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Chaos in a parametrically damped pendulum
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Numerical simulations have shown that a parametrically damped, but otherwise undriven pendu-
lum possesses many of the dynamical modes characteristic of a simple driven pendulum, yet with
notable differences. Over most of the parameter space only a stationary steady state is possible. A
single domain exists within which are situated three distinct subregions of periodic, multiperiodic,
or chaotic motion. The periodic orbits generally occur at half the damping modulation frequency.
All of these phenomena have been experimentally observed on an actual pendulum in which para-
metric damping is generated electronically.

I. INTRODUCTION II. THEORY AND NUMERICAL RESULTS

The subject of the dynamical properties of damped
pendula, so long relegated to undergraduate mechanics
courses, has a new currency since the discovery of chaos
in this and many other nonlinear systems. ' The irnpor-
tance of uncovering and elaborating hitherto unrecog-
nized modes in the driven pendulum has been enhanced
by the fact that this particular system is isomorphic to a
current-biased Josephson junction, and thus results that
apply to a pendulum can serve to predict the temporal
response of these superconducting devices.

Several variants of the simple pendulum have also re-
ceived attention in recent years. Beckert et al. experi-
mentally probed the behavior of a pendulum which had
the usual velocity-dependent damping and, in addition, a
restoring torque proportional to the angular displace-
ment. In a series of papers, " Leven et al. considered
the motion of a parametrically forced pendulum, that is,
a pendulum whose suspension point was subjected to a
periodic vertical displacement. Inoue' applied perturba-
tion theory to the problem of an undriven simple pendu-
lum having a velocity- and displacement-dependent
damping. Chaos in the more elaborate situation of a pen-
dulum suspended within a rotating frame was treated by
Shaw and Wig gins. ' Finally, we note the work by
Romeiras and Ott' on strange but nonchaotic attractors
for a damped pendulum with quasiperiodic forcing.

We report here studies carried out on a parametrically
damped, but otherwise undriven, simple pendulum.
Parametric damping is introduced by the addition of a
prefactor, which is harmonic in time, to the usual
velocity-dependent term in the equation for the pendu-
lum. Computer simulations, and experiments performed
on an actual pendulum, were employed to map out the
chaotic and periodic motions of this system.

where 0 is the angular displacement measured clockwise
from the rest (down) position, I is the total moment of in-
ertia of all rotating components, g is the acceleration of
gravity, and the constant A specifies the strength of
velocity-dependent damping. Recent reviews which treat
the classical behavior of this system, including the effects
of additional types of damping, can be found in Refs. (15)
and (16). In this work, we consider the effect of adding a
time-dependent term to the damping, such that Eq. (1)
becomes

d 0 dOI +[A +B sin(cot)] +mgb sin(8)=0 .
dt dt

(2)

The undamped natural frequency of the pendulum is
given by coo=(mgb/I)' . A convenient dimensionless
form of (2) is obtained if time is expressed in units of coo

derivatives with respect to this new time will be indicated
by overdots. Hence

0+Q '[ Ie+si ( ntI"I)]8 s+i (0n)=0, (3)

where Q =(mgbI)' /A, e=B/A, and II=co/coo. Be-
cause most of the experiments (to be described in Sec. III)
were carried out with Q = 18.33, this value was employed
throughout the simulations. Numerical solutions of Eq.
(3) were obtained with a fourth-order Runge Kutta algo-
rithm. A basic time grid of 100 points per cycle of
sin(IIt*) was employed, with half-step error checking. '

The well-known equation of motion of a simple pendu-
lum consisting of a mass m situated at a distance b from a
pivot is

d 0 d|9I + A + mgb sin(0) =0,
dt2 dt
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FIG. 1. State diagram for the parametrically damped pendu-
lum. Motion within the regions is as follows: PI, period 1; P,
multiperiodic; C, chaotic. The line drawn within P& is the locus
of points for which the oscillation amplitude just reaches vr/2.
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All calculations were performed in double precision ar-
ithmetic. It may be noted here that in some cases as
many as 10000 such cycles had to be computed to
guarantee transient-free solutions, and that this in turn
involved something on the order of 3 X 10 passes
through the algorithm.

