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A matrix approximant to the generalized Frobenius-Perron equation is presented, the largest ei-
genvalues of which approach the most important eigenvalues of the operator (e.g., the so-called free
energy). It is pointed out that also certain eigenfunctions not accessible to iteration of the continu-
ous problem can easily be obtained in the discretized formalism. For general one-dimensional maps
the spectrum of generalized entropies is shown to appear as the largest eigenvalue of a truncated

-version of the matrix. The statistical interpretation of the eigenfunction associated with the free en-
ergy is given in terms of configuration probabilities of spin chains.

I. INTRODUCTION

Certain multifractal' or, more generally, thermo-
dynamic?~!° properties of dynamical systems have re-
cently been shown to appear as eigenvalues of certain
operators. For one-dimensional maps x'=f(x) this ei-
genvalue problem can be written in the form of a general-
ized Frobenius-Perron equation

S Q(x)
AMBIQ(x")= —=—
TP

Here B is a parameter (—c <3< ), f' and f ! denote
the derivative and the inverse of f, respectively, A(B) is
an eigenvalue of the generalized Frobenius-Perron (GFP)
operator, defined by the right-hand side of (1), and Q (x)
is the corresponding eigenfunction.

Generalized versions of the Frobenius-Perron equation
have long been discussed in mathematics.>® In the physi-
cal literature, they appeared first in connection with the
transient chaotic dynamics of one-dimensional maps® and
were then extended to study permanent chaotic behav-
ior.’~13> Recent results indicate the applications of the
GFP equation for describing thermodynamic properties
of nonnatural measures,'*”'® and, moreover, also of gen-
eral fractals showing up beyond the scope of dynamical
systems. !’ 12

For concreteness, in the main part of the paper we re-
strict our attention to fully developed chaotic cases (com-
plete maps) when a chaotic attractor exists and is mapped
by f(x) 2 to 1 onto itself.?° Functions with a maximum
of order z are considered. As a prototype for such maps
we take the family

(1

x'=1-2|x|%, 2)

with z > 1 where the attractor is the interval [ —1, +1].
First, we shortly summarize some properties of the
GFP operator for later purposes. The eigenvalues that
can be obtained in an iterative procedure are of special
importance. By this we mean eigenvalues whose eigen-
functions can be constructed by an iterative solution of
(1), starting with some Q,. Q(x) appears then as the
k — o limit of a function series Qg,...Q,... and is in-
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dependent of the choice of the initial Q,, in some func-
tion space. The eigenvalues themselves are the particular
values of A(f3) which ensure the convergence of the series
{0}’

In the space of functions having a singularity of order
(1—1/z)B at both ends of the attractor [i.e., Q(x)
~(1+x)""171/28] an eigenvalue A,(B) (the largest one in
this space) is associated with the aforementioned iteration
procedure. This A,(B) was proven'"!? to be connected
with the generalized entropies K, (Ref. 21) with respect
to the natural measure on the attractor as

InA(g)=(1—¢q)K, . (3)

By using smooth initial functions, another eigenvalue
A (B)=exp[ —BF(B)] ensures the convergence of the
series {Q, }. It was shown'>!7 that

—InA(B)=BF(B)=G(B) , @)

where G () is defined by the relation Zf":llA,[”~e —GBin
in the large-n limit. The length scales A, =x,;, —x,;
appearing in the sum are obtained from the nth preim-
ages x;(j =1,2,3,...,2") of some seed point x *, ordered
along the x axis. Note that the A;’s provide a partial cov-
erage of the attractor only, since the intervals (x,;,x5; +{)
are not taken into account.

The eigenvalues A,(B) and A,(B) are found'? to agree
in the region 3/, <1 where B, is a critical point (8,20
for zs1). Furthermore, A,(f3) is a smooth function of 3,
but there is a break in the free energy F(B) at 3., inter-
preted as a phase transition (Refs. 22,5,9,7). The con-
densed phase /B, > 1 is characterized by the inequality
A (B)> A (B). In fact, as pointed out in Ref. 12 (see also
Ref. 13), the phase transition is caused by a crossing of
two eigenvalue branches

