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This paper describes various procedures for extracting an underlying multiplicative process from

the thermodynamic description of multifractals (i.e., its Dq curve), and points out the associated pit-

falls of such procedures. We extend previous work by Feigenbaum, Jensen, and Procaccia [Phys.
Rev. Lett. 57, 1567 (1986)] using transfer tnatrices to the case of singular measures, and develop the

corresponding thermodynamic formalism. We find that the extraction procedure based solely on in-

formation from the D curves allows for an infinity of cascade processes and that additional dynarn-

ical information is required to remove this degeneracy. In addition, we find that different multipli-

cative processes with only three free parameters produce excellent fits to all the D~ curves studied in

this paper, which further confuses the inversion process when it is applied to experimental data.
We then examine the application of these procedures to a variety of computer and laboratory exper-

iments, such as the period-doubling attractor, the golden-mean circle-map attractor, and a
reanalysis of Rayleigh-Benard experiments corresponding to these examples. Finally we consider
laboratory experiments on open flows in two different circumstances. The first deals with velocity
measurements in the wake of an oscillating cylinder and has dynamics closely related to that of the

circle map. The second case corresponds to the spatial distribution of turbulent energy dissipation
in several flows (grid turbulence, wakes, and boundary layers in the laboratory and atmosphere),
where the underlying dynamics are presently not well understood. In each of these examples we

highlight the above-mentioned ambiguities and, in cases where additional information is available,

apply the procedure to extract basic underlying length scales of the phenomena.

I. INTRODUCTION

Fractals seem to be ubiquitous in Nature. There are
many objects in physics and mathematics that are charac-
terized by complicated singular functions exhibiting self-
similar scaling properties. Two examples of these are the
invariant probability distribution on a strange attractor
and the natural measure on a Julia set. Mandelbrot' in-
troduced the term fractal to describe these complicated
sets and singular measures and applied it to a variety of
natural phenomena.

The simplest example is the middle-thirds Cantor set
defined as the set of points remaining in the unit interval
after the middle third is removed, this operation being
performed successively on the remaining segments ad
infinitum. The natural measure associated with this ob-
ject corresponds to the probability distribution which
gives equal weight to each interval at each stage of the
construction. Both the set and the measure are described
by a single dimension, i.e., the Hausdorff dimension
dH = log(2 ) /log( 3 ).

However, the singular measures associated with most
fractals, e.g. , the period-doubling attractor, the golden-
mean cantorus, the invariant measure on strange attrac-
tors and various facets of fully turbulent Aows such as the
dissipation and enstrophy distributions in real space are
described by an hierarchy of different dimensions. These
more complex objects are called multifractals. ' The
best or most useful way of characterizing them has been
the subject of intense study in recent years. As a result,

we now have several interrelated formalisms and methods
for dealing with them.

In the last few years, it has become a standard pro-
cedure to analyze singular measures via this multifractal
formalism involving the Renyi dimensions ' D and the
closely related "singularity spectrum" f (a). The quan-
tities describe scaling properties of a particular set of
measures (to be described later) that are constructed from
the original measure whose properties we seek to de-
scribe. They are, in effect, statistical averages that de-
scribe macroscopic information about the object and the
measures associated with it.

The existence of a multifractal measure often (but not
always) indicates an underlying multiplicative process
giving rise to it. To make progress towards understand-
ing the physics of complicated, nonlinear phenomena
characterized by multifractal measures, one would like to
find information on the possible underlying multiplicative
processes that could give rise to them. Feigenbaum
et al. made an important step in this direction, when
they showed that a formal mapping between multifractal
analysis of fractal sets and conventional thermodynamics
(hereafter referred to as the thermodynamic formalism)
provided a natural way of extracting from the Renyi di-
mensions some (but not all) of the basic length scales of
an underlying multiplicative process.

This paper has three main objectives. First, in Sec. III
we extend the approach of Feigenbaum et al. for fractal
sets to singular measures, and develop the corresponding
thermodynamic formalism. Second, in Sec. IV we point
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out an important ambiguity in the extracted processes
arising from this procedure. In particular one cannot
find out the mean number of splittings a of each interval
at various levels of refinement solely from the D curves.
Although a is often assumed to be 2 or the golden mean,
choosing different values of a simply gives equivalent
three-parameter fits to the D curves which also turn out
to be excellent approximations to the exact curve. Given

any experimental error or just errors arising from box-
counting procedures one cannot distinguish these curves
from those arising from three-parameter fits that use the
correct value of a. Thus to extract the correct underlying
multiplicative process one requires additional dynamical
information, such as the closest return times, to obtain
the correct value of a. Taking these ambiguities into ac-
count, we apply in Secs. V and VI the generalized pro-
cedure both to computer experiments (generalized Cantor
measures) and to four different kinds of laboratory exper-
iments. The first two are Rayleigh-Benard experiments
conducted by Libchaber and co-workers, describing
the onset of chaos via the quasiperiodic and period dou-
bling routes. The other two are related to the onset of
chaos and the description of fully developed turbulence in
open Aows. ' " The onset of chaos is analyzed from
single-point velocity measurements in the wake of an os-
cillating cylinder, where the Aow dynamics is closely re-
lated to that of the circle map. The second case corre-
sponds to the spatial distribution of turbulent energy dis-
sipation in several Ilows (grid turbulence, wakes and
boundary layers in the laboratory and atmosphere). In
all these cases (except for the last) we recover basic infor-
mation about the dynamics of the underlying multiplica-
tive processes by using additional dynamical information
(in the last case only statistical information can be
recovered). However, before we do this, we review in
Sec. II the formalisms for computing various dimensions,
stressing the contexts in which they arise as well as the
differences among them.
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FIG. 1. Measure generated from a two-scale (binomial) mea-
sure where at each level of refinement an interval of length L
splits up into two intervals of length L /2 each, with their prob-
abilities in the ratio of —,'. The reason for choosing this specific
illustration becomes clear later in Sec. VI B.

would form a set of numbers, an appropriate function of
which one seeks to minimize. On the other hand one
could choose to partition the measure using boxes of
varying size, where the size variation is decided so as to
minimize some function of the measure in each of these
boxes. Depending on the partitioning (or covering)
chosen and on the function that is being minimized one
gets different exponents that reAect the scaling properties
of the measure, e.g. , the box dimension, the Renyi dimen-
sions, the Hausdorff' dimension, etc.

