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The Keldysh-Faisal-Reiss theory of nonresonant multiphoton ionization seems to give reasonably
good agreement with experiments for production rates in the above-threshold-ionization peaks.
The theory has some conceptual difficulties, since physically equivalent Hamiltonians give radically
different results when treated by this method. An alternate form of the S matrix is used here in
which approximation must be made upon the exact wave function evolving from the initial state
rather than the time-reversed form used in the Keldysh-Reiss treatment. The exact initial state is
approximated by an adiabatic form which results in an S matrix that eliminates the conceptual

difficulties described above.

I. INTRODUCTION

Recent experimental’? and theoretical’ > work on
multiphoton ionization have brought the field to a very
interesting state. For the intensities of interest, 1013-10'
W/cm?, and the large number of photons transferred,
perturbation theory is both practically impossible and
inappropriate. Then other than numerical simulations,
an S-matrix approach is the only available theory. The
Keldysh3-Faisal*-Reiss® (KFR) version of S-matrix theory
gives results for the above-threshold-ionization (ATI)
peaks which are almost an order of magnitude smaller
than experimental results,® and this fact has frequently
been quoted as criticism. More recent’ experiments in
which particular ATI peaks are examined for electron en-
ergy with high precision show numerous resonance sub-
peaks within a particular ATI peak. These are interpret-
ed’ as multiphoton resonance with successive Rydberg
states as these states are shifted relative to the ground
state by the time (and space) variation of the laser intensi-
ty. Typically these subpeaks are a factor of 5 or so above
the nonresonant background within the ATI peak under
study. In other words, the KFR theory which neglects
resonances is not in bad agreement with the nonresonant
part of the experimental results. The theory is disturb-
ingly simple and, I claim, has some internal inconsisten-
cies, namely, that equivalent theories give very different
results. These are discussed in Sec. II.

The theory starts from the Keldysh approximation
which is to replace the exact wave function by the Volkov
state® in the S matrix, i.e., to neglect the electron-ion in-
teractions. This rough agreement between theory and ex-
periment has led some to try to improve upon the theory
by getting a better approximation for the final state of the
electron. This has, so far, not been very successful. An
equivalent form for the S matrix is used here as a starting
point but the approximation procedure is one for the ini-
tial rather than the final state. This is done by a low-
frequency approximation scheme for the initial state of
the atom. The method starts from the fact that the
ground state of the atom is isolated from the others by an
excitation energy which is large compared to the photon
energy. If this were not so, then ATI would not be ob-
servable since the atom would be readily ionizable and so
would ionize in the leading edge of the laser pulse. The
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electron would then escape the region of the ion long be-
fore the high-intensity part of the pulse arrives and so
would absorb no ‘““additional photons.” This method is
used to write the new approximate S matrix. It is shown
in Sec. IIT that this new form does not give different re-
sults for equivalent theories. However, under selected
conditions of laser polarization and/or electron produc-
tion angle this new theory gives very different results
from the previous one.

II. DIFFICULTIES WITH PREVIOUS THEORIES

An exact form of the S matrix for multiphoton ioniza-
tion is (for a single-particle model with #i=1)

S=—i[dtd’r[¢{ (1,0 Vi(r,00,(r,1), @D

where ¢‘q_’ is the exact time-reversed wave function for
the final state satisfying

i —m

a1 (2.2)

4o=0,

with the boundary condition at t— + oo, that d;;') ap-
proaches the final state of the electron with momentum q.
Here H is the total Hamiltonian. The state ¢; is defined
by
. d
i—— =0,
Y &
with the boundary condition at t— — o that ¥\’ ap-
proaches the initial atomic state. The final state X;_)

satisfies (2.7) with the same initial condition and Vf is
defined by

H; (2.3)

H=H+V;. 2.4)
If we define
H=L[P+e Alo) >+ V(r) (2.5)
2m

then the “Keldysh® approximation” is to neglect V rela-
tive to the electron-field interaction thereby replacing
¥, " by x|, where

. 0
l—_Hf

EY: (2.6)

(=)=
Xq —VY,

with
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H,==[Pte A 2.7)
2m

This is the Volkov state.® Reiss has applied this for a

linear polarization with the choice H;=T + ¥V (r) with

the result

S=—2mi 3 8(e,~(No—U,+ W )TK , (2.8)
N
T§= 3 J,(U,20)y 5, aq)
X fd3re7"q"V(r)uo(r) , (2.9

where the parameters are defined by (U, is the pondero-
motive potential)

U,=e’E*/4mo’, a=eE/mo’, (2.10)
and the bare ground state is given by
(Wo—T —Vuy(r)=0. (2.11)

This is the form that gives rough agreement with experi-
ment. There is, however, a profound formal difficulty
with (2.8). Any meaningful physical result must depend
only on the difference of energy levels and that remark
extends to the “dressed” levels too. The argument of the
8 function in (2.8) can be written as

(e,+U,)—Wo—NW .

