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Aggregation growth in a gas of finite density: Velocity selection
via fractal dimension of diffusion-limited aggregation
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The structure and dynamics of an aggregation have been studied when the aggregate grows from
a lattice gas with a nonzero gas density n . At low n and for a short length scale up to g, the struc-
ture of the aggregation is fractal and similar to the diffusion-limited aggregation (DLA). For a large
length scale it is compact and has a nonzero asymptotic density. The steady growth rate V in d-

dirnensional space is inversely proportional to the characteristic length g, and depends on the densi-
1/(d —D )

ty as V-g ' —ns, with Df being the fractal dimension of DLA. Extensive Monte Carlo
simulations in two dimensions confirm the above theoretical hypothesis of the velocity selection
mechanism with D = l. 71. The interfacial width w is also found to be compatible with the expecta-

—1/&(d —
)

tion w xn f

I. INTRODUCTION

In nonequilibrium conditions various elegant patterns
are formed spontaneously, such as snowflakes, convection
patterns, and so on. One of the simplest physical systems
that show various regular or irregular patterns is a crys-
tal growing in a diffusion field, which is now under inten-
sive study. ' The main subject of latest research in this
area is a characterization of growth patterns as well as
determination of the growth rate.

Among various growth patterns, the dendrite is an ex-
ample of a complicated but regular pattern. ' Many
works are devoted to find the mechanisms of the velocity
and pattern selection. The structure of the dendrite is
characterized by the radius p of the parabolic tip, and the
dynamics of the growth is characterized by the diffusion
length l=2D/V, where V is the velocity of the crystal
growing in the diffusion field with a diffusion constant D.
A nonvanishing surface tension introduces in the system
an intrinsic characteristic length, i.e., a capillary length
do. The marginal stability hypothesis' gives the propor-
tionality coefficients between do and p or l. Recently, an-
isotropy in the surface tension was found to be a pre-
requisite for stability of the dendritic growth.

Without surface tension, the system loses the charac-
teristic length scale do and, therefore, the profile of the
crystal becomes irregular. Furthermore, by replacing the
diffusion field with its static limit, i.e., the Laplacian field,
the system loses dynamics. These two conditions along
with random fluctuations lead to an irregular fractal pat-
tern called difFusion-limited aggregation (DLA). The
fractal feature of the DLA cluster reveals itself in the re-
lation between the cluster size R and the mass or the

Dfnumber of solid atoms X, that it contains: N, ~R
Here, Df is called the fractal dimension and is smaller
than the Euclidean dimension of the system d for fractal
objects. The average density of the cluster

Df —d
no L(R ) ~R

then vanishes in the limit of an infinite cluster size
R ~ ~, and thus DLA represents growth in the low-
density limit of the diffusion field. In other words, the
density n of the diffusing particles, which we call gas
atoms in this paper, is zero.

When the density n does not vanish and the steady
growth is realized, the resultant aggregate has a nonvan-
ishing density n, . Thus it cannot ultimately be fractal
when its size goes to infinity. There should be a crossover
from a fractal to a compact structure at a characteristic
length g. ' On the other hand, in the gas of a finite den-
sity, gas particles move according to the time-dependent
diffusion equation. When the crystal grows with velocity
V, a mass conservation condition at the interface intro-
duces a diffusion length l =2D/V. ' We expect that these
two length scales, 1 and g are related with each other.
Matching of 1 and g then determines the growth rate V of
the crystal ~ This new mechanism of the velocity selection
is studied here by means of computer simulation. A brief
summary of the present work has been recently published
in a letter.

II. MODEL AND PREDICTIONS

Consider an aggregation growth from a two-
dimensional square-lattice gas. Each gas atom makes a
random walk on the lattice, until it moves next to solid
atoms and stops to form an aggregate. If there are N
gas atoms in the system, our time unit is so chosen that
one Monte Carlo diffusion trial of a gas atom corresponds
to the time increment (4A' ) . By taking the lattice pa-
rameter of the square lattice to be unity, the diffusion
constant D also reduces to unity.