The principal objective of the numerical simulations
was to reveal the character of the state space, in other
words, to determine the types of motion resulting from
given choices of e and A. A discussion of the various
modes of the pendulum is probably best served by begin-
ning immediately with the final-state diagram (Fig. 1),
which was itself constructed from the many individual
computer runs required to delineate the indicated re-
gions.

It is apparent that 0=0=0 always satisfies Eq. (3);
however, as we shall see, such a solution is not necessarily
a stable one for arbitrary (e, Q). Nevertheless, simula-
tions revealed that beyond the right-hand boundary of
the large V shaped domain (region Sz), this solution al-

ways obtains, regardless of the initial conditions (Oo, Oo)

that are chosen. An example is provided by Fig. 2, which
illustrates the decay of oscillations towards a stationary
state (9=8=0) in the phase plane, for E=16.0 and
0=5.Q. The circles in this and subsequent figures are
markers indicating the beginning of each cycle of
sin(Qt*); in this instance, the damping modulation pro-
duces the fivefold undulations which are superimposed on
the exponential contraction of the orbit.

SL denotes the portion of the state space that lies to

FIG. 2. Decay to a stationary state in the phase plane.
Q = 18.33, E= 16.0, and 0=5.0. The initial motion (a) is some-
what irregular, but later (b) it becomes synchronized to the
damping modulation.

the left of this V-shaped region. Most of S~ is populated
with stationary solutions which are reached after a brief
interval of rapidly damped motion. However, very close
to the boundary of the subregion labeled C, long chaotic
transients (lasting as much as several thousand modula-
tion cycles) can precede the ultimate decay to rest. Else-
where in SL, the behavior can be more complex, and oth-
er nonstationary attractors may be found. For example,
as shown in Fig. 3, suitable parameters (e, A) and initial

0 o
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FIG. 3. Phase plane plot of a period-1 solution in region SL
at e= 10.0 and 0=1.70 with initial conditions OO=L9&= 1.0.
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conditions can lead to a simple oscillating solution. From
the pattern of time markers (circles), it is apparent that
the repetition time in this case is two cycles of the modu-
lation period. A slight change in parameter values cou-
pied with new initial conditions leads to the attractor
shown in Fig. 4. This is a period-3 solution that requires
six drive cycles for completion. A useful visualization of
the motion is realized by constructing a polar t plot in
which the radius vector is time, measured with respect to
some chosen value t0 at the origin, and the polar coordi-
nate is the actual pendulum displacement 8. Figure 4(b)
presents the trajectory of Fig. 4(a) in this alternate
manner; the repetitive period-3 pattern is quite evident.
Finally, a running solution, which is locked to the damp-
ing modulation, is shown in Fig. 5 ~

It is possible for the attractors mentioned above to
coexist at given (e, Q), that is at fixed points in region SL
of the state diagram. The choice of initial conditions
then determines which of the attractors is selected by the
system. This is illustrated by the basin of attraction
presented in Fig. 6; it is essentially a map of the outcome
of trying all combinations of 143 different 00 with 101
values of 00 over the ranges indicated. For each of the

7l/2

0

FIG. 5. Polar t plot of running solution in SL at @=6.0 and
0= 1.70. Initial conditions were 00=1.985 9155 and HO=0. 40.

0

(a)

! « I « I « I i i I i i I i i I

0 7r

9 (rad)

(b)

14443 initial conditions, Eq. (3) was solved over a total
time span covering 55 modulation cycles. The first 50 cy-
cles were discarded to eliminate transient effects, and the
behavior in the remaining five cycles was examined. The
figure vividly indicates the complexity of even this non-
chaotic motion. Although there is a uniform region sur-
rounding the origin in which a stationary state is ulti-
mately reached, the structure elsewhere appears to be
fractal. Fractally intermixed basins have already been
observed for the forced pendulum, ' ' and for the radio-
frequency (rf)-driven Josephson junction.

In Fig. 1 regions SL and Sz are separated by a wedge-
shaped domain within which the stationary state 0=0=0
appears to be unstable. This is evidenced by the fact that
even initial conditions such as 00=00=10 lead quickly
to oscillating or rotating motion. As shown in the figure,
this domain is subdivided into three distinct areas P„P,
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FIG. 4. (a) Phase plane portrait of a period-3 solution in SL
at a=10.0 and 0=1.71 with initial conditions 80=0, Ho=1.0.
(b) Polar t plot of the same motion as depicted in (a). The radius
(time) spans 20 modulation cycles.