II. DIMENSIONS AND THE PARTITION
FUNCTION

The starting point for our analysis is a singular mea-
sure. Such measures can be created, for example, by
iterating a given map such as the logistic or Henon map,
and constructing a probability distribution of the relative
frequency of visitation in different regions. Another way
of creating a singular measure is to consider a multiplica-
tive process where at each stage of construction a unit in-
terval breaks up into intervals of unequal length, each of
which contains a given probability. The measure arising
from a binary process is shown in Fig. 1. Such a measure
is qualitatively similar to those found in experiments as a
comparison with Fig. 2 would indicate. If the measure is
a complicated singular distribution, then one seeks to ex-
ploit possible self similar scaling properties in order to
describe it.

To do this one partitions the measure subject to certain
constraints. For example, one may choose to partition
(cover) the measure with boxes of equal size. The total
probability (integrated measure) in each of these boxes

FIG. 2. A sample of data from hot-wire measurements of
one-dimensional cuts of the turbulent energy dissipation field in
open Bows. This particular set of data corresponds to the at-
mospheric boundary layer at a height of about 2 m above a
four-story building. The microscale Reynolds number is of the
order of 1600.
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A. HausdorfF dimension

If one were interested in computing the Hausdorff di-
mension of the set of points A, where the dynamical sys-
tem had visited, one would' cover A, with spheres tL; I

each of whose diameter (L; ) would be less than or equal
to some arbitrary number p. This is known as a p cover-
ing of sR. First one defines the function

X (A, ,p)=infg(L, )

where the infimum is over all the p coverings of A, . Then
the a-dimensional outer measure of A, is defined for posi-
tive a by

X (JN)= .limX (At, p) .
p~o

The Hausdorff' dimension (dz) of A is defined by the
value of a where X (JR) exhibits a discontinuity as a
function of a as shown in Fig. 3. Then

d&(JK)=supIa: X (JR)= ao j =infIa: X (JK)=0) . (3)

B. Partition function of Halsey et al.

In a similar spirit, one can analyze a measure using the
partition function of Halsey et al. First one constructs
a p covering of the set JR. If P; is the probability (in-
tegrated measure) in the ith ball of radius L, , one consid-
ers the function

pg
I ~(q, r,A, p) =inf g,

f

I I I I I I

where q is a real number ( —oo (q ( ~ ) and the infimum
is over all the different coverings. Then one defines

I z(q, r, At)= lim I z(q, r, &,p),
p~o

which is analogous to the o.-dimensional outer measure of
the set. Following the definition of the Hausdorff dimen-
sion, one examines the behavior of I &(q, r, Af, ) as a func-
tion of ~, and defines ~' ' to be the value of ~ where I &
jumps from 0 to ~. Finally, using the definition

(H) —
( 1 )D(H)

one can define a set of exponents (D' ') that are a set of
"generalized dimensions. " When q =0, —~' '=Do '

=D& is the Hausdorff dimension of the set JR. As seen
above, the correct value of ~' ' is defined as that which
makes the value of I ~(q, r, A, ) (also known as the parti-
tion function) finite. Any other value of r' ' would make
the infinite sum defining I ~ diverge or go to zero. This
statement is also illustrated in Fig. 3 where the ordinate
corresponds to the partition function for q =0 for the
middle-thirds Cantor set for different values of ~' ' at
various levels of construction. Clearly this procedure (in
the limit of the number of levels going to infinity) picks
out a unique value of ~' ' as demanded by the definition.
At this particular value of 7' ' (which happens to be the
negative of the Hausdorff dimension of the set) the parti-
tion function is finite and equal to some constant. By
convention we assign this finite constant the value unity;
any other finite value would not change the dimension.
In Fig. 4 we compute the partition function for q =2,
showing that once again a unique value of ~' ' is picked
out. In this case this value is related to what is known in
the literature as the correlation dimension. For the
middle-thirds Cantor measure, the Hausdorff dimension
and the correlation dimension are equal.
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FICx. 3. Determination of the Hausdorff dimension, for the
middle-thirds Cantor set. Shown are the L outer measures as a
function a at three different levels of refinement: ~, n =1; o,
n =11; 0, n =21. Notice that for a (D~ the function mono-
tonically increases with increasing n, while for a & D& with in-
creasing n the function monotonically decreases to zero. As n

increases, the slope of these curves gets steeper and steeper and
in the limit of n ~0 the curve approaches the solid line, which
is equal to a nonzero constant only for a single value of a, which
is the Hausdorff dimension. Note that the L outer measure is
the same as the partition function at q =0.

0. 5 1.5

FIG. 4. Same as Fig. 3 except the partition function is calcu-
lated using the value q =2. The behavior in the limit n~0 is
identical to that in Fig. 3 except the unique value of a for which
the partition function is Anite and nonzero gives us the correla-
tion dimension (D& ).
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C. Generalized box dimensions

1
Dq = llm

q
—1 L-o

log g PP (L )
I

log(L )

It is important to remember that in this definition the
partition function has been simplified to considering par-
titions (or boxes) of equal size. One is then computing a
set of "generalized dimensions" that are different but
closely related to the set of D' 's defined by Halsey
et al. We will call these "generalized box dimensions"
hereafter. In the definition of Halsey et al. Do ' was the
Hausdorff dimension. Here Do gives us the box dimen-
sion. The general inequality

D & D(H)
q

—
q

(10)

holds for all q.
Similarly, when dealing with maps, one often con-

structs a special partition which deals with boxes of equal
probability, but unequal lengths. One can do this by arbi-

The Hausdorff dimension is extremely difficult to corn-
pute. Given no knowledge of the multiplicative process
leading to the construction of the measure it is often im-
possible to find the best covering as it involves an
infimum over all possible coverings. Thus a simpler or
different definition of dimension is needed. The definition
usually used is that of the box dimension first defined by
Bouligand' and later popularized and applied to data
from a variety of phenomenon by Mandelbrot. ' Here one
covers the attractor with balls or boxes of equal size (say,
L), and constructs a measure by counting the number of
points in each box. The box size is reduced and the pro-
cedure repeated to obtain d&,„which is defined as

logN (L)
L-o log(L ')

where N(L) is the number of boxes of size L that have at
least one point in it. It is important to note that the box
dimension does not involve an infimum over all cover-
ings, and thus is essentially a different dimension from
the Hausdorff dimension. Much confusion' has arisen
by the practice of denoting the box dimension and other
dimensions collectively as fractal dimensions. One must
explicitly state which dimension one is computing as they
may vary considerably from each other. An example of
this would be the set of rational numbers on the real line,
for which d&„=1 but d&=0.