The term ¢, + U, 1s the dressed or shifted value of the
continuum energy, while W, is the bare ‘“‘bare” energy
of the initial state. For consistency W, should be re-
placed by W,+AW, where AW, is the shift of the
ground-state energy due to the field, the dynamic stark
effect, and this should emerge from a consistent calcula-
tion. This effect is not numerically significant! at the in-
tensities of current experiments.

Suppose that instead of (2.5) we start with the Hamil-
tonian

2
Hz—L-F—e—p'A(th- Vir), (2.12)
2m m

which differs from (2.5) by the A4 %(t) term, which can be
transformed away by a spatially independent contact
transformation and so has no observable effects. That is,
H and H differ by a term which is a total time derivative.
Then either classically or quantum mechanically they
lead to identical observable effects. The preceding equa-
tions are then modified:

S=—ifdtd* @ )*Vie; , 2.1
where

i g P! 7'=0 (2.2)

ot q

and

H=H+V,, (2.4')
with (2.3) unchanged The Keldysh® approximation then
yields 1/1( ) where

‘1—7-17, Xy =0 (2.6

and

H,= L+—p Alot), 2.7

again differing from (2.7) by the A2 term. The same

choice for the initial state yields

S=—2mi 3 8(e,— (No+ W, )Ty , (2.8
N
where
Ty= N(a-q)fd3re“iq"V(r)uO(r) . (2.9")

This result has serious difficulties. The energy depen-
dence in the § function in (2.8") is clearly wrong. Both
theory®!® and experiment' require the presence of the
ponderomotive potential U, as it appears in (2.8). Furth-
ermore, the numerical results obtained from (2.9") give
angular distributions which show no agreement at all
with experiment. !

The question arises as to why two such similar concep-
tual treatments give such wildly divergent results and
how can one make an a priori choice between the two.
This is discussed below.

III. LOW-FREQUENCY TREATMENT
OF THE INITIAL STATE

Another form!? of the S matrix which is exact is the
time-reversed form of (2.1)

S=—i[drd’r(x, Vgt (3.1)
where ¥{* is the exact wave function satisfying
z—a——H Yit=0 (3.2)
ot ! ’ '

with the boundary condition at t— — o that ¥!*’ ap-
proaches the initial atomic state. The final state x;~’
satisfies (2.7) with the same initial condition and V, is
defined by

H=H +V,. (3.3)
In this form the approximation procedure must be ap-
plied to the initial form of the exact wave function, "’
For the reasons discussed in the Introduction we proceed
with a bound-state-low-frequency approximation.!®> To
that end let

¢(+):e—ier-A(wl)$(+) (3.4)
to obtain
i3 |22 v +erElon) =0, (3.5
at 2m
where the electric field is defined by
E=—A. (3.6)

We now define an adiabatic set of states

W, (ot)— 6, (0t)=0 (3.7)

2
L L y(r)+erEwr)
2m

and note that the ground state, which is well separated
from the others, is well described by this method. Strict-
ly speaking, the electric field in (3.7) must be cut off at
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some large distance since the spatial boundary conditions
are unphysical for (3.7). It will, however, only be treated
in perturbation theory so no difficulty will arise. Then ®;
in (3.5) can be well approximated by

B! ~ b, (wt Jexp —if’dz'W,.mt')] . (3.8)
The lowest-order approximation is sufficient for ¢,,
¢[(a)t)§u0(r) (3.9)

[see (2.11)] and the second-order approximation for

Wiwt)~Wy—la,EXwt), (3.10)

where a; is the static dipole polarizability of the ground
state. The electric field is described with arbitrary polar-
ization

E(wt)=E[X cos(1&)sin(wt) —§ sin(1&)cos(wt)] , (3.11)

where £ is the polarization parameter and 2 is the direc-
tion of propagation. This yields

¢§+ )26 ~ier-A(wt)uo(’.)

Xexp

—i |( Wo—la,Edt

- LozSE(Z)cosé‘ sin2wt) | |,  (3.12)

8w

where A (wt) is obtained from (3.6) and (3.11).
The final state in (3.1) can be obtained from (2.6) and
(2.7) as

X, '=exp{i[qr— (g, + U, )t +alwt)-q

+(U, /20)cos§ sin(20t)]} , (3.13)
where @a=e A/m or
alot)=—"5E(ot) . (3.14)

maow

T;G=fjﬂdﬁ%exp(i[NB+ Y sin(2B)—agl g, cos(L£)sinB—g,sin(1£)cosB]) )fd3re_iQ"V(r)uo(r) ,

where
1

Y:E( U, —la,Ef)cosE ,

Q=q—moay[ysin(1&)sinB+X cos(1&)cosB] .

