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Conduction and connection properties of self-avoiding walks with bridges
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The voltage drop distribution in the random-resistor networks constituted by all nearest-neighbor
bonds connecting points visited by a lattice self-avoiding walk (SAW) is studied by accurate numeri-
cal techniques in d =2. An analysis of the moments of the distribution allows one to establish the
value £=1.333+0.007 for the resistance exponent and to exclude the possibility of multifractal be-
havior. These results are also consistent with a topological investigation of the connection proper-
ties of SAW, which independently yields £=1.33+0.01. This clearly supports §=% and a spectral
dimension d=1 for these walks, solving an old controversy. A possible extension of such an

analysis to SAW at the ® point is also discussed.

The simplest and most natural way to associate a non-
trivial dynamics to lattice self-avoiding walk (SAW) is
that of considering all links between nearest-neighbor
(NN) sites visited by the walks as dynamically active,
whether they correspond to actual steps or not. So, e.g.,
one can consider for each SAW configuration a resistor
network, in which to every pair of NN lattice sites visited
(within one step or more) by the walk, a finite resistance
Q, is associated. The same kind of network allows one to
define related linear dynamical problems, e.g., diffusion.

The dynamics of structures like those described above,
to which we will refer as SAW with bridges, is of poten-
tial interest in connection with several physical issues
such as electric conduction in linear polymers or anoma-
lous temperature dependences of spin-lattice relaxation
times in proteins.!

In spite of the fact that SAW are among the most ex-
tensively studied fractal structures, the issue of dynamics
on SAW with bridges has been addressed relatively re-
cently and does not seem to have been definitely settled.
Different numerical and theoretical predictions have been
produced so far for both spectral dimension and resis-
tance exponent of such structures. Moreover, these re-
sults were never obtained in the context of a systematic
investigation of possible multiscaling aspects associated
with the random network dynamics.

Ball and Cates first addressed the resistance problem
within an € expansion in d =4—e¢ dimensions.? First-
order results obtained for SAW with bridges led them to
suggest that their end-to-end resistance could be asymp-
totically proportional to the number of walk steps in all
dimensions. Numerical results compatible with this pos-
sibility were obtained in d =2 for the problem of diffusion
on lattice SAW with bridges in Refs. 3 and 4. The SAW
is known to have a fractal dimension (7‘—‘% in d=2 (Ref.
5). Diffusion on SAW with bridges is described by an ex-
ponent dy which yields the spectral dimension
d=2d /d,, (Ref. 6). This dimension is relevant to the
description of low-frequency harmonic vibrational modes
of the structure. On the other hand, a scaling relation,’
¢{=dy —d links dy, to &, the exponent describing how the
average resistance (0(R) between two points at distance R
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on the network grows with R:
QUR)=R%, R—>o . (1)

In Ref. 4 dy,=2.60+0.17 was estimated, and thus
d=1.0240.07, or £=1.27%0.17. The values {=d =%
and d =1 should be expected if indeed the resistance be-
tween two points turns out to be proportional to the
number of walk steps separating them.

More recently a number of theoretical and numerical
predictions were produced at variance with {=d and
d=1. Both real space renormalization®’ and Monte
Carlo (MC) results'® were interpreted as supporting d#1
for d=2 SAW. Moreover, a Levy flight approach to
diffusion on SAW with bridges, again predicting d+1,
was recently proposed.!!

In the present paper we address the issue of electrical
conduction across SAW with bridges in d=2 (Ref. 12).
We study the problem with different numerical tech-
niques. The consistency and accuracy of our estimates
should leave little doubt about the correct dynamical
properties of these structures. In a broader sense some
methods and results presented in this paper could open,
in our opinion, new perspectives in the investigation of
SAW properties and related problems.

A systematic approach to the conduction properties of
a random-resistor network is the study of the voltage dis-
tribution across its bonds. SAW with bridges are struc-
tures having the same properties as the backbones defined
for percolation clusters. Given two points of a SAW, if
we consider the union of all self-avoiding paths joining
them in the network with bridges, we get a backbone. If,
in particular, the two points are the starting and end
ones, the backbone coincides with the full network.

Our study in this case follows the main lines of similar
investigations of the backbone of the infinite incipient
cluster of percolation.!>'* We generated by standard pro-
cedures,'® a very large number of SAW on a square lat-
tice of lengths ranging from 5 up to a maximum of 95
steps. For each walk the resistor problem with a given
voltage difference V=1 applied between the ends was
solved by rapidly convergent relaxation methods,'® which
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also exploit the peculiar topology of SAW with bridges.
If we indicate by n(¥) the number of links in the network
with voltage drop equal to ¥, the distribution is charac-
terized by its moments:

<M<q)><zn(V>V"> : @
| 4

in which the average ( ) is over the whole sample of
walks. We expected, for each g, {M(q)) < N’*, N— oo,
the scaling exponents y, giving information about several
properties of the resistor network. For example, the
zeroth moment is nothing but the average number of
links in the network. Since this number is always bound-
ed by a minimum, which is the number of steps N, and a
maximum, again proportional to N, we must have y,=1.
More interesting is the second moment, which can be
shown to scale as the inverse of the end-to-end resistance
Q of the SAW with bridges.'>'* The fourth moment can
be seen to be related to 1/f noise in the network, ! while
in the limit ¢ — o, the moments give information on the
number of NN network bonds having the maximum volt-
age drop V,,, and thus carrying the total current. These
are called links or cutting bonds, because conduction in
the network is suppressed when one cuts one of them.