FIC'r. 6. Basin of attraction for Q = 18.33, e =6.0, and
0=1.70. The computational grid is 143 X 101 points. Small

squares denote stationary states, while triangles indicate run-

ning solutions. Blank areas are periodic, or multiperiodic.
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FIG. 7. Maximum 6I for several phase plane orbits within Pl
as a function of (
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' at e= 16.0 (for which 0, =2.412).
Inset: phase plane plot showing four limit cycles. The horizon-
tal scale is from —~/2 to m /2.

and C.
Region P, . Within P„ the steady-state motion of the

pendulum is period 1. Each complete oscillation spans
two drive cycles of the damping modulation. The ampli-
tude O,„of the oscillation is zero along the right-hand
boundary of P„and is m/2 or slightly larger along the
left-hand boundary. This can be seen in the inset of Fig.
7 where limit cycles resulting from four choices of 0 are
plotted. The boundary between Sz and P, is a line of
Hopf bifurcations' marking the transition from fixed
point to limit cycle. When e is held constant and 0 is
treated as a control parameter, we find that O,„across
P, scales as (~Q —0, ~

)', where 0, is the value of drive
frequency at the transition boundary (Fig. 7).

Region P. The conditions in this region (large enough
e and/or small enough 0) are such that the maximum
pendulum excursions sufficiently exceed ~/2 to allow ro-
tating states to emerge; P is thus characterized by a mix-
ture of periodic and multiperiodic states. For example,
as illustrated in Figs. 8 and 9, a small shift in Q can
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FIG. 8. (a) Phase plane plot in region P with @=16.0 and
Q = 1.90005. Initial conditions were 6I0= 00=0.001. (b) polar t
plot.

0

FICr. 9. (a) Phase plane and (b) polar t plots for same condi-
tions as in Fig. 8, except 0=1.90007.
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III. EXPERIMENTAL APPARATUS AND RESULTS

The apparatus consisted of a modified version of the
driven pendulum described by Blackburn et al. Since
that reference contains a detailed description of the ex-
perimental system, we shall confine ourselves here to a
discussion of the modifications, which were required for
the present study.

In the original apparatus, torque was induced by a set
of four stationary Aatwound coreless drive coils,
configured as two orthogonal pairs, which were closely
coupled to a rotor ring magnet. Damping was generated
by eddy currents induced in a fixed copper plate. The
new pendulum has no copper plate or micropositioner;
damping torques are created electronically as described
below.

As in the earlier design, the annular ring magnet had
four north and four south poles alternating around its cir-
cumference (see Fig. 12). The magnet was fixed coaxially
to the pendulum spindle and was positioned very near
(and parallel) to the surface of the printed circuit board
on which the drive coils were mounted. A new feature,
as illustrated in Fig. 12(b), is the addition of a pair of ve-
locity sensing coils. The mechanical angle between them
(m/8) means that when rotating, the ring magnet will in-

Sl S2

FIG. 12. (a) Diagram of ring magnet and (b) geometric ar-
rangement of drive coils and velocity sensing coils.

duce coil signals that are m/2 electrical degrees apart.
Similarly, the mechanical angle of 3~/8 between the two
D& coils assures that, when energized, they will create a
torque on the magnet in a push-pull fashion, and likewise
for the D2 coils.

From the above remarks, it is clear that if the ring
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FIG. 13. Schematic diagram (one of two channels) of motor drive circuit.
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magnet generates a field B& ~ sin(48) at sense coil 1, then
the field at sense coil 2 will be B2 ~sin(48+m. /2). As
shown in Fig. 13, the signal from coil 1, which is propor-
tional to dB&/dt, is multiplied by an externally supplied
control voltage ( Vz), and the resulting current is fed to
drive coils D, . The signal from sense coil 2 is processed
similarly.

The coils were wound in such away that the net torque
generated was proportional to —B,dB, /dt+B, dB, /dt
or

(10 kgm /s)

6--

r ~ V —4 sin(48)cos(48+~/2) dO
d dt

+4 cos(48)sin(48+~/2) dO

Hence

dOw=EV)
dt

(4)

where K is determined by circuit components and the
magnet to coil coupling. Equation (4) confirms the fact
that this new design electronically generates a velocity-
dependent torque. This technique provides damping
which is inherently a linear function of the control volt-
age; eddy current damping, on the other hand, is non-
linearly dependent on plate-to-magnet separation.

