Note that in (14), the subscript with respect to g denotes derivative with respect to g. In (14), we used the identity that
derivative of Ko is —K&. It is convenient to eliminate the xz& term by integrating by parts and we find after careful
consideration of the singular nature of the integrand that (14) is equivalent to

, ,
K, (P~r, i)—doI 1+a[1—cos(48)]j~=x~(g) $ dg'e ('&' '&') (g' —g)

dg'e 'I~' '~'x (g')z&(g') K (Pir ~)+ [z(g) —z(g')]
7T

(15)

where denotes principal value integral.
Now for the Ivantsov solution, the nondimensional temperature within the crystal is a constant, 6, and and so

f"—dg" ('&'I '«(P~ro-i), (16)

where (x,z) is now inside the crystal and

r[(xgt )2+(z+ 1(l 2)2]1 /2

The partial derivative of the above expression with respect to x must be ~ero, since the temperature within the crystal is
uniform for the Ivantsov solution, when the curvature effects are neglected. On the other hand, if we take the deriva-
tive of the right-hand side of (16) with respect to x and approach the interface from the inside of the crystal we find that

Pz
e P fz(g'j —~(g)] i d i+ ~ 0 (17)

(1 +z', )

Thus (15) can be further simplified as

Pz( p2—do[1+a[1—cos(40)]Is.= x~(g) — fe-'»' '~' x~(g')z (g')

K, (Pir, j, )
X K (Pir

~
)+ [z(g) —z(g')] dg' .

rp

III. REGULAR PERTURBATION EXPANSION AND ANALYTICAL CONTINUATION
TO THE UPPER HALF g PLANE

If we now carry out a regular perturbation expansion of x~ in powers of do:

xR(k) =doxy(k)+doxy(g)+

we find that x, satisfies the linear singular integral equation

Pz~ P&—
[ I+a[1—cos(40o)] Ii~o= x, (g') — $ e '~ ' ~' x, (g')z~(g')

z ( 7T

K, (P/r
/

}
X Kp(P~rp~ )+ [z(g) —z(g')] dg',

rp
(20)
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where Oo and «o are equal to the expressions (5) and (6)
for t9 and ~ with the substitution xz =0.

We numerically calculated a smooth solution to (20) by
discretization and satisfying the equation at a discrete set
of points. In addition to (20), we imposed the condition
x, (0)=0 so that the tip of the dendrite coincides with
(x,z ) = (0,0). The resulting linear system was solved
without any di%culties and consistency of the solution
checked by doubling each of the number of discretization
points and the size of the truncated domain. The solu-
tion, as expected, was found to be an odd function of g
implying a smooth symmetric dendrite at least to order
do. In particular, this implies that the tip of the needle
crystal is smooth. It is conceivable that the same is true
to every order in the expansion (19) though we have not
calculated higher-order solutions. We assume that this is
indeed the case.

At this point, it is appropriate to point out that if in-
stead of the parametric representation (x(g),z(g)), for
the free boundary, we had used (x,z(x)) representation
and decomposed

z(x)= —
—,'x +z„(x) (21)

and carried out a linearization of the integral term in the
Nash-Glicksman equation, we would arrive precisely at
(18) with —z&xz(g) replaced by Z„(x), with g and g' re-
placed by x and x' and z (g} replaced by —

—,'x2. Howev-
er, justification of the linearization of the integral term of
the Nash-Glicksman equation for such a representation
appears to be difficult if such a representation were used.

Now, we proceed to calculate the leading-order tran-
scendentally small correction to (19). Following the ideas
of Kruskal and Segur, we do so by analytically continu-
ing (18) to the upper half g plane to find sources of
nonuniformity of the expansion (19). These sources of
nonuniformity in the complex g plane contribute tran-
scendentally small terms in the asymptotic expansion of
xz and it is our intention to calculate the leading-order
transcendentally small term in order to find any con-
straint on the parameter do arising from the requirement
that the tip of the parabola be smooth. This constraint is
off'course used to determine do to the leading order. As
higher-order transcendentally small terms are taken into
account one has to correct the constraint on do as well.

I

zz(g) gxz(g) . (22)

Note that zz(g) is not defined as z~(x(g)); however,
when /=0(1), to the leading order in do, the two are the
same. Note that there can be deviation of zz(g) from
z&(x(g}}which is not uniformly small for all g even for
small do.