Initially we fill a rectangular box with gas atoms of a
density n . The seed of the aggregate takes the form of a
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line at the bottom of the box. When a randomly chosen
gas atom sits or diffuses next to the aggregate, it solidifies.
If an aggregate grows to a predetermined level from the
top of the box, a thin gas layer of a constant density is
added at the top, so as to keep the density far from the
top of the aggregate constant. This one-dimensional
growth geometry is chosen to realize a steady growth. '

Mass conservation is ensured in the steady state if the
average density of the solid deep inside the aggregate n,
is equal to that of the gas far from the solid n . The
growth situation thus corresponds to that under a unit
supersaturation, 6= 1. At low densities our simulation is
similar to that of Voss, who found a crossover length g
but did not reach a steady state. The existence of this
steady state is essential to our theoretical argument.

A macroscopic analysis of the crystal growth at 6=1
leads to the result that a crystal can grow steadily with a
flat interface, but that the growth rate cannot be deter-
mined. In the simulation, on the other hand, we find that
the aggregate grows steadily at a constant velocity. Fig-
ure 1(a) shows an aggregate grown from a diffusive gas
with the density n =0.15. The width of the system L is
1024, and a periodic boundary condition in the x direc-
tion is applied. The height of the box is increased from
an initial value of 200 to a final value of 1500. The top of
the box is separated from the top of the aggregate by at
least a height 100 at this density. The density profile
along y axis is shown in Fig. 1(b). The gas density far
from the aggregation clearly has the prescribed value
n =0.15. The solid density decays from the initial value
n, (y =0)= 1 at the bottom, and it relaxes to the steady-
state value n, =0.15=n at a distance about 60. When
one looks into the detailed structure of the aggregate,
however, it is not homogeneous but has an intrinsic struc-
ture with a characteristic length g, .

Since the aggregate absorbs all the gas atoms around it,
the gas density at the interface turns out to be zero while
it grows, as long as n is not too large. In the boundary

layer around the aggregate diffusing particles are rare just
as in the DLA model, and the aggregate forms a fractal
structure. The solid density decreases as in Eq. (1) when
the scale R increases. But when R exceeds a characteris-
tic length g„the aggregate becomes "compact" with an
average density n, =ng. Therefore, the crossover length

Df —d
g, is determined by n —g, f, or

(2)

If one considers the problem from a dynamical point of
view, one gets another aspect of the density depletion lay-
er. The number of atoms solidified to the aggregate per
unit time n, V should be supplied from the gas phase by
the diffusion flow as DVn -D(ng —0)ling, where gg is
the thickness of the density suppression layer. Therefore,
the characteristic length gg is about half of the diffusion
length I =2D/V. (Here we have used the steady growth
condition n, =ng )As.suming that g be the same order
with the previously defined characteristic length in the
solid g„the growth velocity of the aggregate in the
steady state is determined as

(3)

The result is remarkable since the fractal dimension of
the DLA cluster Df controls the steady-state growth ve-
locity V. We hereafter write the characteristic length
simply as g unless discrimination between g and g, is
necessary. Note that the argument is valid only for
g» 1, that is, for low gas densities. With increasing den-
sity the characteristic length decreases, and when g-l,
i.e., V-1, the above growth law will break down. The
interface kinetics take over the control of the growth
since concentration of the gas atoms on the solid surface
becomes finite. In the high-density limit n =1, our mod-
el is equivalent to the Eden model: Diffusion does not
take place but solidifcation proceeds randomly at the
very surface of the solid. Near n =1 the system behaves
like an Eden model with migrating vacancies. These va-
cancies hinder the solidification, and the growth velocity
will decrease as their population increases.

1500
n g

III. SIMULATION AND RESULTS

A. Structure

0
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FIG. 1. (a) Configuration of an aggregate grown from
diffusing gas particles at a gas density ng =0.15. Box size is
1024X 1500. (b) The density profile along y axis.

