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Mean first-passage time for random-walk span:
Comparison between theory and numerical experiment
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The predictions of a recent theoretical analysis developed by Weiss, DiMarzio, and Gaylord [J.
Stat. Phys. 42, 567 (1986)] on the mean first-passage time for a random-walk span in a “free” system
to reach a given target span S are compared with the results of numerical simulation. Although the
results are in good agreement qualitatively, a systematic quantitative discrepancy is found between
theoretical predictions and experimental results in the “large but finite” S region, thus indicating
the need for further theoretical analysis of the problem. Numerical results are also obtained in the
case of a random-walk process driven by Gaussian colored noise.

I. INTRODUCTION

A number of papers in recent years have been devoted
to the theoretical’ ® and experimental'®™!® studies of
first-passage-time (FPT) problems. Although remarkable
progress has recently been made towards a more com-
plete understanding of these problems, a full and rigorous
description of first-passage-time processes has been ob-
tained only in a few particular cases. Moreover, to the
best of our knowledge, all the existing analytic ap-
proaches refer to the case of very simple non-Gaussian or
white Gaussian driving noises, so that even in the sim-
plest cases of “free’” or linearly bounded systems the in-
terplay between Gaussian-noise statistics and color is not
yet fully understood. The problems related to the exten-
sion of the well-known Kramer’s theory to the case of
colored Gaussian noise have been evidenced in a recent
paper.'* Although the joint use of the time-dependent
Fokker-Planck equation approach and local linearization
techniques (LLT’s) has been shown to furnish reliable
predictions about the dependence of the mean first-
passage time (MFPT) on the color of the Gaussian driv-
ing noise, the quantitative agreement between theoretical
predictions and experimental results is still poor.

In recent years this situation has motivated an inten-
sive research of theoretical tools other than the Fokker-
Planck equation approach to FPT problems. Statistical
methods based on the explicit construction of stochastic
trajectories have been proposed>>*~7 and applied suc-
cessfully to interpret the experimental results”!"!3 in the
case of non-Gaussian colored driving noises (namely, di-
chotomic, shot, or Poisson noises).

A similar approach has recently been followed by
Weiss, DiMarzio, and Gaylord'® for deriving the MFPT
for a random-walk span in the “free” system, driven by
the flux

x(t)=¢&(1), (1)
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in which &(z) represents a driving noise described by a
given statistics.
The span of this process can be defined as

S() =X (D) — X in (1) (2)

where x..,(¢) [xnin(2)] represents the maximum
(minimum) value assumed by the x coordinate during the
time interval ¢. s(t) is clearly a nondecreasing function of
the time; in Ref. 16 this property has been used to derive
approximate formulas related to the earliest time (FPT)
at which s(z) reaches a given target level S.

Our main interest in this problem is related to the fact
that the theoretical approach of Weiss, DiMarzio, and
Gaylord, ¢ applied to the case of impulsive driving noise,
predicts the MFPT for s(¢) to reach the target
S ({®(S))) to depend ( in the limit S >>c?) only on the
amplitude o of the driving noise and on the mean time T
between two successive “‘shots,” in the form

SZ

(@(S))=T{l+—-7 3)
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Moreover, the MFPT is predicted to be independent of
the particular statistics governing the amplitude of the
noise. In order to test this prediction, it is appropriate to
perform a numerical experiment, comparing the results
obtained using impulsive driving noises characterized by
different statistical distributions of the shot amplitudes;
moreover, we also studied the case of ‘““‘continuous’ noise
(colored-Gaussian-noise case), using a fast and accurate
computer algorithm described in detail in Ref. 17.

II. COMPUTER EXPERIMENT

The determination of the MFPT for the span of the x
coordinate in the random-walk process was obtained by
computer simulation of Eq. (1); the details of the numeri-
cal procedure and the algorithm used have been de-
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scribed in detail elsewhere.'"'>!” The system was

prepared at time ¢=0 in the state x =0 [s(¢=0)=0].
Keeping track of the time needed for the stochastic quan-
tity s(z) [Eq. (2)] to reach a given target span S (FPT), the
evolution of the system has been followed. Then the sys-
tem was brought back to the initial conditions and the
whole process was repeated, averaging the FPT over a
number of realizations in order to have a good statistical
sample (in the present experiment, typical samples of
1000 independent realizations have been used). The
former procedure allowed us to obtain the experimental
counterpart of the {®(S)) function.

The numerical simulation of Eq. (1) was performed in
two different cases, characterized by the different statis-
tics which the noise £(¢) obeys.

A. Case (a): Shot noise

In this case the stochastic process £(¢) in Eq. (1) de-
scribes an impulsive noise (shot noise) such as

()= ydt—1;) . 4)

The random variables y; (i=1,2,...) are independent
and identically distributed. An exponential form is as-
sumed for the probability distribution ¢(z—t¢;) of the
time intervals (# —¢; ) between two successive shots, i.e.,

d(t—1t;)=A"lexp[—A(t—1,)] . (5)

The parameter A represents the reciprocal of the mean in-
terval between two pulses.