If we restrict our attention to symmetric needle crys-
tals for which zz(g)=z~( —g) and substitute (22) into
(18), then

If we symbolically denote the actual constraint coming
out of the requirement of a smooth tip to be S(do)= a
number, the determination of leading-order constraint is
equivalent to replacing S(do)=S'(0)do in the above con-
straint. This is a valid approximation when S'(0) is
nonzero and do sufficiently small (S' being assumed con-
tinuous). It is appropriate to point out that in most cases,
transcendentally small terms that are beyond all orders of
a regular perturbation expansion are mathematically
meaningless because there is no distinction between two
asymptotic expansions which are different from each oth-
er by a transcendentally small amount. However, in this
case, we have the extraordinary situation that every term
of the regular perturbation expansion for x~ has a van-
ishing real part on an interval on the imaginary g axis ad-
joining /=0; however, transcendentally small terms in do
do not generally have a vanishing real part on any inter-
val adjoining /=0. Thus the real part of the transcen-
dentally small term, where nonzero, dominates the regu-
lar perturbation terms on some on part of the imaginary
g axis and is therefore well defined. This point is dis-
cussed at length by Kruskal and Segur but is reiterated
here since it appears to have been misunderstood. The
condition that transcendentally small terms in do also
have vanishing real part on some segment of the imagi-
nary g axis adjoining /=0 follows from the requirement
of a smooth tip and has to be enforced for a consistent
solution. When this condition is violated for the leading-
order transcendentally small term, it will be seen as evi-
dence that acceptable solutions do not exist as the
smoothness condition has to be satisfied to every order of
transcendental correction.

We now proceed with the determination of transcen-
dentally small terms in do. It is convenient to define

—do I 1+a[1—cos(48}]I«

z (g)+ g e' "~ ~ 'z„(g)' K (Plr l)+K (Pr, )(1+ze )

K, (Plr, l) K, (Pr, )+- +
lrol

(23)

where

ri = —(4+4')t 1+ l(k —0')'1'" . (24)

We note that with the choice of branch in the above square root r
&

0, for g and g' on the negative real axis. Further

r=frl (24')
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for g & g', and for g & g', we have to choose

r = /r/e'

in order to analytically continue to the upper half complex g plane. It is well known that

Ko(re '
) =Ko(r)+i vrIO(r) .

(25)

(26)

Thus (23) can be seen as the limit of g approaching the negative real axis from the upper half complex g plane of the fol-
lowing equation:

—do[1+a[1—cos(46)]Is(9)=l(g')zz(g)+ f dg'G(g, g')z~(g')+ f dg'J(g, g')z&(g'),
oo s

where

p2 K, (Pro) K, (Pr, )
G(g', g')= e '~ ~ ' K (Pr )+K (Pr )+— + (g' —g )

7T 2 rp

J(g gl) —Pi2 eP($ —P' )/2 I (Pr )+ 1 (g2 gi 2)
I](pro)

rp

and

(27)

(2&)

(29)

(30)

From (20), in an analogous procedure, it is found that the analytical continuation of the leading-order regular pertur-
bation solution z, (g)—:gx, (g) in the upper half complex g plane satisfies

—[1+a[1—cos(400)]Ilro=l(g)z&(g)+ f dg'G(g, g')z&(g')+ f dg'J(g, g')z~(g') . (31)
oo

It is easy to see from (31) that z, (g) is singular at (=i in the upper half complex g plane. From symmetry of the equa-
tion, it is easy to see that z, is also singular at the lower half complex g plane at g= —i. Thus we need to find local
equations in the neighborhoods of these points such that as the real axis is approached, the solution matches with the
regular perturbation expansion (19). The terms that will not match must be transcendentally small in the physical
domain.

To find the form of the leading-order transcendentally small term, we subtract do times (31) from (27) assuming that
z~ is a small deviation from dpz, to find that the resulting homogeneous part of the equation for the small deviation zH
is

Sag, 3g
(1+g')' (1+g')

56ag + 16ag + P (1+~2)3/2
(1+g ) (1+g ) do(1 —ig)

=2H 3 56a( 16a
(1+/ ) (1+( ) (1+( )

(32)

where

2 3/2
I4=

d f dk'G(k 4')zH(4')
0 oo

(33)

turning point /=i must be linear combinations of g, and

g2 defined as

g
—

( 1 +g2)3/8( 1 g)1/4

and

2 3/2
I5= f dk'J(k r)zH(k'»

p

(34)