According to Eq. (2) the characteristic length in an ag-
gregate g, should decrease with increasing gas density.
This is obvious in Figs. 1 and 2, where the aggregates
grown at various gas densities n =0.08, 0.10, 0.15 (see
Fig. 1), 0.20, 0.40, 0.80, and 1.0 are shown. For low-
density samples the branching structure at small scales
looks quite similar to that of a DLA cluster. As the den-
sity increases, the separation between main branches de-
creases. The width of the system L at low densities
(ng ~0.20) is 1024, and that at high densities (n~ &0.30)
is 256. The height increases in the simulation up to a
maximum of 1500. We have also performed a series of
simulations with the maximum box size 400X4100 and
100X 10100 for both high and low densities. At low den-
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sities the number of main trees in the aggregate is few, in-
dicating the 1ong correlation length g, . For gas densities
n smaller than 0.08, g, seems to become comparable to
the maximum width L = 1024, and the growth is
influenced by the periodic boundary condition: The main
"tree" begins to interact with the self-image due to the
periodic boundary condition. In order to study only the
intrinsic feature of the problem, we have to restrict our
simulations at relatively high densities above n =0.08.
On increasing the gas density the DLA-like structure be-

comes less obvious, since the characteristic length g, de-
creases to the lattice constant. At very high densities the
solid is dense and uniform, only with many vacancies.

B. Velocity

The number of solid atoms N, in the aggregate in-
creases almost linearly in time after the solid density
reaches the steady-state value as is shown in Fig. 3. Our
main concern is the velocity of the aggregate height,
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FIG. 2. Aggregations from various gas densities, n„=(a)0.08, (b) 0.10, (c) 0.20, (d) 0.40, (e) 0.80, and (f) 1.0. (f) Only solid atoms
are shown.



AGGREGATION GROWTH IN A GAS OF FINITE DENSITY: 4719

300 290

i 1L~ ~\

Y I ~

0
0 256

0
0 X

(t)
256

FIG. 2. (Continued).

which is defined by

V= hN,
(4)

n Lht

Here AN, is the increase of N, in a time interval At, and
L is the width of the box. Velocity thus defined increases
as a function of gas density n, as is shown in Fig.Fi . 4. At
low densities 0.08 n 0.35, the velocity satisfies the re-
lation

V=ssn'" .

(From the least-squares fitting a straight line to the data
3.40 3.60in a logarithmic plot we obtain 49n —69ns . ) Com-

bining with Eq. (3) we get the fractal dimension

(6)

P i ~ r

Df = 1.71+0.01,
which agrees with the one obtained previously:
D = 1.695+0.002 for square-lattice DLA" and
D =1.715+0.002 for off-lattice DLA. Therefore, our

f
12f

matching hypothesis between the static length scale g', in
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FIG. 3. Number of solid atoms vs time at low densities with
L = 1024.

ng

FIG. 4. Growth rate V vs gas density n in a logarithmic
scale. The best fit V=58ng" for n~ (0.35 is shown by the solid
line.
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solid and the dynamical one g in gas seems to be power-
ful for the determination of the growth rate of the aggre-
gate.

Recently we were informed of work by Meakin, ' who
performed a simulation study on two similar models. In
the first model I, solidification takes place only when an
attempt is made to move a gas particle onto a site occu-
pied by a solid atom. Therefore, the growth rate is al-
ways smaller in model I than in our model, where the
solidification takes place whenever a gas atom comes in
contact with solid atoms. In model I Meakin obtained
the asymptotic linear growth of the total mass of solid as

X~n tS g

at low densities. (n and N, corresponds to p and M in
Meakin's notation. ) In our terminology, the velocity of
average height is then V = 8.64( 1 —0.64n ) . (9)

number of gas atoms next to the solid per column (ratio
of the perimeter length to the width L ). Thus the
steady-state velocity V(n~ = 1)=8.64 means that the in-

terface is about 2.16 times longer than the simple flat in-
terface. This enhancement factor agrees with that ob-
tained previously in the Eden model simulations. ' '
Hirsch and Wolf' found that the true steady-state value
2. 180+0.007 is reached when the interface is as high as
2000 for L ~ 90. Our steady-state value for n =1 is tak-
en when the height is comparable to the width L =400.
It is 1% lower than their asymptotic value but agrees
with that at the same height given in Ref. 15.