A(B)=e PFB =max{ry(B),A(B)} , (5)

where Ay(f3) is an eigenvalue existing for 8/, >0 only.
The branch Ay(SB) is determined by the slope ¢, supposed
to be finite, of f(x) at the left end of the attractor:
A-o(B):C —B.IZ
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The GFP operator is non-Hermitian; its spectrum
possesses both discrete and continuous components.'?
The aim of this paper is to find a matrix approximant
which is much easier to handle than the original opera-
tor. This matrix is presented in Sec. II. We then study
how the eigenvalues A, and A, appear in the discretized
version and point out that also certain eigenfunctions not
accessible by iterating (1) can easily be obtained in the
matrix formalism (Sec. III). The largest eigenvalue of a
simple truncated version of the matrix is found to ap-
proach A(B), i.e., to be related to the generalized entro-
pies of the dynamical system, as discussed in Sec. IV. It
will be shown that BF(f3) coincides with the growth rate
G(B) of a sum containing the length scales raised to a
power 3 in a full coverage of the attractor. Consequent-
ly, —BF(J) agrees with the quantity called pressure.”®
Finally the statistical interpretation of the eigenfunctions
associated with A_(f3) is given in terms of probabilities of
spin-chain configurations in an equilibrium ensemble at
temperature 7 =1/ (Sec. V). Possible further applica-
tions are discussed in Sec. VI.

II. MATRIX APPROXIMATION

First, we define the coverage of the attractor we are go-
ing to use in what follows. This is the so-called generat-
ing partition?® obtained by considering the nth preimages
of the whole attractor for n-—o. Let I/”
(j=1,2,3,...,2") denote the preimage intervals
(cylinders) at a fixed value of n where the subscripts j are
chosen in such a way that the I}")’s are ordered along the
x axis. They completely cover the attractor. Each
cylinder can be uniquely associated with a symbol se-
quence €,€,,...,€,, where ¢€; is O or 1 depending on
whether trajectories starting from Ij(«'” lie, after i—1
steps, left or right from the point x, belonging to the
maximum of f (x).

Notice that the Frobenius-Perron equation®* is
recovered from (1) for S=1. In this important case the
maximal eigenvalue in the class of smooth initial func-
tions is 1 corresponding to the existence of a stable sta-
tionary distribution p(x) on the attractor. It was Ulam?®®
who conjectured the existence of a matrix approximant to
the Frobenius-Perron operator.?* For hyperbolic maps
[1<|f'(x)] < o] the conjecture was proven,’® while for
nonhyperbolic cases numerical evidence supports its va-
lidity.?®> In our notation the conjecture says that the ma-
trix

I(Ij(n)nf—l(li(n)))
a;=
J I(Ij(n))

, 5j=1,2,3,...,2" 6)

is an nth-order approximant to the operator where /(1) is
the length (Lebesgue measure) of an interval I. The ma-
trix element a;; is just that portion of the length of IJ””
which is mapped under f into I/™. (Similar approxima-
tions to time-evolution operators of probability distribu-
tions have been used also in other contexts.?” The largest
eigenvalue of the matrix a;; is unity. The corresponding
right eigenvector (¢,,c,, . . . ,¢,n) has the following prop-

erty:?° the piecewise constant function
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C:
p(n,x)=l—j, x€eI™ (7)
J
approaches the stationary distribution as n — . Here
the shorthand notation /; EI(II(-")) has been applied.
Based on exactly tractable piecewise linear examples,
we extend Ulam’s conjecture by considering the matrix
P (n,[3) with elements

(a; B if a;#0,

o otherwise ()

P,
to be the nth-order approximant to the GFP operator.
Certain eigenvalues A(n,) of the matrix tend for n —
to A(B), an eigenvalue of the operator. The piecewise
constant function

S

Q(n,x)=—2

T

B xeIl ;") 9)
approaches then Q(x), the eigenfunction belonging to
A(B), where s; is the jth element of the right eigenvector
belonging to A(n,f3).

It is worth noting that for 8551 Q(x) cannot be inter-
preted as the density of a usual measure as one sees by
comparing Egs. (7) and (9). For =1 the function p(x) is
a probability distribution on the attractor, and that is
why Ulam’s original conjecture could be formulated for
arbitrary partitions of the attractor. However, the exten-
sions (8) and (9) give meaningful results only with the
generator.

In what follows we support the conjecture by numeri-
cal evidence. In particular, we have numerically investi-
gated the largest eigenvalue A,(n,3) of the matrix P (n,[3)
for maps of type (2). By applying P (n,f3) several times on
any unit vector with positive elements and renormalizing
in each step, the normalization constant and the vector
generated tend to A;(n,3) and to the corresponding right
eigenvector, respectively. The convergence is, in general,
quite rapid: applying P(n,3) m =20-30 times an accu-
racy of 0.1% is observed.