For d=2 SAW with bridges the voltage drop distribu-
tion and its moments are radically different from those of
the percolation backbone. While in the latter case y, is
not linearly varying with g (multiscaling or multifractali-
ty)-and the voltage distribution is well approximated by a
log-normal law,'*>'* for SAW with bridges the moments
appear to scale with an exponent which, in the investi-
gated range of g, is linear in g, and the distribution has a
very sharp maximum for V=V _,., with secondary peaks
at lower V (see Fig. 1).

In Table I we report estimates of some y,, for both neg-
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FIG. 1. Voltage drop distribution for walks of 90 steps.
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TABLE 1. y, exponents for different g values. In the case
g =0 the samples for the determination of (M) were up to
260000 walks and the accuracy in the voltage drops determina-
tion was 1078, For ¢ <0 the samples contained up to 10° walks
and accuracy was fixed to 107 'S, Extrapolations of y, were
based both on Pade approximants and on standard fitting pro-
cedures.

q Yq
—1 2.00+0.02
—0.6 1.60+0.01
—0.4 1.40+0.01
—0.2 1.200+0.005
0 1.00010.005
0.5 0.49+0.01
1 0.00+0.01
1.5 —0.51£0.02
2 —1.01£0.02
2.5 —1.45+0.05
3 —1.90+0.08
3.5 —2.35+0.15
4 —2.70£0.20

ative and positive g extrapolated from the moments
determined as above.

We already see that within the accuracy, y,=1—gq
seems to be satisfied. In particular we have
y,=—1.01£0.02. Since, for an N-step SAW, N~RY
with d=%, we also get {=—y,d=—4y,/3=—1.35
$0.03. In the last estimate, the inclusion of walk lengths
up to N=095 appears crucial. Indeed, estimates based on
data up to N =50-60 are rather different (y,~—0.92),
due to a clear lack of asymptoticity. A slow onset of the
asymptotic regime is the main explanation of the
discrepancy of the resistance exponent previously report-
ed in Ref. 10. Statistical fluctuations determine oscilla-
tions in the moments which, for ¢ > 0, are growing with g
for a given N. These fluctuations are largely responsible
for the uncertainty of the asymptotic estimates. The rela-
tively slow convergence to the asymptotic regime of mo-
ments like the second one is due to strong finite size
effects: in other words, the conformation of SAW near
the ends have a statistics which deviates substantially
from that of walk segments deeply inside a long SAW.

In order to test this and to improve the quality of our
resistance exponent determinations, we also considered
walks of N+60 steps, with N=5,10,...,75,80. The
voltage difference was applied between the sites reached
by the 30th and (V +30)th steps, respectively, so that the
30 steps initial and final tails of the walk could possibly
contribute to the network backbone between these sites.
In this way we could simulate the effect of nearby por-
tions of the walk on the conduction properties of any in-
terior segment. As expected, convergence was much
more rapid in this case, and even fluctuations were sensi-
bly smaller, at least in the range g * 1. Results for a few
v, with g >0, are reported in Table II, while logarithmic
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TABLE II. y, exponents computed with samples of up to
175 000 walks and accuracy of 1078,

q Yq

1 0.000+0.001

1.5 —0.500+0.005
—1.000+0.005

2.5 —1.494+0.01

3 —1.99+0.03

3.5 —2.48+0.06

4 —2.940.1

plots of the moments are given in Fig. 2. For (M(2)) we
got in this case y, = — 1.000%0.005, while the general re-
lation y,=1—gq is very clearly supported by the global
trend of the data.

Strong fluctuations hinder the possibility of estimating
high-g moments with the above simulations. So, even if
the law y, =1—gq is strongly suggested for ¢ >0, we de-
cided to get an independent test of the scaling properties
of the links, or cutting bonds. For SAW with bridges this
test can be made without reference to the random-resistor
problem, by only taking into account topological proper-
ties of the walks.