As the gas density decreases, the growth rate decreases
linearly from the limiting value V=8.64 and is approxi-
mately given by

n
2. 8

n Lht

whose exponent 2.8 is smaller than our result 3.50.
In the second model II which is the same with Voss's

model, any gas particles connected to the freshly
solidified atom via nearest-neighbor links also become
part of the aggregate, and therefore at high densities a
percolation transition occurs. The growth rate in model
II is always larger than our model, and at low-density
limit both models become equivalent to the usual DLA
model. From the scaling plot of n, N, versus n t in
Ref. 13, the asymptotic growth rate may be written as

This decrease is attributed to the increasing number of
vacancies at the interface, which hinder the solidification.
In order to see simply the effect of the vacancy, let us in-
sert vacancies with a concentration (1 n) in a—
configuration of an Eden model. The number of gas
atoms which is contingent to solid atoms decreases ap-
proximately by a factor n relative to that of an Eden
model. From the definition Eq. (4) of the velocity of the
aggregate height, then, the reduction in the velocity
V(n ) from that of the Eden model V(n =1) is expected
to be proportional to the density n . Since the interface
is not planar, the proportionality coefficient is not unity.

V~ n4'.
g

The exponent 4.0 is larger than our value 3.50. In
Meakin's paper, however, the simulation does not seem
to be long enough at low densities (n 50.2) to warrant
the linear growth law (N, ~ t). Furthermore, at late
stages the scaling plot does not fall on a single curve, in-
dicating the inaccuracy in the choice of the exponents.

We now consider the growth at high densities. When
density is higher than 0.6 the asymptotic growth velocity
is higher than the initial velocity. At high densities the
gas atoms do not have much space to move, and the
growth is mainly controlled by the interface kinetics. At
the start the interface is flat and n~L sites next to the
solid seed are occupied by gas atoms. Among the
remaining (1—n )L empty sites, ng /4 are filled by gas
atoms via the diffusion from the second next layer. Thus
the number of solid atoms increases as
=4[n +(1—n )n /4]Lb, t and the initial velocity should
be V=5 —n . The later increase in the growth velocity is
the result of the increased number of the gas atoms at the
growth front due to the spatial fluctuation of the inter-
face. The steady growth velocity approaches the limit-
ing value 8.64+0.08 for n =1. In the high-density limit
of this model (n =1), the gas atoms are packed densely
and cannot diffuse at all. Crystallization progresses via
random selection of surface gas atoms. This is the
growth process of the Eden model. The growth rate of
the Eden model in our time unit is four times the average

C. Characteristic length g' in gas phase

In order to confirm our hypothesis about the length
scales for the low density growth, we analyze the charac-
teristic length in the gas and in the solid. The local densi-
ty distribution of gas atoms around the growth points is
calculated and it is found that the gas density relaxes ex-
ponentially with a characteristic length gg for ns (0.2.
Macroscopic theory of crystal growth tells us that the gas
density relaxes from 0 to ng exponentially with a screen-
ing length D/V=/ =l/2 for a liat surface. D/g ob-
tained from the simulation is about half of the growth
rate V. (see Fig. 5.) The enhancement factor —2 of the
growth rate V may be attributed to the rough and
wandering interface, which increases the length of the
effective growth front about twice to that of the flat inter-
face.

D. Characteristic length g', in solid aggregate

The solid density correlation function g ( r )

=(n, ( )0n, (r)) is expected to decrease from 1 at r =0 in
Df —d

a power law g(r) —r f for distances r up to the cross-
over length g„and then saturates at the value n, for
larger r. Instead of calculating g(r) directly, we divide
the system into square cells of the linear dimension b and
count the number of solid atoms in a cell X,
=g, ~„&in, (i ). Its second moment is transformed as
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FIG. 5. The characteristic length g vs gas density ng in a
logarithmic scale. The solid line indicates 2/V.