Substitution of (3.12) and (3.13) into (3.1) with Vf= V(r)
yields, after some manipulation,

S=—2mi 3 8,~No+U,—W,+1a,E))Ty , (3.15)
N

with (up to a phase factor)
T¢=3J,((U,—ta,Ef)cos(§) /2w)

X dere—iq~rV(r)u0(r)Jn+2a(R)ei(N+Za)Q ,

(3.16)
where
R =ay{[g.cos(LE)—maoy sin(1£)]?
+[g,sin(1£) +mwx cos(1£)1*}'72 (3.17)
and
(= [g,sin(3§)+mawx cos(3£)] (.18)

1

[g.cos(1£)—may sin($€)]

where ay=eE,/mo’. Notice that both R and Q are
dependent on r, the coordinate of integration, which
makes the numerical evaluation (3.16) somewhat tedious
in this form.

Equation (3.16) can be simplified by using

JZ,,+N<R)=f_”ﬂdxiexp{i[(N+2a>A—R sinA]} .

(3.19)

When this is substituted into (3.16) the sum can be per-
formed,

EJG(Y)eiZG(A.+Q)=eiYsin[2()\.+ﬂ)] . (3.20)
a

Then the substitution A=— and the use of the period-
icity of the resulting integrand yields

(3.21)

(3.22)

The spatial integral can be done analytically when an analytic form of V (r)uy(r) is available. As an example, for the

ground state of hydrogen we get

T{d=—4Vrelay 3 fj dﬁﬁexp(z’ {NB+Y sin(2B)—ayg(N)sinf[sinB cos(1&)cosdp —cosBsin(L1€)sing1})

X(Q*+ag?)™ !,

(3.23)

where g (N) is obtained from the 8 function in (3.15) and (6,¢) are the usual spherical angular coordinates of the q vec-
tor. The laser propagation direction is the Z axis and the polarization (3.11) fixes the axes in the perpendicular direc-
tion. From (3.22)

Q*=gq*(N)+Lmway)’[1+cos§ cos(2B)]—2m waeg (N)sinb[ cos( L& )cosd cosB+sin(1£)sing sinfB] . (3.24)
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Note that for arbitrary polarization the transformation
¢— —¢ (e, g,— —q,) does not leave T unchanged
but that this transformation, accompanied by the reversal
of the laser polarization (§— —§&) does. This is not in-
consistent with existing experiment2 and may be con-
sistent with more recent work.!! The ¢ dependence is
not present in (2.9). For circular polarization, §=m/2,
the ¢ dependence of T4 disappears.

The 8 function in (3.15) yields the dependence of the
electron energy upon the dynamic Stark shift of the
ground state, a fact predicted by a simple model calcula-
tion!! or by a general analysis applicable to any atom.'?
A return to £=0, linear polarization, permits a compar-
ison with the Reiss result.> One difference in the results
is the absence of the ground-state energy shift in the pre-
vious result. Another is the presence of this shift in the
first Bessel function in (3.16) and not in (2.9). These are
numerically small for a typical experiment: For Xe,'*
a,~30a} so that for a yttrium aluminum garnet (YAG)
laser

2 _ as fia)
}aSE /Up—%a—a —j{— 2—1% R
J
2 e2
W, (wt)— | L=+ V(r)+erEw)—~—— 4Xwt)
2m 2m

This results in relation between ¥’ and ¥ !*’ which is

P =9 exp (3.26)

2
. t,, € 2 ’
zfdt—zmA(wt)

which when substituted into the S matrix along with
(3.25) exactly restores the original form, (3.1), since the
phase factors in (3.25) and (3.26) cancel. Evidently this
proof would be repeated with a much more general trans-
formation.

The fact that H and H yield the same results for the T
matrix when the approximation scheme presented in this
section is applied and not in the KFR theory stems from
the fact that a dressed energy of the ground state is used
here, whereas the bare energy appears in (2.3) and (2.8).
The difference between H and H provides a shift in ener-

P, (wt)=0.

so the numerical difference is small. Finally the r depen-
dence in R and Q is absent in (2.9). Its general impor-
tance is measured by the ratio

mor/q =R /e,)"*(Fw/R)(r/2a,) .

This can be small for the higher ATI peaks where g, ~ 7
but could be significant for the lowest peaks.

We return to the problem discussed in Sec. II. How
does the method of this section respond to the change of
the Hamiltonian of which the deletion of the 42 term is a
prototype? The removal of 42 from H and H ¢ simply re-
moves the two terms containing U, in (3.13). Therefore
(3.25)

2
X=X rexp if'dt';—mAz(a)t’) )

The only other change in the S matrix results from the
change in (3.12) since ¢{*’ no longer satisfies (3.2) but in-
stead

P

(+)—
ot v 0,

(3.2

where H is given by (2.12). The effect of the removal of
the A2 term from H shows up in (3.7) by changing it to

(3.7

[
gies but not a shift in the difference of dressed energies.
It is the fact that (2.8) does not contain a difference of
dressed energies that leads to the difficulties ascribed to
the KFR theories presented in Sec. II.

The glaring flaw in all these S-matrix theories is the
omission of intermediate resonances which for much of
the (I,») parameter space seems to be’ very important.
It was, however, important to describe the nonresonant
result correctly before proceeding to the next problem.
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