Let us consider a SAW configuration on the lattice,
and attribute to each step a ““color”” which is equal to the
number of NN bridges between nonconsecutive sites, re-
spectively preceding and succeeding the step itself along
the walk (see Fig. 3). More precisely, one can say that
the color of a given step is the number of distinct connec-
tions between its extrema, each exploiting one and only
one of the network bridges. Steps with color equal to
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FIG. 2. Log-log plots of a few positive moments leading to y,
exponents reported in Table II.
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FIG. 3. Example of colors for SAW with bridges.

zero are clearly the links of the SAW with bridges. For
steps with color greater than zero it seems more difficult
to find a physically relevant meaning in addition to the
topological one. The statistics of the above colors can be
easily studied, e.g., within a MC approach. To our
knowledge such a study was never performed before.

Indicating by ¢ (=0,1,2,...) the color, and by N, the
average number of steps with color ¢, we could extrapo-
late behaviors of the form N, OCNX‘, N — o, with
xg=1.00£0.01, x,=1.00£0.01, and x,=0.99+0.02.
The samples considered were of up to 7X 10° walks of up
to 100 steps. The x, estimates were based on Pade ap-
proximant methods. We also extrapolated the ratios
N./N for N-— o, obtaining N,/N—0.52%0.05,
N,/N—0.27%+0.03, and N, /N —0.16+0.03.

Of direct relevance for the resistance of SAW with
bridges is the result for x,. The fact that N, is propor-
tional to N, within the numerical error, implies by neces-
sity that the resistance must also be proportional to N, as
we were finding independently by analysis of the second
moment of the voltage drop distribution. So, from the
above determination of x;, we get an independent esti-
mate of {=dx,=1.33+0.01.

Coming back to our voltage drop distribution, of
which a typical realization is shown in Fig. 1, we notice
that the linear growth of N, with N is fully consistent
with the fact that y,=1—g, for positive g. Indeed, in a
distribution like this, positive moments are always ex-
pected to be dominated by the peak at V=V _ ., which is
extremely sharp, and n(V_,,)~Ny~N, while V_,, is in-
versely proportional to V.

The fact that y,=1—q also for (at least moderately)
negative g tells something about the role of the rest of the
network bonds. The secondary peaks are not strong
enough to usurp the role of the links in controlling the
moments, also for negative g. This circumstances is not
a priori obvious. In analogy with work done previously
for percolation backbones,!* one can easily formulate
deterministic hierarchical models of the SAW network,
in which still Ny« N, but while, for g >0, yo=1—qis
satisfied, for g <O there is onset of multiscaling, with a
sort of first-order transition in the spectrum. The oc-
currence of transitions of any kind seems to be excluded
by our results here.

The results of this work, in our opinion, should give a
final clear-cut solution to the doubts and controversies
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raised in the recent literature on SAW with bridges. The
£ exponent for these walks is just equal to their fractal di-
mension in d=2. In particular the Levy flight picture of
Ref. 11 clearly does not apply to our walks. Based on the
Einstein relation,” our results also obviously imply d =1
for SAW with bridges, as appropriate to essentially linear
structures. Apart from the possible implications for
physical problems like those mentioned above, it is
worthwhile to remark that our results firmly establish an
important topological property of SAW, which, some-
what surprisingly, was never investigated -carefully
enough before.

We finally call attention on the fact that the approach
developed here can also be applied to other problems of
considerable interest.

A possible extension of this work is, e.g., the study of
conduction, or colors for SAW with bridges, when these
SAW obey the statistics of the ® point. One considers
SAW configurations which are not all equally probable,
but are weighted by a Boltzmann factor exp(wN, ), N, be-
ing the number of bridges and w >0 some dimensionless
attractive energy between NN visited points. Very re-
cently a systematic investigation of this problem in d=2
was performed by the present authors.!” In particular
this study allowed to locate with reasonable precision the
value of the energy wg, marking the separation between
the SAW (0=w <wg) and collapsed-chain (0 >wg) re-
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gimes. Clearly the conformations at the ® point or in the
collapsed regime are expected to be very different from
those in the SAW regime studied above. In particular, in
the collapsed phase we definitely expect the links to be-
come a vanishing fraction of the total number of steps for
N — . For w=wg the situation is not a priori clear,
even if one can expect of course N to be definitely less
than in the corresponding @ =0 case. Using our previous
determinations of wg in d=2, we obtained the following
preliminary estimates of x, exponents at the ® point:
x7=0.421+0.05, x;=0.55%0.10, and x,=0.7+0.2. The
trend of these data shows that at the ® point links of
SAW have a fractal dimension which is much less than
that of the walk itself (d,=x,d, whiled =1).""

Steps with increasing color ¢ seem to have increasing
fractal dimensions. These results indicate that at the ®-
point SAW with bridges are qualitatively more similar to
percolation backbones. A study of the voltage drop dis-
tribution in the case of the ® point would most probably
reveal multifractal properties. Investigations based on
the conduction properties or on the colors of SAW with
bridges thus seem to be a promising new way of charac-
terizing the ® point itself.
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