(N, )~=2g g n, i()n, (j)+ gn, (ii)
i j(xi ) I

=(N, )b f g(r)d r+1
1

(10)

1.0

Therefore, the quantity defined by

n(b)=((N, )&/(N, )b —1)b

is essentially an average of g(r ) in a cell with the dimen-
sion b. The subtraction of unity in Eq. (11) removes the
strong autocorrelation. Reflecting the crossover of g(r)

Df —2
at r =g„n(b) is expected to be proportional to b f for
b &g„and n(b)=n, for b &g, . Figure 6 depicts n(b) as
a function of the cell size b, taken from the central part of
aggregates where the local solid density n, stays homo-
geneous and equal to n on the average. The crossover of
n(b) in b dependence is apparent. From the data at

b ~ g, the fractal dimension is calculated to be

Df =1.66+0.02, a little smaller than the expectation'
1.71. The discrepancy may be attributed to the
insufficiency of the true solid region to get enough statis-
tics: At low densities the diffusing gas particles remain
deep in the solid, and the completely solidified region is
rather small. Considering the unsettled controversy' on
the fractal dimension of DLA, however, we do not ex-
clude the possibility that the discrepancy is real.

Voss analyzed density correlation of similar aggre-
gates grown from a point seed and found g, ~ n, al-
though other possibilities were not excluded. For this
geometry the true steady state does not exist because of a
finite radius effect, and more thought is required to make
any definite conclusion (see Ref. 8). The present
geometry ensures that g(r)=n, =n for large enough r.
Therefore the fractal behavior in short distances

Df —d
g(r) —r f automatically leads to the density depen-
dence of the crossover length Eq. (2).

2M
1

M
W'(t)= g y +; — g y +; —= (y —y)

i =1 i=1
(12)

at the average time t = gM
&

t +, /M has large fluctua-
tion, but it tends to reach a certain steady-state value.
Since W (t ) contains the systematic drift of the average
height during the time interval At for the growth of M
points, the true width of the growing region w needs
correction. In the steady state, the probability distribu-
tion of the height of the growth points is a function of the
difference y —Vt. Therefore,

E. Width of a growing region

Since the aggregation growth takes place at the inter-
face between the gas and the aggregate, positions of new-
ly grown aggregate atoms reflect the structure of the in-
terface. These newly grown atoms have heights fluctuat-
ing from the average as is shown in Fig. 7(a). The aver-
age height fluctuation over every M growing points

I

0.4-
II

V

CV I/I

V'

0.2—

+ +++++
++

n =0. 89

W'(r)= f (y —Vr)'dr
t —At /2

At y —Vt +Vt —t dt

=w~+( Vht) /12=w +(M/Ln ) /12 . (13)

0.1

.10

n9= 0.08
100010 100

b

FIG. 6. Log-log plot of correlation of solid atom numbers in
a cell n(b) vs the cell dimension b. The power-law decrease of
n (b ), which characterizes the DLA, changes into a constant at
a crossover length —g, .

The corrected width of the growing region m is shown in
Fig. 7(b) for systems with various widths L =100, 400,
and 1024.

If we assume that the system is strongly correlated
within the correlation length g but uncorrelated for large
separations, the interface may be interpreted to consist of
blobs with a size g and these blobs perform a random
walk in the "time" of L /g steps. The value of the aver-
aged interface width m is estimated from the analogy to
the Brownian motion, with g the step unit length and
L /g the time,
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w' ~ g'(L /g)

OI

~ (gL )1/2 ~ pg
f L 1/2

g (14)

y (a)

1000—

We now compare the simulation results with the above
theoretical hypothesis. At high densities (n 0.3) one
can clearly observe the size dependence —L ' for
L =100 and 400. In the limit of Eden model (n =1) our
results agree with a previous extensive simulation study'
of the interface width which predicts m=0. 42&L. In
order to reach this asymptotic behavior, however, the
height should reach as high as y-0. 4L . For narrow
systems with L =100 and 400 we have taken the max-
imum box height at h,„(L= 100)= 10 100 and

h,„(L=400) =4100, which satisfies the above criterion.
For a wider system with L = 1024, the above criterion re-
quires the height more than 13000 which is out of scope
of our CPU time. For example, to grow one sample at
n =0. 1 up to the height h,„=1500,8. 5X10 Monte
Carlo steps were necessary. The interface width at this
height does not yet reach the steady-state value, and the
data shown in Fig. 7(b) for L =1024 is rather tentative.