We have found that A,(n,[3) obtained in this way ap-
proaches, for large n, the eigenvalue A, () of the GFP
operator:

A (n,B)——A(B) . (10)

This implies that in the condensed phase A,(n,8)— Ay(f3),
while A,(n,B)—A,(B) otherwise [see Eq. (5)]. For B
values of order of unity, A,(3) is approximated within an
accuracy of 0.2% already at n =10. At the critical point
B. a sharper and sharper bend develops in the plot
A(n,B) vs B as n— . According to the existence of a
phase transition, the convergence slows down here in
both m and n.

We have checked the validity of Eq. (9), too. The ana-
lytic form of the eigenfunctions Q% associated with
A.(B) are known'? for the logistic map [z =2 in (2)]. Fig-
ure 1 illustrates in which sense Q(n,x) approaches the
singular eigenfunction of the GFP operator. Q(6,x) and
Q(8,x) were calculated from the right eigenvectors be-
longing to A;(6,1.2) and A,(8,1.2), respectively. By com-
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FIG. 1. The approximant (9) and the exact eigenfunction
(solid line) associated with the eigenvalue A(n,B) of the GFP
operator for x'=1—2x2, B=1.2. The approximants n =6,
m =20 (a) and n =8, m =20 (b) are plotted. The range shown
in (b) corresponds to the first two cylinders of (a). Note the
change of scale on the vertical axis (arbitrary units).
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FIG. 2. Approximate eigenfunctions (9) associated with the
eigenvalue A(n,f) at critical points, which cannot be found by
iterating (1). (a) z =4, B, = —0.504; (b) z=0.8, B.=3.174. In
both cases the approximates n =10, m =200 are shown, and
maps of type (2) are taken. [In (b) the results obtained for
x — —1 are not yet reliable due to the slow convergence in that
region.]
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paring them with the exact result (1—x2)"%% one sees

that Eq. (9) provides, with increasing #, a refining approx-
imation for this singular function. Similar agreement has
been found also at other values of 3 for both above and
below the critical point 8, = —1.2® At the critical point
itself the iteration of (1) starting with a smooth initial
function diverges.!* Nevertheless, (1—x2)%7 is an eigen-
function associated with A, (B8.)=4 but cannot be
reached by iterating Eq. (1). We found, however, that
this function can directly be obtained via Eq. (9).

For other members of the family (2) no analytic results
are known. We have calculated, for different values of z,
the eigenfunctions Q‘#(x) associated with the eigenvalue
A.(B) of (1) and their discretized versions (9), and an
agreement has been found. The situation is somewhat
different at critical points. Here we used Eq. (9) to find
the approximate eigenfunctions since they cannot be
reached by iterating (1). The results obtained in this way
are exhibited in Fig. 2. For B3—pf3,, the eigenfunc-
tion Q'# obtained by iterating (1) from smooth initial
functions can be shown?® to behave as Q¥(x)
= A(x)|B—B.| ", where A(x) is a finite positive func-
tion. In fact, the approximant (9) at 3, yields just A4 (x).
The prefactor |—pB.|”! does not appear owing to the
normalization of the eigenvectors.

III. THE SECOND EIGENVALUE
AND ITS EIGENFUNCTION

The second largest eigenvalue A,(n,3) of the matrix
P(n,3) can be obtained by applying the matrix several
times on a unit vector orthogonal to the left eigenvector
belonging to A,(n,B). The factors used to normalize the
vector in each step tend, for n — «, to A,(n,f3), while the
vector obtained in this way is the associated right eigen-
vector of P(n,f3).

Our numerical investigations show that in the con-
densed phase /3, > 1

Ay(n,B)——4,(B) (1

n-— oo

while in the region 0 <3/, <1
Ay(n,B)——Ay(B) . (12)

Consequently, for large n A,(n,[3) approaches A,(n,f3) at
B., and a critical slowing down shows up in » when cal-
culating A,(n,B). At any finite value of n the two
branches A,(n,3) and A,(n,3) exhibit an *“‘avoided cross-
ing” approaching, for n — oo, the crossing of Ay(8) and
A(B) (Fig. 3). It is to be noted that, in numerical studies,
Ay(n,B) turns out?® to be complex in the range 8/8. <0
and cannot be used to approach the real eigenvalue of the
GFP operator there.