In order to test the precision with which the circuit
and coil assembly actually adheres to the damping rela-
tionship expressed by Eq. (4), the pendulum was tem-
porarily removed from the apparatus, leaving only the

FIG. 14. Measured response of apparatus, with pendulum re-
moved, to drive voltage.

ring magnet and optical encoding disk attached to the
axle. In this case, Eq. (1) reduces to

dO dO
" dt

If V& is a constant voltage, then the solution of Eq. (5)

30

~, . ~ "'
I ~

~ . ~ Ig el 'I ~

~
I

Q0
UJ

r
„~I+

~ r ~

:.~ ''
~ ~

, ~

~ « ~r'

r
4'

~,

~ i r'."~e ... ~

r~ C
Vv

~
' g'~ ' ~ ~ C p, ~

~ ~

+- -.. ~ q
V

Co
~ ~

g ' —~

4e. -
'' ~ ~~, ' ~ + ' 'W ~ ~,

r ' ~ &

~ ', . '"J'v r
~ Q , ~

A ~,
~ 'w r ~ ' ~ ' ', ,r.P' ~

~ ~

.'-r'
~ r

~ \ g

~ I ~ lt

-30
ANGLE Iradj

FICs. 15. Exper™ental Poincare plot for Q=18.33, @=19.8, and 0=1.80. Note the similarity to the simu]ation result shown in
Fig. 11(c).



CHAOS IN A PARAMETRICALLY DAMPED PENDULUM 4715

S

3

0
I

IO

l

20 50

(radis )

FIG. 16. Experimental state diagram for the parametrically
damped pendulum. The regions are labeled as in Fig. 1.

implies d 8/dt = (d B/dt )oexp( KVd t /I ). P—ositive con-
trol voltages produce an exponential decay of angular ve-
locity, while negative Vd cause an acceleration. Experi-
ments were performed for a series of control voltages of
both polarities, and the corresponding time constants
(I/KVd) for each case of acceleration or deceleration
were obtained from the spin-up or spin-down data. Since
the moment of inertia of the system without the pendu-
lum attached had been determined to be I=4.718 X 10
kgm, it was then possible to plot KVd versus Vd, as
shown in Fig. 14. The fact that the observed points close-
ly follow a linear relationship verifies that the design does
indeed behave according to Eq. (4). From the slope of

this figure, we find K=1.04X10 kgm /s V.
The pendulum will be governed by Eq. (2) provided the

drive voltage is chosen to be Vd= Vo+ V, sin(cot), with
Vo= A/K and V& =B/K. In the notation of Eq. (3)

Q =(mgbI)'r /KVo and E= V, /Vo. As constructed, the
system with pendulum attached had a total moment of
inertia I=5.66 X 10 kg m, a free oscillation frequency
coo=8.42 rad/s, and a value for mgb equal to 4.01 X 10
kgm /s . The dc component of the drive voltage was
usually fixed at 0.25 V, resulting in a Q of 18.33. The ac
amplitude V& was typically set within the range 0 to 6 V,
corresponding to e values from 0 to 24.

All of the dynamical phenomena described in the
preceding section have been observed with the pendulum
apparatus. We will not present the many experimentally
derived phase plane trajectories that correspond to the
various simulation results. Instead, only two representa-
tive figures will now be discussed.

Figure 15 is an experimentally observed Poincare sec-
tion for Q =18.33. The drive frequency was co=15. 1

rad/s (A = l. 80) and the ac amplitude was 4.95 V
(a=19.8). This strange attractor agrees very well with
the simulation result already presented in Fig. 11(c). In
comparing the two figures, recall that the vertical scale in
Fig. 11(c) is expressed in normalized time units; to con-
vert to real time, the scale must be multiplied by coo.

A state diagram for the pendulum was determined by
choosing an array of values for V, and co, and recording
the observed motion (stationary, periodic, multiperiodic,
or chaotic). The result of this process is shown in Fig. 16.
In general, there is agreement with all the features of the
simulation state diagram (Fig. 1), although some as yet
undetermined experimental errors have distorted the
domain boundaries in Fig. 16.
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