As the density decreases, the width w increases. But
our data does not seem to be sufficient for quantitative
discussions. At low densities the crossover length g in-
creases and thus the number of "time steps" L /g de-
creases quickly. Thus the data for narrow system as
L =100 is strongly influenced by the periodic boundary
condition in the horizontal direction. The widest system
with L =1024 again suffers from the shortage of height
and the data values have very large error bars. With all
these limitations, however, one can observe that the slope
in u versus n becomes steeper as the system width L in-
creases. For L =400 and L =1024, simulation results of
the interface width w at low densities are compatible with
the hypothesis Eq. (14) with Df = 1.71.

IV. SUMMARY AND DISCUSSIONS
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FIG. 7. (a) Height y of the newly grown aggregate sites vs

time t for ng =0.15. (b) Average width u of the interface vs gas
density ng for L = 1024 (+ ), L =400 (~ ), and L = 100 ( 0 ). The
bars are typical fluctuations of the width. The expected slope—1/2(d —D )

M ~ ng
f is shown by the dashed line. Arrows indicate

the values given in Ref. 15 for the Eden model (ng = 1.0).

Our model of aggregation growth from a lattice gas in-
terpolates the DLA and the Eden model in a unified way.
At the high density it approaches the Eden model. The
characteristic length is the lattice constant, and the solid
is always compact. The growth is controlled by the inter-
face kinetics, and the growth velocity V-8.64 is deter-
mined by the number of interface atoms per width.
( V=8.72 given in Ref. 15 is probably a better value. ) At
low densities, the growth is controlled by diffusion and
the characteristic length g of the gas is essentially the
diffusion length I =2D/V. This length l also character-
izes the structure of the aggregate. As the size increases
beyond I, a DLA-like fractal structure of the aggregate
changes to a compact structure. Thus I should match
with the crossover length g, determined by the fractal di-
mension of the DLA. Despite the lack of physical time
and dynamics in the DLA, its static structure determines
the growth velocity of an aggregation from the diffusion
Geld. This length matching is a new mechanism of veloci-
ty selection in unidirectional diffusion growth in the ab-
sence of the surface-tension effect. To summarize, the
steady-state growth velocity turns out, in practice, to be a
very sensitive and useful measure of the structural quanti-
ties, such as the length of the interface and the crossover
length in the bulk of an aggregation.

The transition from an open fractal to a compact struc-
ture is seen in nature. In crystal growth, by increasing
the supercooling and thus increasing V and decreasing g,
a dendritic crystal with an open structure changes to a
compact one. ' This compact dendrite is often seen in
crystal growth, and it is essentially the same as our uni-
formly packed fractal clusters. Shigematsu and Komatsu
grew dendrites of ionic crystals from a solution in a two-
dimensional geometry and observed the solute concentra-
tion by an optical method. The range of the solute de-
pletion near the crystal in their photograph is about the
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same as the characteristic distance of the main dendrite
branches, in agreement with our simulation.

Transition from a DLA to a regular dendritic pattern
occurs as anisotropy is introduced. We have neglected
the anisotropy of the square lattice since our DLA-like
clusters are not so large that the anisotropy has little
effect. ' ' ' By reducing the randomness in a numerica1
simulation one can make regular dendritic patterns.
The same is possible in real experiments: dendritic
viscous fingers and a DLA-like crystal have been
made by introducing anisotropy and randomness on the
wall of the cell, respective1y. The study of the anisotropy
effect in the present model is now under way. One of
the authors (Y.S.) is now simulating a crystal growth
from a lattice gas with interactions and also with the pos-

sibility of evaporation. On increasing the chemical po-
tential gain by solidification, a similar transition from
fractal to compact structure is observed.
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