The Renyi-Hentchei-Procaccia dimensions (also known
as "generalized dimensions") are defined by considering
an approximation to the partition function of Halsey
et al. , by considering a uniform covering of the set (i.e.,

L, =L) rather than a minimum covering. The partition
function then simplifies to

pq
I (q, r, L)= g =const .

L T

We can let the constant equal unity without affecting the
value of the dimensions. Then using the relation
r = ( q

—1 )D, and taking logarithms of both sides, we
can rewrite Eq. (8) as

which determines the value of D in the limit of P~0.
In some cases if we have sufficient information on the

dynamics of the system we can find the minimum cover-
ing of the attractor. This can be done for example for
period doubling and the quasiperiodic transition to chaos
in the sine circle map. Then the computed values of D
will correspond to the set of dimensions D' ' defined by
Halsey et al. However, most of the time one does not
know how to find such a covering, and one must work
with arbitrarily defined equal box sizes (or equal incre-
ments of probability). In particular one usually uses
equal box sixes as one does not have to solve the implicit
equation that arises when P is fixed.

D. An example

We will now illustrate these fundamental concepts of
the multifractal formalism by applying them to the mea-
sure shown in Fig. 1, which was generated by a multipli-
cative process defined by dividing the unit interval into
two pieces of half the original length and giving them
each a probabi1ity of 0.7 and 0.3, respectively. This pro-
cess is carried out repeatedly, giving rise to a multifractal
measure. There are several ways of calculating the Dq
curve of such a measure. The simplest is to use the parti-
tion function in Eq. (8). We know that the length of each
piece is L,- =2 '. The probabilities in each of the pieces
(or boxes) is given by one of the realizations of (pi +pz)",
i.e., equal to P, =p,p2, where k =0, 1, . . . , n. The to-
tal number of pieces is given by 1V, =2". On substituting
these and setting the constant to unity, we get

g P,'i= (p ~ +p ~ )"= ( 0.7~+ 0. 3~ ) = 2 (12)

Thus for each value of n we can solve for
r(q) = —log&(0. 7~+0.3~). Then one can find the D
curve from r(q) =(q —1)D . This yields the curve shown
in Fig. 5.

It is, however, important to remember that when such
dimensions are calculated for physical data, the limit
L ~0 is never taken. This is because fractal behavior in
nature exists only over a finite range of scales below
which the underlying physics changes and such scaling
no longer holds. One therefore usually looks for a region
where such scaling holds and calculates an exponent that
is analogous to a dimension in the limit L ~0.

trarily choosing a constant (say, P) that would be the
probability contained in each box, and integrating the
singular measure until that constant was reached, thus
defining a length (box size). Doing this over the entire
measure would give us a set of lengths that would then
enable us to compute a set of D 's similar to the Renyi di-
mensions. (It should be noted that such a nonoverlap-
ping procedure is only defined in one dimension. In
higher dimensions the balls covering the set would over-
lap. ) This is equivalent to putting P; =P in the Halsey
partition function. This would then give the implicit
equation

gL, '=P
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FIG. 6. Schematic diagram of the three binary processes: An
LP process, a P process, and an L process.

FIG. 5. Dq curve for the binomial measure shown in Fig. 1. proach of Feigenbaum et al. and then extend the method
to P models (and to LP models in Appendix B).

A. L models

III. TRANSFER-MATRIX TECHNIQUE

There are several deep connections between dynamical
systems on the one hand and statistical mechanics on the
other. Some of these have been developed in some de-

.i 15 —17tail. We will, however, restrict ourselves to a more
elementary analogy between the multifractal descrip-

4, 3, 18, 17, 19tion ' ' ' and the evaluation of thermodynamic quan-
tities in equilibrium statistical mechanics. In this section
we will elaborate on this formal analogy, and extend the
work of Feigenbaum et al. on the extraction of informa-
tion about an underlying dynamical process via the ther-
modynamic formalism.

In practice there are a variety of different procedures
for associating a multiplicative process with a singular
measure. For example, one can choose to cover the mea-
sure with boxes (or balls) of equal length (radius), i.e., let-
ting the probabilities in each of the boxes vary. Then a
multiplicative process modeling this would, at each level
of refinement, be required to have boxes sizes of equal
length (which decreases with some constant factor at
each level of refinement) with the probabilities in each of
these boxes varying in some nontrivial fashion reflecting
the complexity of the measure. We call such a multipli-
cative process a P model. Alternatively one could choose
to cover the measure by using boxes of equal probability,
i.e., letting the lengths vary in some nontrivial fashion.
Such a process can be modeled by a multiplicative pro-
cess where at each level of refinement the probabilities in
each box reduce by a constant factor while the lengths
vary in a fashion reOecting the properties of the measure.
We will call such a multiplicative process an I. model.
Finally, one can let both the length and the probability in
each box vary according to some criterion. We will call a
multiplicative process that models such a refinement pro-
cess an LP model. (These three multiplicative processes
are illustrated schematically in Fig. 6.) Feigenbaum con-
sidered I, models of singular measures associated with
one-dimensional maps. Here we first review the ap-

N" (p("))q a" —nq

r(")(~,r) =
(L(n))r ~ (L(n))~

(13)

Since the partition function can, without loss of generali-
ty, be equated to unity, we can write

n

(L(n)) —~ —y
—E'"'

i —(p(n) )
—

q nq — —nF(/3) (14)

where we have defined a new variable

E(n) ln(L (n)
) (15)

In thermodynamics the partition function is the sum of
Boltzmann probabilities, each of which is expressed as an
exponential raised to the product of an inverse tempera-
ture p and an energy of a possible configuration of the
system. Thus one can identify E, as the energy of a par-
ticular configuration of the system. The partition func-
tion can also be expressed as exponential times a "free en-
ergy. " Therefore in Eq. (14) we can identify'