Xexp +ip'/ d '/2 f dg'(I+/'2)3/4
l

X(1—g )-'" (35)

IV. TRANSCENDENTALLY SMALL TERMS
FOR a=0

For a=O, i.e., no crystalline anisotropy, the leading-
order asymptotic solution for small dp to the linear
integro-differential equation (32) in the upper complex g
plane away from the immediate neighborhood of the

Note that the above is just the two independent WKB
solutions to (32) with the right-hand side of (32) neglect-
ed. On substitution of (35) back into I4 and I~ it is clear
that these contributions are of smaller order in dp com-
pared to other terms on the left-hand side of (32). We
note that on the imaginary g axis in the interval (0, i) g2 is
real and transcendentally small, while g& is transcenden-
tally large. This is also true for a certain region in the
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complex g plane in the neighborhood of the imaginary
axis in the interval (O, i) (sector I as sketched in Fig. 1).
However, there is another region in the complex g plane
with Ref(0, where gi is transcendentally small and g2
transcendentally large (sector II in Fig. 1). The boundary
between these two sectors is called a Stokes line and is
determined by the condition

=0 . 36

The sketch in Fig. 1 is justified from the following con-
sideration: First we note that

0 ] C2g2+C2g2 (38)

On using (35)

dz7, (0) =2 ImC P' d1 0

Xexp[ —ido '/ f dg(1+( )3/

is real. It is easily seen that the slope at the tip as we ap-
proach it from the negative g side is

dZR =2 Re[C,g2(0)] .

.f dg~(1+g~ 2)3/4(1 gi)
—1/2

1

is purely real and positive. Again,
Thus a smooth tip implies

g)
—1/2] (39)

zR -dpz]+C+C, g2, (37)

where C stands for higher-order corrections with power
dependence in dp. From now on, we do not bother to
write C though such terms are present in the expression
for zR and dominate the leading-order transcendental
correction in dp which will be explicitly written down as
they determine the velocity selection.

As (=0 is approached, the importance of the transcen-
dental term arising due to the efT'ect of singularity at
g= —i becomes as important. At exactly /=0, the con-
tribution of singularities at (=+i are of the same order
in do. Since zR must be real on the entire real g axis, it
follows that on the real g axis in some neighborhood of
/=0, the contribution from g= —i to the leading order
must be Cigar (the asterisk denotes complex conjugate)
so that on the real g axis

Im (

Re i d '1+ '
1 —i ' ' (0

0

for g, on the negative real axis. By considering the argu-
ment of (1 —ig') ', one easily establishes that the left-
hand side of the above equation is a monotonically de-
creasing function of ~g~ on the negative real axis. Using
this, it is easy to show that only one of the Stokes lines
emanating from the turning point /=i intersects the neg-
ative real g axis as shown in Fig. 1.

Including the leading-order transcendentally small
correction, in sector I (that includes the imaginary g axis
between 0 and i),

ImC) =0 . (40)

In Sector II of Fig. 1, which borders on the real g axis for
sufficiently negative g, including the leading-order tran-
scendental small correction, we must have

ZR dpz] +C2g]

and in this sector, on the real axis we must have

(41)

ZR dPZ] + C2g] +C2g &
(42)

To find Ci and determine if the smooth tip condition (40)
can be satisfied, we must consider the immediate neigh-
borhood of /=i in the upper half plane, where each of
the expressions (37) and (41) are invalid both because of
the linearization used in obtaining (32) and the fact that
(=i is a turning point. We introduce local dependent
and independent variables F and g defined as

( 1 d2/7P —2/72 —1/7g)

d 4/7P —4/72 —2/7/
R 0

(43)

(44)

Then it is found that (35) is to the leading order in do re-
duced to

F"—(g F') / F= 1 . — (45)

In obtaining (45) from (35), the contribution from I4 is of
order dp since I4 involves the integral of zR on the real
axis where z71 =O(do). As far as I5, one needs to be
more careful, since in the range of integration includes
the immediate neighborhood of )=i where the scaling
(44) holds. However, on careful analysis, it is found that
I5 does not contribute anything to the leading order as
well. It is easily seen that the asymptotic behavior for
large g that matches with z71 =doz, is

1

3/2
E'46)

w u w n w

0 Re P,

To find transcendentally small correction to this, we
linearize (45) about (46) and find that the homogeneous
part of the linear equation is

FICx. 1. Solid lines: Stokes lines determined by
Re[i f dg'(1+S' ) (1—ig') ' ]=0 in the complex g plane

for Ref~0.
3

FH — FH —
g FH =0 .