Equation (9) is again a useful approximant to the eigen-
function (for B/B. > 0). In the condensed phase an agree-
ment is found with the solutions of (1) belonging to A,(3).
In the region 0<f3/B. <1 the eigenfunctions associated
with A,(3) have not yet been known since they also can-
not be reached by iterating (1), due to the fact that Ay(S3)
is not the largest eigenvalue here. However, Eq. (9) pro-



4644
_ln A(B) -(nA(n,n)
N
-1n A ln.B)
-ln A0 —=
3, 3
FIG. 3. The avoided crossing of the branches A,(n,f3),

Ay(n,B) around the critical point B,.. (Schematic drawing for a
casez > 1.)
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FIG. 4. Approximate eigenfunctions (9) associated with the
second largest eigenvalue A,(n,3) in the range 0< B/B, <1,
which cannot be obtained by iterating (1). (a) z=2, B=—0.5;
(b)z=4,3=—0.3;(c) z=0.8, B=1. In all cases n =10, m =40
and maps of type (2) are taken.
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vides a tool for finding these eigenfunctions. The results
depicted in Fig. 4 show that all these functions possess a
node.

IV. THE TRUNCATED MATRIX —RELATION
TO ENTROPIES

The phase transition occurring in the free energy,
Inl/A,(B), of (1) was shown'? to be a consequence of the
anomalous scaling of the leftmost cylinder. This is
reflected also in the fact that the branch Ay(3) dominat-
ing the condensed phase is specified by the slope of f(x)
at the left end of the attractor. It seems, therefore, evi-
dent to consider a truncated matrix C(n,[3) obtained by
cutting the outermost rows and columns of P(n,). In
the large-n limit this is a very small change having, how-
ever, quite drastic consequences.

The largest eigenvalue A(n,3) of C(n,B) has been
found to approach, for large n, the eigenvalue A,(3) of
the GFP operator in the whole 3 region:

X(n,B)——A(B) . (13)

n— o

When calculating A(n,B), no critical slowing down shows

BRR) = -ln A, (B)
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FIG. 5. The logarithm of the eigenvalue A,(B)

=exp[ —BF,(B)] (a) and the K, spectrum (b) obtained for the
map x'=1—2x* by calculating the largest eigenvalue of the
truncated matrix and using relations (3) and (13). The dashed
line in (a) represents the branch —InAy(B)=pInc. The devia-
tion of the curve in (b) from the exact K, values is within the
line thickness.
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up at 3, since there is no degeneracy in the largest eigen-
values of C(n,[3). The corresponding eigenvector agrees,
for n >>1, with the one belonging to the largest (second
largest) eigenvalue of P(n,[3) outside (inside) the con-
densed phase, i.e., it approaches the eigenfunction of (1)
belonging to A,(3).

Comparing Eqgs. (3) and (13) we conclude that the trun-
cated matrix C(n,f3) provides a powerful tool for calcu-
lating the entropy spectrum of fully developed chaotic
maps. Figure 5 shows the results obtained in this way for
the map x’'=1—2x* The deviation of the curve on Fig.
5(b) from the exact K, values is of order 1% in relative
error in the range shown, and cannot be resolved within
the line thickness used to plot. It is worth noting that,
when evaluating X(n, ) for sufficiently large 3 values, the
second largest (complex) eigenvalues are also to be taken
into account since their modulus might then be close to

that of A.
V. COMPARISON WITH OTHER METHODS:

THE INTERPRETATION OF Q‘?(x)

Based on the concept of the scaling function,” a
transfer matrix 7 (n,) has been defined in Refs. 4 and 7.
Using the facts that the scaling function is the daughter-
to-mother ratio of the length scales of the cylinders (the
daughters of a cylinder are the two subintervals into
which it is divided when refining the partition) and that
the nonzero elements of T (n,[3) are just the values of the
scaling function raised to a power (3, a detailed compar-
ison of T'(n,[3) and P (n,3) shows that these matrices are
equivalent. (The formal difference between them is that
the elements of T are indexed by the symbol sequences of
the cylinders rather than by their actual position along
the x axis.)

The largest eigenvalue of T(n,) was shown*’ to ap-
proach, for large n, exp[ —G ()] where G(B) is defined
by the growth rate of the ‘“‘partition” sum over all the
length scales /; -:-l(Ij‘-")) raised to a power f3, i.e., by

27 If~e=G#m The quantity —G(B) is often called
pressure.”*> Note the difference between this coverage
and that obtained by the A;’s [see the lines below Eq. (4)].
Nevertheless, since T(n,B) and P(n,) are equivalent
and (10) holds, we find that G(B)=G(p), i.e., the two
coverages are also equivalent at least from the point of
view of the growth rates of their partition sums. As a
consequence of (4), —BF () turns out to be the pressure.