F(p)= —
q (16)

with a free energy [times a constant ln(a ) ] which depends
on the inverse temperature

p= —r. (17)

Moreover, the generalized box dimensions D and q can
q

be expressed in terms of p and F(p) as'

Consider a multiplicative process where at each level of
refinement each interval splits into a pieces which in gen-
eral are of different lengths. Then at the nth level of
refinement this process will generate a measure which can
be naturally divided into N„=a" different boxes of length

L; (i =1,2, . . . , a") with equal probability P("'=X„'
=a " in each box. The partition function at this level is
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1+F(P)
As this thermodynamic analogy would suggest, the

D 's are statistical averages, rejecting the average scaling
properties of the natural measure. Thus there is a loss of
certain details of the dynamics. This has been earlier em-
phasized by Feigenbaum. ' On the other hand, the mi-
croscopic information about a deterministic multiplica-
tive dynamical system and its scaling properties is con-
tained in a scaling function, which describes the scal-
ings or contractions of the various elements of the attrac-
tor in time.

When working in the framework of a tree structure
where each (parent) interval gives rise to a certain num-

ber a of (offspring) intervals at the next level of
refinement, the various values of the scaling function are
simply the ratio of the offspring to parent intervals of the
various branches. For example, the attractor at the
period-doubling accumulation point can be thought of as
generated by the successive refinements of a measure
created from periodic orbits at the superstable period
doublings. The intervals at each level are formed by join-
ing nearest-neighbor points, thus constructing a measure

by giving equal weight to each such interval. The scaling
function which describes the contraction factors of each
interval along each branch is defined as

The attractive feature of the multifractal formalism is
that its analysis can be adapted successfully to systems
whose dynamics may be known to varying degrees, or
perhaps even completely unknown. Given experimental
signals one can easily compute the D curve and compare
it with those from model multiplicative processes. From
such comparisons one can deduce certain statistical
characteristics of the systems, or of the same system at
different parameter values, and infer features of the
dynamical processes leading to the observed macroscopic
characteristics. The method proposed by Feigenbaum
and others is then a way to extract parts of the scaling
function from the Renyi dimensions of the attractor. For
clarity and completeness, we recapitulate their method
with some additional comments.

As described earlier, we begin with a measure that has
been suitably partitioned by considering boxes of equal
probability. This is done at two successive levels of some
implicitly assumed hierarchy (e.g., the supercritical
period doublings of the period-doubling attractor, or suc-
cessive Fibonacci approximants of the golden-mean
circle-map attractor). One assumes typically that the
number of boxes N, required to cover the fractal will

grow exponentially with each level of refinement, and
that one can define a number a such that N„=a". At the
nth level P "'=N„', which implies

N„
)(w)= & (L'n') ~=a

I (20)

(19)

L (e„, . . . , ep) being the length of an interval belonging to
the tree. For the period-doubling case the e, are binary
digits that describe the location of that interval in the
tree structure. The problem is that the construction of
the scaling function requires a priori knowledge about the
underlying dynamics for it is a concise codification of the
dynamics. For most nonlinear systems of interest (e.g. ,
fully developed turbulence), such information is not
readily available.

1 (n+()( )

1 (n)( )

(L( +)))—
i =1

N„
(L(n)) —v

(21)

By making use of the Feigenbaum scaling function
defined earlier and substituting this in Eq. (21) we get

If we take the ratio of this partition function at two suc-
cessive levels [say, the (n + 1)th and the nth], we have

N„+ 1

I
(E' + )

' ' ' E'Q)&(E &
~ ~ ~ ~ &Q)

, o) '(F. +) . . . 6( &p)[L(~'„, . . . , ~I, ~p)] '=klq)
E), E)

( „,. . . , Q)

[L(E„,. . . , E), Ep)]

(22)

T +(L 6 + 1) ~ ~ ~ y Eo/
+le ' )~Q)&(~ s s~Q

~ ~ ~

~n ~n
(23)

Given ~ as a function of q, one can then recover certain
basic length scales by requiring that a~ be the leading ei-
genvalue of T (see Appendix A). The reason for consider-
ing only the leading eigenvalue is that one can express the
partition function as the trace of the product of n such

where the 6, are the conventional Kronecker delta's.
, E'

Here A.(q)=aq is the leading eigenvalue of the transfer
matrix T, which is defined in terms of the scaling func-
tion as

A. (q, r) —A (q, r) Tr[ T]+Det[ T) =0 . (24)

The model we choose can be represented by a transfer
matrix whose leading eigenvalue as a function of q can be

I

transfer matrices. One then assumes that as n ~ ~ the
leading eigenvalue will dominate over all the others.

In general, the transfer matrix will be an ~ X ~ ma-
trix. Each element of this matrix reflects a scaling factor
of the dynamical process. To get a first-order approxima-
tion to the dynamics of the system, one uses a severely
truncated finite matrix (often 2 X 2 or 4 X 4) to solve these
equations. In the simplest case one approximates the
transfer matrix with a 2 X 2 matrix, whose eigenvalues are
determined by the characteristic equation
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computed (see Appendix A). Having done this one can
then extract from the r(q) curve the leading length scales
of the model. The model can be refined and more details
of the underlying structure that gave rise to the measure
can be discerned. Usually the finite precision of the ex-
perimental data places severe constraints on the possibili-
ty of further refinements. In Appendix A we give details
of the procedure to calculate the D curves for all of the
L models considered in this paper.

n n

1-ln)(q) —y [P(n)]q (27)

From Eq. (27) it follows that

f'1 n 1( q )
—a

—n r e
—nF ( p ) /ln( a ) (28)

=q, (29)

which then leads to the following thermodynamic
identifications:

B. P models F(i3)=r . (30)

E(nl ln(p(nl)
i i (26)

we can, at the nth level, write the partition function as

P models visualize multifractal measures as arising
from a process that merely rearranges probability as the
cascade proceeds, diminishing on some boxes and in-
creasing on others.

If we do not know much about the underlying physical
process, and are faced with multifractal measures whose
construction one cannot control, then the P model is nat-
ural. Indeed it is the P models of Ref. 18 in turbulence
that led to the earliest multifractal descriptions. In addi-
tion, the box-counting method of computing dimensions
implicitly assume P models, as they consider the scaling
of boxes of equal length at each stage of construction or
refinement. We will now develop the corresponding ther-
modynamic analogies for the P model.