The noise characterized by Egs. (4) and (5) corresponds
to a Poisson sequence of random impulses; because of its
impulsive nature, the shot-noise process is always un-
correlated. However, it is still possible to define a charac-
teristic time of the process as

T:fo‘”up(z)dt ) (6)

Having fixed the probability distribution between two
successive shots, the shot-noise process itself can be une-
quivocally determined defining the probability distribu-
tion ¥(y ;) for the shot amplitudes. Earlier theoretical ap-
proaches’® adopted the choice of positive amplitude shots
characterized by either an exponential probability distri-
bution

Ply;)=0 if y, <0,
7
Yly;)=v exp(—v,;/y) ify;>0,

in which y represents the mean amplitude of the shots, or
a 8-like distribution

Yly;)=8(y,—v), v>0 (8)

(i.e., the y; are deterministic quantities).
It is a simple exercise to demonstrate that the MFPT
for the “free” process to reach a given target span S is’

(O(S))=T

1+§] ©)
Y
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in the case of exponential distribution of the shot ampli-
tudes [Eq. (7)] and

1+ 3 O(S—ny)

n=1

(OS)=T ) (10)

where O(x ) represents the Heaviside function, in the case
of a 8-like distribution [Eq. (8)].

The results of digital simulation referring to the former
cases are reported in Fig. 1, compared with the theoreti-
cal expressions [Egs. (9) and (10)] (for details of the nu-
merical simulation method, see Ref. 17). Remarkably
good agreement is found between these results, instilling
confidence in the simulation program.

However, more interesting results can be obtained by
relaxing the constraint of having positively defined ampli-
tude shots, according to the theoretical treatment of Ref.
16. The numerical results shown in Fig. 2 are obtained
adopting an exponential distribution function for the ab-
solute value of the amplitude of the shots

Wy)=Lexp(—v2ly,1/7) , (11
2

a “‘heads or tails” distribution
Yy ) =380y, —y)+8(y, +v)], (12)

and a “Gaussian” distribution

2
i

2y?

Yly;)=exp , (13)

respectively. In all the former cases the distribution
function of the shot noise is zero centered and its vari-
ance o coincides with 2.

A comparison of the experimental results with the
theoretical predictions of Eq. (2) shows that the MFPT in
order to reach a given target span S, does not depend ap-
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FIG. 1. Mean-first-passage time for the span s(¢) ({(®)) vs S
in the case of shot noise described by exponential (¢) and 8-like
(O) amplitude probability distributions. Continuous lines refer
to the theoretical predictions of Egs. (9) and (10). For both the
curves y=1and T=1.
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FIG. 2. (®) vs Sin the case of zero-centered shot noise with
exponential (), Gaussian (4), and “heads or tails” (+ ) ampli-
tude probability distributions. For all the curves y=1 and
T=1. The solid smooth line corresponds to the best fit with Eq.
(15) in the case of the numerical data obtained using the first
two distributions, while the “‘stair-case-like” curve connects the
data obtained using the heads and tails amplitude probability
distribution for the shot noise. The dotted curve refers to the
predictions of Eq. (3).

preciably on the particular statistics chosen for the shot-
noise amplitudes, according to the theoretical findings of
Ref. 16. However, from the best fit of the experimental
results with the polynomial function

(O(S))=a+bS+cS?, (14)

it is clear that the MFPT dependence of S shows a non-
vanishing linear component b which is not reproduced by
the theoretical analysis [see Eq. (3)]. The dependence of
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FIG. 3. {®) vs S in the case of zero-centered shot noise with
exponential amplitude probability distributions  with
y=0.5 (0), y=0.75 (W), y=1 (0O), and y =2 (). For all the
curves T=1. The solid lines correspond to the predictions of

Eq. (15).
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the three fit coefficients a, b, and ¢ on the parameters T
and y characterizing the shot-noise process can be deter-
mined analyzing the (®(S)) behavior while varying the
same parameters. A set of numerical data obtained using
an exponential distribution of the shots and varying their
mean amplitude ¥ is shown in Fig. 3. The best-fit pro-
cedure of these numerical results is consistent with the
phenomenological expression

(@s)=T|1+ L5+ g2, (1s)
Y 2y
as shown in Fig. 4, where the numerically determined
dependence of the two parameters b and ¢ on ¥ is com-
pared with the predictions of Eq. (15). Similar results
have been obtained using a Gaussian probability distribu-
tion of the shot amplitude.

The above-mentioned results allow us to derive three
main conclusions about the behavior of the (®(S)) func-
tion.

(i) The numerical results for (®(S)) are well repro-
duced by a second-order polynomial function. There is
no evidence for the presence of higher-order terms
(S3, 84,...).

(i) The linear component of the (®(S)) function,
which is not reproduced by the theoretical analysis of
Ref. 16, increases while decreasing the mean amplitude y
of the shots.

(iii) The MFPT behavior is correctly described by the
theoretical analysis of Ref. 16 only in the limit S — oo; a
different approach is probably needed to reproduce the
“large but finite” S region.