It has been stated in Ref. 7 that the two largest eigen-
values of T coincide in the condensed phase. In view of
the equivalence of T and P, this statement seems to be du-
bious since we saw a definite difference between the two
first eigenvalues in the condensed phase.

The transfer matrix formalism helps in finding a physi-
cal interpretation for Q‘#(x), the eigenfunction of (1) as-
sociated with the free energy. The sum 212": ]1/_/3 can be re-
garded*’ as the partition sum of an Ising chain of length
n by considering a spin configuration j to be given, via a
simple rule, by the symbol sequence €,...,€, of the
cylinder I}”). The energy of configuration j is E; = —In/;;
therefore, ljﬁ stands for the Boltzmann factor pj of the
configuration at temperature 1/f3.

Consequently, the largest eigenvalue of T (or P) yields,
in the thermodynamic limit n — o, the free energy of the
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spin system while the components s; of the corresponding
right eigenvector are related to the configuration proba-
bilities p;:

5;=Q"W(x,)p;, xeI™, (14)

as it follows from Eq. (9). [Here x; can be any point in-
side I{" except for the outermost cylinders where Q#'(x)
might diverge.] Thus the following interpretation of
0'P(x) is found: this function measures how strongly the
eigenvector components differ from the actual spin-
configuration probabilities. The difference is due to the
fact that the matrix eﬁF(B)T(n,B) is, in general, not a sto-
chastic matrix because the relation zf”:lT,-j(n,B)
=¢ “BFB) peed not hold for B5#1, and therefore the com-
ponents of the eigenvector cannot be regarded as proba-
bilities. It has been shown that for /3, > 1 Q(B’(x) is al-
ways smooth at x =—1 while vanishing (singularly) at
the other end of the attractor.'?!32® This asymmetry can
be considered as a new characteristic of the condensed
phase.

VI. DISCUSSION

We conclude by a few comments on possible further
applications of the method. First, note that although we
were interested up to now in general, nonhyperbolic
maps, the procedure can be applied also to hyperbolic
cases. The main simplifying feature is then the coin-
cidence of A, (f3) and A,(B). Consequently, no phase tran-
sition exists. The largest eigenvalues of P(n,3) and
C(n,f3) both approach then exp[ —BF(3)]. The discreti-
zation of the GFP operator can also be worked out for
hyperbolic maps exhibiting transient chaotic behavior.
Such maps possess a chaotic repeller,®® rather than at-
tractor, characterized by its own natural measure. An at-
tractive feature of this class is the fact that the general-
ized dimensions D, with respect to the natural measure
follow from the free energy via the implicit equation® '

BEBg—(1- g, +q=aF Bl =1 - (15)

Other relations (Refs. 5,13,15, and 31) yield the general-
ized dimensions and entropies with respect to the so-
called Gibbs measures®> on the repeller, based again on
the knowledge of the free energy alone. In such cases,
therefore, the largest eigenvalue of the matrix P (n,) can
directly be used to specify different multifractal spectra of
dimensions and entropies.

It is to be mentioned that equations similar to the GFP
one appear also in other contexts. Important examples
are the momenta of the finite-time Lyapunov ex-
ponents,** !9 scaling indices of harmonic measures on cer-
tain Julia sets,'* and multifractal features of non-natural
measures obtained by iterating one-dimensional maps
backward.!®

Finally, we mention that GFP operators might be asso-
ciated also with thermodynamic properties of fractals ap-
pearing outside the field of dynamical systems. It has
been proven'”!? that fractals the length scales of which
can be obtained by combining a few functions, so-called
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presentation functions,!” are characterized by an eigen-
value problem similar to Eq. (1). In particular, if only
two presentation functions are needed (the fractal is or-
ganized on a binary tree), the eigenvalue problem is
equivalent to Eq. (1). The presentation functions corre-
spond then to the two branches of f ~'. Equation (4) was
shown to hold!”'? where G(B) is the growth rate of the
length scale partition function. The largest eigenvalue
A, (B) or the free energy are, therefore, characteristics of
the length scale distribution of such fractals, and typical-
ly undergo also phase transitions.

The discretized version of the GFP operator worked
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out in this paper might thus be relevant also in the study
of general fractals.
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