2
(47)
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The transcendental correction to (46) to the leading order
for large g must be linear combinations of the WKB solu-
tions to (47) given by

(3/8 +(4/7)ge— (48)

p3/8 —(4/7)g (49)

This matches with (37) in sector I provided

C1
2

—6/7P —13/28d 13/28 (50)

For large g with Argg in (
—

67m, ', vr), — —

p3/8 (4/7)g /

3/2 25

and this matches with (41) in sector II of Fig. 1 provided

C2
2

—6/7P —13/28d 13/28

2
(52)

For Argg in the interval ( 2—vr/7, 0], inclusion of the
leading-order transcendental correction gives

We note that we are interested in a solution to (45) which
for large g with Argg in ( 6—vr/7, 0] has the asymptotic
behavior given by (46). Our numerical calculation of ap-
propriate solution to (45) involved solving (45) on two
rays emanating for /=0 going to a large distance from
the origin with argg= —~/2 and Argg=O with asymp-
totic boundary condition (46) at the other end points of
these straight-line contours. For a given trial value of
F(0) the two-point boundary problem on each ray was
solved by standard second-order discretization of (45) and
using Newton iteration. Once these solutions were ob-
tained numerically, one-sided second-order differencing
gave us the estimated value of F'(0) on each of the rays.
In an outer Newton iterative procedure, the trial value of
F (0) was found so that the computed F'(0) along the two
rays agree. From monitoring the size of the Jacobian, it
was clear that the problem was not underdetermined and
we checked that indeed a unique solution to (45) satisfy-
ing given decay conditions exist. Once the solutions con-
verge, the imaginary part of solution F along the ray
coinciding with the positive real g axis at large distances

3/8 —(4/7)was found to proportional to g e ' '~ with the pro-
portionality constant equaling —0.875. From (49), it fol-
lows that ImA& = —0.875. From (42) and (50), the tip
slope

dz~(0)
d

2' P' d—' Im(A )exp id ' P—' f dg'(I+(' ) (1 if')—
l

which on numerical evaluation is equal to

—0.615 662 2d Pp1/7P 1 /28d —1/28
Q 875e (53)

which is clearly nonzero. Going back to (49), it is easy to
see that ImF is nonzero on the real g axis for large g.
This implies that Rex& is nonzero on some segment of
the imaginary g axis adjoining (=0 implying that smooth
tip solutions could not exist. The formal solution that we
have constructed is an asymptotic solution of (1) for g
real in the interval ( —oo, O) where we relax the require-
ment of a smooth tip. This is not physically acceptable
since a jump in the slope at the tip implies curvature
which means that (1) could not possibly be satisfied at the
tip. The same result with almost the same numerical
values was obtained by Ben Amar and Pomeau for small
Peclet number. Here, we see that (53) holds even for ar-
bitrary Peclet number.

However, we differ with Ben Amar and Porneau's
analysis on a certain point which does not change the re-
sult (53) but is important as far as checking consistency of
solution. They claim that the solution F to (45) is singu-

lar when $~0 and find the need of an inner neighbor-
hood with a different scaling. Their argument is based on
a possible behavior of (45) near the origin. However, not
every solution to (45) need have a singular behavior at the
origin and indeed from numerical integration of (45)
(with careful choice of consistent branch cut), we find
that the solution to (45) that satisfies the decay conditions
at ~ for Argg in [0,6m/7) remains finite at /=0. Indeed,
if F tends to oo as $~0, the linearization of the integral
term in the Nash-Glicksman equation or even the Pelce-
Pomeau equation for complex g in the neighborhood of
/=i would then be questionable.

However, this discrepancy with the analysis of Ben
Amar and Pomeau has no bearing on the final results (53)
which are in agreement.

V. TRANSCENDENTALLY SMALL CORRECTION
FOR NONZERO ANISOTROPY

The WKB solutions to (32) for small d0 are now given
byg, and g2, where

g, 2=(1+( )
/ L '/ exp —,

' f dg' Q(g')+ exp +ida '/ f dg'L ' (g')(I+/' )
(54)
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where

3( 56a(
1+/ (I+/ )

8ag
( 1 +$2)2

( 1 + g2)3/2
1 ig— ( 1 +(2)2 (55)

(56)

is satisfied. The smallest P value was found numerically
to be 1.4926. The details of the numerical method are
given in Sec. VII. Note that the scaling of d0 with a fol-
lows from the definition of P and is consistent with earlier
numerical ' and analytical work. ' The results for the
case of large P with a &(1 are a special case of the case
considered in the following section though it can be treat-
ed by a direct analysis of (58).