Consider the case where the measure is being rear-
ranged on the continuum. (Assuming that it is being
rearranged on a fractal set will simply introduce another
constant related to the HausdorÃ dimension of that set;
see Appendix A. ) Box counting with N„b oexs of equal
size implies L "'=N„'. Taking the Halsey partition
function to be unity allows one to introduce a partition
function

n

1 "'(q)= g (P "')'=(& ')'
i =1

where P,'"' is the probability in the ith box at the nth lev-
el. In addition one can assume that typically the number
of boxes required to cover the fractal will grow exponen-
tially with each level of refinement. Thus one can define
a number a such that X„=a". Defining an energy by

Furthermore, one can define D by

F (/3) (31)

(pin +1) )q

i =1

( p(n1 )q

(32)

We then define a scaling function for measures o. ,

P(E„+1,. . . , Ep)'
P 6 , . n. . , ep) 'n 'n

~ ~ ~
I

E
1

(33)

where P(E . ~ . Ep)=P,'"'. The subscript i represents
the probability in the ith box and its location on the nth
level of the tree is given by the string of n e,-'s, each of
which takes on a value representing the path chosen in
the tree. Our definition of o. in the context of multifrac-
tal measures is the natural analog of the Feigenbaum
scaling function o.I. Substituting this definition of the
scaling function in the previous equation we have

Thus q is related to the inverse temperature and ~ is a
free energy times a constant [ln(a)], and we have accord-
ing to convention' absorbed the P term in the free ener-
gy.

We now outline the procedure for extracting scaling in-
formation corresponding to P models. If we take the ra-
tio of the partition function at two successive levels of
refinement [say, the (n + 1 )th and the nth] then

N„+1

&, , [oF(e„+,, . . . , ep)]'[P(e'„, . . . , eI, ep)]q=k( —r)
I

~ ~ ~ EO) (E„,Eo) (E„,. . . , Eo)

[P(e„, . . . , ep)]q, (34)

where the Kronecker delta's 6, once again serve the

purpose of comparing only the ratios arising from inter-
vals and their direct successors. Here A, ( —r) =a ' is the
leading eigenvalue of the transfer matrix defined as

I

basic contraction ratios (which are the elements of the
transfer matrix) by requiring that a'1 be the leading eigen-
value of T. In Appendix A we explain how the D curves
were calculated for P-model examples considered in this
paper.

T I I(E + 1) ~ ~ ) El)EO))(E ) & El)EO)

p(en+1~. . . ~ El&EP)5E,E
(35)

IV. ANALYSIS OF A GENERALIZED
CANTOR MEASURE

Then given ~ as a function of q, one can recover certain
There are two questions one might ask at this point.

First, do these D or r(q), curves, uniquely determine the
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o i(00) = iO(01) =L, ,

a i(10)=o I( 1 1 }=L~,
o~(00) =o (01)=P, ,

o (10)=cr (11)=P2 .

(36)

(37)

(38)

(39)

nature of the multiplicative process? Is it possible to con-
struct an identical D curve from two different processes
one of which may assume equal probabilities in boxes of
varying length (i.e., an L model) and the other which may
assume equal box sizes with varying probabilities (i.e. , a P
model). This question is directly related to the fact that
given a measure at a certain stage, one usually has no
idea on how to correctly partition it. In general one as-
sumes either equal P, 's or equal L, 's. Secondly, do these
curves uniquely determine the dynamics of the process,
e.g. , is it possible to arrive at an identical D curve for a
binary process (i.e., dynamics similar to the period-
doubling route to chaos) from a model with the dynamics
of a golden-mean process (i.e., dynamics similar to the
quasiperiodic route to chaos discussed in Appendix A)?
We will seek answers up to some finite precision, as the
primary motivation comes from the desire to extract the
underlying multiplicative processes for experimental sys-
tems.

We first examine a (two-scale) generalized Cantor mea-
sure. At each successive level of refinement, each piece
breaks up into two pieces of unequal length and unequal
measure. We arbitrarily choose L, =0. 1475, L2 =0.830,
P, =0.30, and P2 =0.70. Thus the multiplicative process
can be represented by a 2 X2 transfer matrix where each
contraction ratio is denoted by two digits, the leftmost di-
git indicating if the interval was to its left or right of its
parent, and the second digit does the same for the parent
interval (see Appendix B},

Fig. 7 for one particular case) no matter what parameters
of I, and L2 we choose. %'e find the same result for the
D curve obtained from a two-scale P model with no
memory, i.e., with

o~(00)=ca (01)=P, ,

o.~(10)=o. (11)=P~,
L I =L2 =const .

(43)

(44)

2. 0

Therefore we must refine our model, incorporating a one
time-step memory in the process.

Consider an L model, with cr 1(00)&crt(01) and
cr&(10)&o&(11). This introduces one more free parame-
ter in our fit [as only the product ~~(01)o,(10) appear in
the calculation of the d curves). Computing the D

q
curve from such a model and plotting it against the D

q
curve of the given generalized Cantor measure, we find in
Fig. 8 excellent agreement over all regions. The same is
true for a refined P model, i.e., with cr (00)&o (01) and
o~(10)&o~(11) (Fig. 8). This is remarkable because in
the models with one time-step memory we used the
values of D, Do, and D to determine L, , L2, and P
for an L model, and P~, P2, and L for a P model. That is,
although we matched the two curves only at three points
the agreement is excellent over all regions. To within ex-
perimental accuracy one would not be able to distinguish
between the three curves. We conclude that the D for-

q
malism (as used presently) cannot distinguish between LP
processes from just L or P processes with one time-step
memory.

To answer our second question, we first note that the
example being considered is clearly a binary process (i.e.,

We call this an LP model {as both the length and proba-
bilities contraction factors depend on the position of each
piece) with no memory (as the contraction factors are de-
cided solely on whether the offspring is to the right or left
of its parent, and is independent of its parent's position).
The D and r(q) curves for this process can be calculated
analytically and numerically. We thus (by construction)
explicitly know the true underlying multiplicative process
that generates a measure whose scaling properties are
given by the analytically calculated D or r(q) curves.
We can now answer the two questions raised before.