B. Case (b): Gaussian noise

In order to study the MFPT dependence of the noise
parameters in the finite S region, we also studied the case
in which the driving noise £(¢) in the random-walk pro-

0 T
0 1 2

Y

FIG. 4. Fitting parameters b (O) and ¢ (#) as a function of
the mean shot amplitude y. The data have been obtained from
the best fit of the experimental data shown in Fig. 3 with Eq.
(14) (T=1). The solid lines represent the predictions of Eq.
(15).
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cess [Eq. (1)] represents a Gaussian stochastic process
with finite correlation time 7, described by the relations

2
pter—erp | £ | .
(§) exp 2<§2>]
(16)
oD [
CE()E(L)) —exp . ,

where D = ( £2) 1 is the intensity of the noise.

It should be stressed that the original theoretical
analysis of Weiss, DiMarzio, and Gaylord'® cannot be
directly applied to the case of Gaussian driving noise, so
that the comparison of the simulation results with the
predictions of Ref. 16 is, in this case, only qualitative.

The scientific debate about the MFPT determination
for stochastic processes driven by colored Gaussian noise
is still open: for instance, in a recent paper Doering,
Hagan, and Levermore® proposed an approximate
method of analysis which, in the case of the “free” pro-
cess described by Eq. (1), successfully reproduced the ex-
perimentally determined MFPT dependence of the noise
correlation time 7.!! Unfortunately, this theoretical
treatment cannot be used to derive the same analytical in-
formation about the MFPT for the span s(z); however,
from the best fit of our numerical results for the function
(®(S)), shown in Figs. 5 and 6, it is possible to derive
useful information about the functional dependence of
{®(S)) on the noise correlation time 7 and the noise in-
tensity D. Adopting the fitting formula described by Eq.
(14), we obtained the a, b, and ¢ parameters as a function
of D and 7: the parameter a was always found to be van-
ishingly small, and it does not show any particular depen-
dence on D and 7; the corresponding results for the b and
¢ coefficients are shown in Figs. 7 and 8. It is clear that
the quadratic coefficient ¢ is almost independent (within
experimental error) of the noise color 7, while its depen-
dence on D is of the form

<0 ) >

FIG. 5. {(®) vs S in the case of colored Gaussian noise.
O, 7=0.5; 4, 7=1; +, r=2; M, 7=5. For all the curves
D=1. The continuous lines have been calculated according to
the predictions of Eq. (19).

V. PALLESCHI AND M. R. TORQUATI

>

150

<0(S)>

FIG. 6. (®) vs S in the case of colored Gaussian noise.
O, D=5, m, D=3 & D=2 0O D=1; +,D=0.75;
B, D=0.5; ¢, D=0.25. For all the curves 7=1. The continu-
ous lines have been calculated according to the predictions of
Eq. (19).

c=1/D . (17)

On the contrary, the linear coefficient b shows a depen-
dence on both D and 7 which is well reproduced by the
relation

b=AyV7/D . (18)

Ay represents the characteristic Milne extrapolation
length given in terms of the Riemann § function by
Ay =—GC(3)=1.46. ... The choice of this particular con-
stant might appear arbitrary; however, this choice is sug-
gested by the fact that the corresponding MFPT for the x
coordinate shows the same square-root dependence on

-

T

FIG. 7. The fitting parameters b (OJ) and ¢ (#) as a function
of the Gaussian-noise correlation time 7. The data have been
obtained from the best fit of the experimental data shown in Fig.
5 with Eq. (14) (D =1). The solid lines have been calculated ac-
cording to Eqgs. (17) and (18).
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FIG. 8. The fitting parameters b (0) and c(4) as a function
of the Gaussian-noise intensity D. The data have been obtained
from the best fit of the experimental data shown in Fig. 6 with
Eq. (14) (r=1). The solid lines have been calculated according
to Egs. (17) and (18).

the ratio (/D) and it can be expressed in terms of the
same characteristic extrapolation length A,,.%!!

In conclusion, our experimental results for the MFPT
for the span s(¢) to reach a given target level S are repro-
duced well by the empirical formula

(@(S))=AM\/T/DS+%S2 . (19)

It is worthwhile to note that the linear component of
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(O®(S)) exactly vanishes only in the 7—0 limit (white-
noise limit). Moreover, the ratio R of the linear term and
the quadratic one in Eq. (19), which is a measure of the
relative deviation with respect to the pure quadratic be-
havior, is

R Ap(DT)172 _ Ap((E)/2
S S

The relative deviation is thus a linear function of the
noise correlation time 7. This means that in the case of
strongly colored Gaussian noise the quantitative error
which is done assuming a pure quadratic behavior of the
function (@(S)) can be quite large even in the region
S > <§2 > 1/2.

T. (20)

III. CONCLUSIONS

The comparison between the experimental results ob-
tained for the MFPT of a random-walk span, driven by
either shot or Gaussian noises, and the analytical ap-
proach of Weiss, DiMarzio, and Gaylord,'® clearly show
that the former can correctly reproduce the qualitative
behavior of the latter results (especially in the large-
S—small-7 region). However, a quantitative description of
the process probably needs a more detailed theoretical
analysis. This work could contribute to stimulate further
efforts and studies towards a more complete understand-
ing of the problems still open in this field.
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