Note that each of L and Q are singular at /=go on the
imaginary g axis between 0 and i, where

g =i[(1+2a)' —(2a)' ] . (57)

The WKB solutions are invalid in a small neighborhood
of (=i and /=go. The form of the local equations
depends on the size of a. In the next two sections
we consider two cases: aP do / =O(1) and
~a4/7d

0
4" »1.
VI. TRANSCENDENTAL CORRECTION

FOR aP do =0(1)
In this case go is within a do neighborhood of i The.

WKB solutions (54) hold beyond a do neighborhood of
/=i as in the preceding section. To the order of approxi-
mation to which (54) is valid, we can replace gl and g2
given by (54) by the simpler WKB solutions g, and g2 as
in (35). This is because in (55), a is small and the terms
involving a are only important near /=i, where the
WKB solutions are invalid anyway. Near (=i, we intro-
duce the same change of variables (43) and (44) to find
that the leading-order equation is now

VII. TRANSCENDENTAL CORRECTION
FOR aP do ))1

Note that in this case, we could either have a=0(1)
or a «1 provided P as defined by (59) is very much
larger than unity. At the outset, we will be assuming that
a is order unity. Later, scrutiny of the assumptions show
that the final result is valid even for small a provided P is
large.

In this case, the WKB solutions (54) do not simplify to
(35). The Stokes lines are determined by the condition

Re l d L 0
l

i( I d 2/1 1 21/11 —2/11 2/1 1/-)
0

d 4/11 22/11P —4/11 4/1 lgZR —
0

(62)

(63)

where L is given by (55). The Stokes lines in this case are
shown in Fig. 2 and the asymptotic growths shown in
sectors I and II are now relevant since they extend all the
way to the negative real g axis.

In this case, we introduce the independent and depen-
dent variables in the neighborhood of /=i given by

F"— ~ F=1,
I:(0—F')' —P]

where

(58) Then the leading-order equation for g of 0 (1) is

F"+(g F') F= 1 —. (64)

13 29/7 P4/7d —4/7
0 (59)

For large g, the asymptotic behavior that matches with

zlzz
—dozl when dll ((I1+i(I «1 is

As before, the asymptotic behavior of (58) that matches
with dozl when do &(I 1+i(I «1 is

1

7/2 (65)

1

3/2 (60) To find transcendentally small corrections to this behav-
ior, we linearize (65) about this leading-order behavior

We linearize (58) about this solution and obtain the tran-
scendental correction to (60) from the WKB solutions of
the form (48). Once again, as in the preceding section,
(49) is valid for large j with Argg in ( 27r/7, 0], and th—is
matches with

ZR dOZ1 + C1g2 (61)

in sector I (Fig. 1) provided (50) holds. Similarly, for
large g with Argg in the interval (

—67r/7, —27r/7), (51)
holds and this matches with (41) provided (52) holds.
Thus a unique solution to (58) is found by requiring that
the solution goes to zero for large g with Argg in the in-
terval (

—67r/7, 0]. However, for such a solution for arbi-
trary p, we generally have ImA1%0 implying ImC1%0.
This implies a nonsmooth tip in the general case. How-
ever, on varying P, we obtain a set of values of /3 and
hence d0 for a given a for which the smooth tip condition

o

----~ Re (
FIG. 2. Solid lines: Stokes lines determined by

Re[i f dg'L'/ (g')]=0 in the complex ( plane for Re(~0,
1

where L is given by I,'55).
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p7/8 —i (4/11)g
g7/2

and this matches with

z~ -dpz1+C1g2

in sector I of Fig. 2 provided

C1 i m /4p 1/222 39/22 —1/22d 9/44

1

a p

(66)

(67)

(68)

For large g, for Argg in the interval ( 87r/1—1, 47r—/11)
the leading-order behavior of F is given by

(69)

and this matches with

and find WKB solutions to the homogeneous second-
order linear ordinary differential equation (ODE). In-
cluding this transcendental correction, we find that for
large g with Argg in ( —47r/11, 0) 0.00001

0.0001
0.001
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.12
0.14
0.16
0.18
0.20