First consider alternative models for the underlying
multiplicative processes. The simplest nontrivial model is
a two scale L or P multiplicative process with no
memory. If we consider an L model with no memory,
i.e.,

o, ( 0)0=os(01)=L, ,

o, (10)=~, (11)=L, (41)

P) =P~ =-,'

we are unable to get good fits to the above D curve from
such a model (as highlighted by the middle portion of

FIG. 7. The D~ curve for an LP model (solid line) and its
comparison with a two-scale L model (diamonds) and a two-
scale P model (squares). This corresponds to a 2X2 transfer
matrix with no memory so that o.(01)= o.(11) and
o(10)=o.(00), thus reducing the number of free parameters to
two.
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2. 0

1.5 1.5

1.0 1.0

0. 5 20
0. 5 20

FIG. 8. The D curve for an LP model (squares) and its com-

parison with an L model (circles) and a P model (diamonds),

both with a =2, 2X2 transfer matrix (TM) for the generalized

Cantor measure. The dift'erences (if any) are not discernible on

the graph.

FIG. 9. The Dq curve for an LP model (solid line) and its
comparison with an L model (squares) with a =g, 2X2 TM.
The latter model has only two free parameters and thus one
cannot fit the entire curve.

a =2) by construction. The question then arises if mod-
els with a =(&5+ I )/2 (i.e., the golden-mean denoted by
g) are able to replicate the given D curve. We first try
the simplest model, i.e., an L model with one time-step
memory, that has one of its diagonal elements equal to
zero in its transfer-matrix representation. This requires
that a =g (see Appendix A). In Fig. 9 we show a com-
parison between the D curve for the generalized Cantor
measure with a =2 with the D curve for an L model
with a =g. Note that although the two end regions fit
quite well, the central region does not. The reason for
this is that an L model represented by a 2 X 2 transfer ma-
trix with one of its elements equal to zero has only two
free parameters. Thus we could only match two points
from the curve, which we chose to be D and D
However, going to higher-order approximations gives us
more parameters. A 4X4 transfer matrix (a model with
two time steps memory) with a =g has three free parame-
ters, enabling us to match Do as well. The excellent
agreement (shown in Fig. 10) between the two D curves
arising from models with a =2 and a =g, respectively,
tells us that this formalism cannot find a unique value of
a. Therefore to correctly reproduce the dynamics of the
underlying multiplicative process, one must determine
the value of a from some other information.

The above examples tell us that the crucial ingredient
for a good fit is the number of free parameters in the
model, not the value of a, nor the nature of the multipli-
cative model (i.e., P, L, or LP) Furthermore, h. aving
chosen a value of a, it is remarkable that we need only
three free parameters to fit the entire D or r(q) curves in

each of the examples considered so far in this paper.
Lest the reader be misled that all Dq curves can be ex-

actly fitted by three free parameters we provide a simple
counterexample that will show that while we do not get
exact fits we get excellent approximations to the exact

2. 0

1.5

1.0

"20 20

FIG. 10. The Dq curve for an LP model (solid line) and its

comparison with an L model (squares) with a =g, 4X4 TM. As
a consequence of going to the next order of the transfer matrix
the latter model has three free parameters, and one can fit the
entire curve to great accuracy.

curves. The accuracy of these approximations are almost
always better than the curves obtained by box-counting
experimental or computer-generated data where the er-
rors of finding straight lines from log-log plots can be
quite large. Our counterexample to illustrate this point is
a five-scale Cantor measure where at each stage of
refinement each interval breaks up into five smaller pieces
of equal length but unequal probability. A curve generat-
ed by a binary L model with three free parameters is
shown in Fig. 11. The fits are quite good, except in the
region near q =0 where small differences exist. Blowing
up the D curve of Fig. 11 in a small region around q =0
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2

the transfer-matrix formalism, we compared the partition
functions at two successive levels of refinement [Eq. (21)].
The right-hand side of the equation was

—(n+1)

~—1 —n
(46)

-20

FIG. 11. The D~ curve for a five-scale P model (solid line)
(P& =0 03 P2 =0 05 P3 =0 08 P4 =0.60, and P, =0 24) and a
three parameter approximation to it (squares).

shows us in Fig. 12 that the exact and the approximate
curve differ by a small amount in a small region around
q =O. This difference, however, is small for most curves
and well within the usual experimental error.

We are thus faced with a perplexing number of models,
all of which have D curves that are indistinguishable
(within some accuracy) at the level of the thermodynamic
data that we are trying to fit. It is important to em-
phasize that as we go to further and further refinements
of these models, all the fits simply get better. This is be-
cause we are just increasing the number of free parame-
ters that can be adjusted to fit the given data.

We now discuss why the value of a is ambiguous. In

I t I 1 I 1 I

I I I I I

FICs. 12. Enlargement of the region around q =0 for Fig. 11.
Notice the systematic differences between the exact curve (solid
line) and the three-scale approximation (squares). These
differences, however, are much less than the error bars charac-
teristic of box-counting procedures applied to experimental or
computational data.

This then gave us a value for a. The problem is that
given a measure for some arbitrary system, whose dy-
namics is not known, one has no idea how to correctly
define two successive levels of refinement. The only piece
of information one has is the number of points in the
measure at some unknown level of refinement. Thus we
only know the value of X„+I and are really free to choose

By suitable choices of X„one can get almost any
value of a.

This is a rather crucial point in our argument, so we
elaborate on it. Consider the tree picture. We have two
unknowns: a, which is the mean number of further
branchings at each level, and n, which is the level of
refinement. Thus the ratio N„+i /N„' can be rewritten
as a '" "/a '"', which would provide us with the true
dynamics, or as b ' "/6 ' ', which would be equally
valid, given our thermodynamic information. Such a
choice would define a multiplicative process that would
result in the same measure, but the wrong dynamics.

The result of the above argument is that one cannot
blindly extract the leading scales of the underlying multi-
plicative process from the thermodynamic information.
One needs to establish a unique value of the parameter a.
This always comes from elsewhere. By knowing some-
thing about the underlying dynamics one can make a ju-
dicious choice of a, after which this formalism can be ap-
plied. Failing this, the formalism merely presents an
(infinite) catalog of models, each of which leads to the
construction of the measure under study, but need not re-
plicate the correct dynamics.