0.000 075 6
0.000 138
0.004 04
0.0266
0.0451
0.0605
0.0738
0.0855
0.0961
0.106
0.115
0.123
0.130
0.144
0.155
0.166
0.175
0.183

TABLE I. G(a) as de6ned in (74) for di6'erent a.
G(a)

z~ -dpz, +C
in sector II (Fig. 2) provided

(70}

yo =poli =&(1+2a)—&2a . (75)

C2 i m'/4p 1/222 —39/22 —1/22d 9/44

2
a (71)

Thus a unique solution to (64) is calculated by requiring
that the asymptotic behavior of the solution F for large g
be given by (65) with only transcendentally small correc-
tion for Argg in the entire interval ( —87r/11, 0). It is
clear that A1 determined as such can only be a pure
number. We do not determine this pure constant A1 in
this paper.

From the arguments similar to that of Sec. IV leading
up to (40), it is clear that the appropriate condition for a
smooth tip is that (67) be real on the imaginary g axis
near /=0. Thus it is necessary that

Arg C, exp —ido '/ f dfL'/ (g') (72)= —n~,

0
—1/2 f d g'L 1/2( g' )

which is negative because with the choice of branch,
ArgL '/ varies continuously from 0 to 7r/2 as Arg(g —

go)
varies from 0 to —7r. Thus, from (68), we find that the
condition of smooth tip implies that

P'/ do '/ G(a)=n7r+ —+ArgA, , (73)

where (see Table I)

G(a) = dy
(1—2)»4 8a '

3'

yo ( 1+y )1/4 ( 1 y2)2

where

' —1/2

(74)

where n is some positive integer. Note that the choice of
a negative sign on the right-hand side of (72) follows from
the sign of

Equation (73) is the selection rule.
Equation (73) is also valid of small a only if P is defined

in (59) is very much larger than unity. In the case of
small a, it is easily seen that

1
7/4

G (a ) 29/8 7/8 f dq
0 ( 1 2)1/2

which on numerical evaluation gives

G (a)-1.80205a

In terms of p, (73}reduces to
8/7

P=1.2437 n7r+ —+ArgA
4 1

(76)

(77)

Ben Amar and Pomeau also arrive at the result (73),
but they implicitly assume that (73) is valid for any a and
for any value of integer n We cla.im that (73) can only
strictly hold for large values of n because if n were of or-
der unity, G (a) in (73) will have to be sinall and of order
do/ P ' (which has to be small for the theory to be val-
id}. From (76), this would imply that p=O(1) and then
the result (73) is not strictly valid. In this case, one has to
use the results of Sec. VI provided a is small. If a is not
sma11, we cannot use any of the results of this paper or
the previous ones' to make a proper prediction of dp for
the first few branches of solution, i.e., n =0 (1), since the
corresponding dpp ' are not small and therefore beyond
the validity of the theory. However, despite the fact that
(73) is strictly invalid for n not large, it appears from
comparison with direct numerical calculations' that the
formula is surprisingly accurate even for relative small n
and a over the range of experimental conditions.

Notice that the asymptotic form of solution (67) is also
invalid near /=go as pointed earlier by Ben Amar and
Pomeau. However, this point has no bearing on the re-
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suit (73). If we are interested in finding the behavior of
the solution in this neighborhood, we introduce local
variables

g= (0 it—day (79)

and

z~ = t —daG (y),
where

(80)

—16ia(0( I —$0)( 1 i—)0)
P ( 1 + g2)9/2

(81)

Then to the leading order in d 0, the equation for
y=0(1) is

(G"—1)(y—G')=G . (82)

For large y, 6 ——y and linearizing (82) about this and
finding WKB solutions to the associated homogeneous
equation, we arrive at the following expression for G for
large y that (with appropriate choice of constant B)
matches with (67) as g~(0 for Argy in (

—m, 0]:
G- —X+BE I/4e-2x

This does not affect the selection rule (73).

(83)

VIII. NUMERICAL DETERMINATION OF P
OF ORDER UNITY

In this section, we describe the numerical method used
to determine p so that solution to Eq. (58) satisfies the
asymptotic condition (60) for large g for Argg in
( —6ir/7, 0] and that the solution be real on the positive
real g axis for g sufficiently large. From the Schwarz
reAection principle, it follows that we are interested in a
solution that satisfies the asymptotic decay condition (60)
for large g when Argg in (

—6'/7, 6m. /7). Since only one
such solution could be found, it follows that solution
satisfying decay condition (60) for Argg in
( —6m /7, 6'/7) must automatically satisfy the condition
that F be real for sufficiently large g on the real axis and
indeed that was checked numerically.

The method employed is similar to the one employed
earlier ' in the context of the Saffman-Taylor finger prob-
lem. We choose a point x0 on the positive real axis that
is sufficiently large so that the resulting solution is real at
g=x0. This was done by trial and error. However, we
do not choose x0 unnecessarily large because such a
choice will cause numerical inaccuracy.

We go through the procedure given in the next two
paragraphs to calculate the residual corresponding to a
given value of P.

We take N points lined up parallel to the Imp axis of
the form gk =x0 —iL

&
+ikh, where k is an integer rang-

ing from 0 to N + 1, L
&

is a large positive number far
larger than xa, and h is the distance between adjacent gk
points. N is chosen to be an odd integer and h chosen so
that (N+1)h =2L, . The asymptotic condition (60) is
employed at the end points $0 and g&+, and the (58)
discretized and satisfied at g =

gk for k ranging from 1 to

N using standard second-order finite differencing. This
discretized two-point boundary-value problem is then
solved using Newton iteration choosing an initial guess
F =0 and convergence was obtained without any prob-
lems. Once convergence is attained, we store the value of
F and its estimated derivative obtained by second-order
central differencing at g=x0.

The same procedure as in the last paragraph was used
for a set of points on the real axis, g =x0+jh, , where j
now ranges from 0 to N, +1, with (Ni+1)hi =L2, where
L2 is a large positive number and N, is a large positive
integer so that h, is small. Equation (58) is discretized
and satisfied for j =1, . . . , N& and the decay condition
(60) used at end point corresponding to j =N, + l. At
the j =0 end point, we use the value of F as obtained in
the last paragraph. Once a converged solution is ob-
tained on this contour, we estimate the derivative of F at
g=x0 by a one-sided second-order differencing. The real
part of the difference of estimated derivative here and in
the procedure of the last paragraph is the residual. The
imaginary part is automatically zero to within machine
precision, as it must be from the symmetry of the equa-
tion.

Once the residual is calculated for given p, in a
Newton iterative procedure, we drive the residual to zero.
The smallest value of p so found was 1.4926 and this cor-
responds to the dendrite moving with the largest velocity.
We took N and Ni to be 2049, L& and L2 to be each 10
and x0=2.0 and the results were unaffected by doubling
each of N, N, or by changing L, , L2, and x0. We do not
carry out the calculation for other branches because ex-
perience has shown that (73) becomes quite accurate even
for moderate values of n though the expression should
only be asymptotically valid for large n.

IX. DISCUSSION AND CONCLUSION

We present here an analytic theory for the determina-
tion of velocity for a two-dimensional dendrite are arbi-
trary Peclet number in the limit of small values of the
surface-tension parameter provided the ratio of surface
tension and Peclet number is also small. We point out
some discrepancies with earlier analytical work carried
out in the limit of small Peclet number. The method is
both qualitatively and quantitatively accurate and is an
attempt to answer some serious objections raised by an
earlier investigator on the validity of selection theory.
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APPENDIX

Define

u [g]=—f dg' 1+ e 1~ ~ ' K (P~r~),

under Contract No. NAS1-18605 while the author was in
residence at the Institute of Computer Applications in
Science and Engineering.

for some constants C, , C2, and s with C, & 0, 1)C2 )0,
and —,

' &s &0. Note that the 6 appearing on the right-
hand side of (A3) is related to P through (12). Thus the
shape correction from the Ivantsov parabola can actually
grow at ~. The upper bound on C2 is not too restrictive
since the function dxz /dg is expected to be small for do
reasonably small, though the proof does not assume any-
thing directly about the size of dp.

We will carry out the proof only for the symmetric
dendrite, i.e., when xz (

—g) = —xz (g) though it is true in
general. For a symmetric dendrite (A 1) reduces to

where

(Al) P P JXR
u [g]=—f dg' 1+ e

—P((' —
g )/2

r = [(g—g')'+2(g —g')[x~(g) —x„(g')]

+[x (g) —x (g')] + —,'(g —g' ) I' (A2)

X [Ko(P~ r~ )+Ko(Pr, )],

r1= [(k+ I')'+2(k+ k') [x~ (4)+ x~ (k') ]

(A6)

The purpose of this appendix is to show that the bound-
ary condition + [x11(4) +x~ (4') ]'+ —.'(k' —k' ')'