The other ambiguity we have exposed is the choice of a
P or I model. In turbulence, for example, the P model
has been used by Mandelbrot' and by Meneveau and
Sreenivasan' for the dissipation distribution in fully
developed turbulence. The L, model is used to describe
the onset of chaos in Rayleigh-Benard cells ' and in open
Aows. " There seems to be no way of finding out purely
from the statistical (thermodynamic) information how the
measure was built up and what model is more correct or
useful in describing this process.

As already remarked, additional information is re-
quired to make such a choice. For example, if one knows
the dynamics of the process, i.e., if one can figure out
how to define successive levels of refinement, then it is
possible to replicate the correct dynamics of the system.
To our knowledge this has up to now been restricted to
very special cases (e.g., the period-doubling case) then it
is preferable to use the I. model. In cases where the
deterministic dynamics is not known, or where there may
be a stochastic model, then the P model may be prefer-
able. An example of this is in fully developed turbulence
where measurements corresponding to one- or two-
dimensional cuts in three-dimensional space. There are
also other reasons' which propel practitioners of tur-
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bulence towards P models.
In Secs. V and VI we will analyze a variety of laborato-

ry experiments via the transfer-matrix formalism. The
reader is forewarned of the pitfalls of blind curve fitting.
We will, however, show that by sensible choices of the
model and the dynamical parameter a arising from physi-
cal arguments or Fourier spectra, one can get some of the
information about the underlying multiplicative process
from the experimentally determined D curves.

1.0

V. LABORATORY EXPERIMENTS
IN RAYLEIGH-BENARD CONVECTION

Here we will reexamine the analysis of Feigenbaurn
et al. on the extraction of an underlying multiplicative
process from the data of Glazier et al. and that of Jen-
sen et al. and we illustrate the ambiguities in this ex-
traction process. The data to be analyzed here are taken
from the convection experiments in a small aspect-ratio
cell. ' An oscillatory instability sets in at a certain criti-
cal Rayleigh number in such Rows. Subsequent increases
in the Rayleigh number leads to chaotic Auid motion via
the period-doubling scenario. This is the first of the two
situations we examine. If the oscillatory state is rnodulat-
ed by an independent external source, and if the modula-
tion frequency is incommensurate with the How oscilla-
tion frequency (in the presence of coupling), the fluid sys-
tem undergoes transition to chaos via the quasiperiodic
state. The data we analyze in this case corresponds to the
frequency ratio set to the golden mean.

A. Onset of chaos via the period doubling route

0.0
10

FIG. 13. The D~ curve for the period-doubling attractor (ap-
proximated by the curve generated by an L model with a =2,
4X4 TM (solid line) (where the four scales are the leading four
scales of the Feigenbaum scaling function), compared with an L
model with a =g, 4 X 4 TM (squares). The agreement is remark-
able, showing that to a high precision it is not possible to dis-
cern the curves computed from different values of a. The dia-
monds show the experimental data from the Rayleigh Benard
experiments of Glazier et al. (Ref. 7). To get an idea of the er-
ror bars in the experimental data the reader is referred to Ref. 7.
%'e are comparing the data with a three-scale approximation to
the actual period-doubling D~ curve; the reason for this is dis-
cussed in Sec. V A of the text.

The period-doubling attractor is a paradigmatic exam-
ple of chaotic dynamics and fractals. Since the dynamics
of this route to chaos and the construction of this attrac-
tor are well understood, we consider this an excellent ex-
ample to illustrate the points of this paper.

In an earlier paper, Feigenbaum et al. demonstrated
that one can extract from the Renyi dimensions, at least
some of the basic length scales, the value of a, as well as
information about the nature of the inflexion point (of the
map). We would like to point out that, although the solu-
tions they got were correct, they are not unique. In Fig.
13 we show a comparison of the D curve from the data
of Glazier et al. (which Feigenbaum et al. used to get
their results) with the D curves of the period-doubling
attractor generated from an L model represented by a
2 X 2 transfer matrix with a =2 and an L model
represented by a 4X4 transfer matrix with a =g. We see
that all of them agree quite well. If we did not know
from other considerations that the underlying dynamics
was of the period-doubling type we would not have any
idea that a =2 and could just as well presume that a =g.
The choice of a =2 is the correct one only because we
know that it is so from other arguments, e.g. , closest re-
turn times, etc. ' We also show a comparison in Fig. 14,
with a D curve generated by a P model represented by a
2X2 transfer matrix with a =2. The excellent agreement
between the two curves indicates the equivalence between
P models and L models.

We point out that we are comparing various fits with

the D curve generated from an L model with a =2
represented by a 2X2 transfer matrix (i.e., a three-scale
approximation) and not from the actual period-doubling
attractor itself. There are two reasons for this. First, we
know that a =2 from other considerations, and that the
D curve generated from such a model is to within a few

1.0

g
FIG. 14. The D~ curve for the period-doubling attractor

compared with those from those generated L (squares) and P
models (circles). The agreement shows that curves generated
from L or P models are equivalent.
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percent identical to the D curve of the period-doubling
attractor; second, our purpose here is not to show how
successively refined models approximate the true D
curve but that different models using the correct or the
wrong values of a can give equally good fits. Similarly
when we make circle-map comparisons in Sec. V B we
will compare our fits not with the D curve of the actual
circle-map attractor but with a three parameter model
that has a =g. Once again the reasons are the same, the
only difference being that for the circle map a =g.

B. Onset of chaos via the quasiperiodic route

Another important and well studied example, is the dy-
namics of the sine circle map when the dressed winding
number is the golden mean. This is an example of the
quasiperiodic route to chaos. We will later use the results
of this section when we analyze the experiments of Ol-
inger and Sreenivasan" done in the wake of an oscillating
cylinder. In addition we will compare our results with
those of Feigenbaum et al. for similar quasiperiodic ex-
periments in convection.