I
' " (A7)

lim u (g) =b,
(~+ oo

(A3) Choose any s, satisfying the condition

1)s& ) 1 —s (Ag)
can be satisfied for any shape correction function x11(g)
satisfying the following bounds: and choose

and

/x, (g)) & c,(i+)g/'- ) (A4) (A9)

We assume —
g is large enough so that —g+p &0. We

now decompose the function u

dXR C2

1+/g/'
(A5)

0 =0 ( + 'Ll
2 + Q 3

where

(A 10)

8XR
u1[k]—= f —dk' 1+

d
e ~ ~ ' [Ko(P~r~ )+K11(Pr, )], (Al 1)

u [g]—:—f "dg' 1+ e '~ ~ ' [Ko(P~r~)+Ko(Pr, )],
0—v

(A12)

u3[g]= f '
d—g 1+ ' e-"&' &""[Ko(P)r~)+K-o(Pr, )] .

(+p d( (A13)

Now, from the properties of Kp it is clear that there exists constant 8, such that

0&P' iri' K (Piro')e i" &B, ,

0(Pli2r11~ K (Pr1)e (B1
(A14)

(A15)

Thus

p 1/2
~u, ~

&(1—C, )

p( I 2 2)

B,2&of' "dg ', ', '„,
(gi 2 g2)1/2

2P( —Pq
&(1—c2)P'~ B,2 f dq (A16)

It is clear that in the limit of p~ —~, the right-hand side of (A16) goes to zero.
Now consider u2 for large negative g. We have
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p /2 g+
—P(g' —

g )/2e —PIP —
g ~/2

Iu2I &(1—c2) B,2&2 dg'
'lr g

—p ( p2 g2 )i/2

p 1/2
(1—C2)B,2&2f)+&/r„(

I
1 q

—
I
)'

It is clear that the right-hand side of (A17) goes to zero as g~ —~ and thus u2 approaches zero as g'~ —oo.
It is now appropriate to break up u3(g) into two integrals:

u3(g) =u3, (g)+u32(g),
where

u, [gl—= —f d('e '~' ~ ' [K (Pirl)+K (Pr, )],
g+p,

(A17)

(A18)

(A19)

u3 [g]=—f dg' (g')e '~ ~ ' [K (Pirl )+K (Pr, )] .
7T g+ p

Now

p'/2 p dxl, 1Iu„l& 2 2B, f dg'
(g2 g~ 2))/2

p 1/2 0
2f &' &' '

2 2 i/2

(A20)

C3 e pirl

P3/2 lrl3/2

C
—pr,

3 e

p 3/2 3/2
T1

—pr1

It is convenient to break up u31 into two more integrals:

p 1/2 1+g/p2&2B, C2( —g) 'f dq q (A21)
p (1 q2)i/2

It is easy to see that the right-hand side of (A21) goes to zero as g~ —~. Thus in this limit u 32 ~0.
We now consider u31. First we have known asymptotic property of the modified Bessel function K0, it is clear that

for large enough argument, say larger than 10, one can choose constant C4, a pure number, so that

e
—pirl

' 1/2

K,(PIrI) —'
(A22)v'PI rl n.

1/2

Ko(pr, )— 2
(A23)

QPr,

931 0311 + @312

where

(A24)

and

9 311
7T

10
1 /2

1 /2 pl r

f d~. Ply' —r')/2 e + e

g+p &lol &io
(A25)

—pr 100,2 2 e pirl
u = d 'e (s' —g)/2 e E, +e

5+v V Plr I

'
V'Pr,

E)(k 0') (A26)

where

E(g, g') =
-pl I+pl, l

Irol
(A27)

and

E)(k 0')= (A28)

In view of (A4) and (A5), it is easy to show that in the
range of integration each of E(g, g') and E, (g, g') are—(s+s1 —1)
bounded above in absolute value by B2p ', for

some constant B2 and so the latter term in (A26) is less
than

p —i/2 l dpi(g2 gi 2) —)/2 (A29)

On substitution of g =qg into the integral in (A29), it is
easily seen that the contribution from (A29) tends to 0 as
g'~ —oo. Thus in the limit of g~ —oo, we are left only
with the contribution from the first term in (A24) which
is independent of xz and hence must be that from the
Ivantsov solution. But it is known that the u is equal to
6 for the Ivantsov solution. Thus the limit of the 6rst
term in (A26) in the limit of g~ —ao must be b, . Thus
the proof is complete.
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