In Fig. 15 we show the r(q) curve from the data of Jen-
sen et al. , which was used by Feigenbaum et al. for re-
covering information identical to the circle-map dynam-
ics. Once again, we state that the solution listed by them
in Ref. 6, though correct, is not unique. Motivation for
the choice of a =g must be found elsewhere. For the cir-
cle map, the Fourier spectra show clear peaks at powers
of the golden mean, which can be taken as an indication
of golden-mean dynamics, i.e., a =g. To show that one
would otherwise not be able to decide the value of a, in
Fig. 15 we also show fits to the D curve computed from
an L model represented by a 2 X 2 transfer matrix with

FIG. 16. The D curves from P (circles) and 'L models
(squares) with a =2 using a 2X2 TM for the circle map at the
golden-mean critical point. The agreement again shows that
curves generated from L or P models are equivalent.

a =2, an L model represented by a 4 X 4 transfer matrix
with a =g. Each of these models have exactly three free
parameters. The fits in all three cases are excellent, and
within the experimental error of the experimental data.
In Fig. 16 we compare fits of D curves generated from
an L model represented by a 2X2 transfer matrix with
a =2 and a P model represented by a 2X2 transfer ma-
trix with a =2. This comparison again shows that one
cannot distinguish between P and L models through their
D curves. Finally, in Fig. 17 we compare fits of D
curves generated from an L model represented by a 2X2
transfer matrix with a =2 and an L model represented by

-20

-20 20
FICs. 15. Comparison of the Dq curve of the circle map at the

golden-mean critical point [approximated by the curve generat-
ed by an L model (solid line) 4X4 TM, with a =g, which we
know from closest return time arguments to be correct] with an
L model with a =2, 2X2 TM. The agreement is remarkable,
showing once again that to a high precision it is not possible to
discern curves obtained from dift'erent values of a. The dia-
monds show the experimental data from the Rayleigh-Benard
experiments of Jensen et al. (Ref. 9).

F1G. 17. The D curve from Fig. 15 [from an L model isolid

line) p)& 2 TM, with a =2], compared with that from an L mod-

el a =g, 2X2 TM (circles). This latter model has only two free

parameters and thus one cannot fit the entire curve, indicating
that at this level of refinement one would be led to believe that
the dynamics was of the binary and not of the golden-mean
kind.
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a 2X2 transfer matrix with a =g. Clearly (at the 2X2
transfer-matrix stage), one is inclined to believe that the
dynamics is of the binary variety and not of the golden-
mean kind. This again tells us that simple curve fitting of
the D and f (a) curves is not sufficient to tell us the
value of a. The reason that an L model represented by a
2X2 transfer matrix with a =g does not fit the D curve
is that such a model has only two free parameters, while
for a =2 the model has three. As already remarked, one
only needs three free parameters to get good agreement
with most D curves.

CL
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1
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VI. LABORATORY EXPERIMENTS
IN OPEN FLOWS

We will now apply this formalism to laboratory experi-
ments in open-flow systems corresponding to two diverse
circumstances. The first case consists of an attractor in
phase space constructed from the velocity measured in
the wake of an oscillating cylinder. The second case cor-
responds to the distribution in three-dimensional physical
space of the turbulent energy dissipation in several flows
(grid turbulence, wakes and boundary layers in both the
laboratory and the atmosphere). In both cases we at-
tempt to extract basic dynamical information of the un-
derlying physical process.

A. Low Reynolds-number Bow in the wake
of an oscillating cylinder

Briefly, the flow analyzed is the wake of transversely
oscillating circular cylinder of large aspect ratio ( —300).
The periodic vortex shedding behind the cylinder im-
parts, at a slightly supercritical Reynolds number, a
periodic motion to the wake. The cylinder oscillation
(usually quite small) provides another periodic com-
ponent. The amplitude of the oscillation can be thought
of as the motion-coupling parameter between the two os-
cillators. The flow can thus be thought of as a nonlinear
system in which the natural vortex shedding is modulated
by the oscillation frequency of the cylinder, generating in
phase space a flow on a torus. The special case of interest
is when the frequency ratio (oscillation frequency to the
vortex shedding frequency) equivalent to the dressed
winding number is the inverse of the golden mean, and
the oscillation amplitude is set to the critical value corre-
sponding to the breakdown of the two-torus. The flow
Reynolds number is 55, the critical value being about
46. By making detailed measurements at the Reynolds
number of 55, Olinger and Sreenivasan" showed that the
flow displays several features common to circle maps.
For rational frequency ratios, Arnol'd tongues organized
according to the Farey construction were found, with the
behavior along the critical line approximating the devil' s
staircase structure. Associated with the quasiperiodic
transition to chaos at the inverse golden-mean frequency
ratio, spectral peaks at various Fibonacci sequences ap-
peared (Fig. 18), and the measured D was found to be
close to that of the sine circle map. The purpose here is
to confirm this correspondence with the circle map via
the thermodynamic formalism, and to extract the scaling

I l I I I i I I I I I I I V I lr I

1.5 2. 0 2. 5
log(f j

FIG. 18. The frequency-sealed power spectrum for velocity
fluctuations in the wake of an oscillating cylinder near the criti-
cal golden-mean point (erg =golden mean).

information associated with the wake dynamics.
Although Olinger and Sreenivasan covered all accessi-

ble range of oscillation amplitudes and frequency ratios,
our interest is specific to the case of golden-mean fre-
quency ratio, and the critical oscillation amplitude at
which chaos sets in due to the breakdown of the two-
torus structure in phase space. The golden-mean ratio
was achieved in the experiments to better than O. I%.
The Poincare section was obtained by sampling data at
minima of the measured velocity signal. The resulting
Poincare section was embedded in three dimensions using
the usual time-delay methods (in which it was noninter-
secting in all three views), and a smoothened attractor
was obtained by performing averages locally. Projections
of the unsmoothened and smoothened attractor are
shown in Figs. 19 and 20, respectively. The Renyi dimen-

0.0
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FIG. 19. A projection of the attractor for the velocity in the
wake of the oscillating cylinder. The velocity signal (which cor-
responds to a Poincare section of the attractor) is embedded in
three-dimensional space to reconstruct the entire attractor using
the usual time-delay method.
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FIG. 20. The smoothened version of Fig. 19.
FIG. 21. Determining the scales o.I(00) and o.i(01)col(10)

from the Dq curve from the wake experiment.

TABLE I. A partial list of q versus ~ values from the
oscillating-cylinder experiment.

0.0
0.3
0.6
0,9
1.2

—1.000
—0.686
—0.372
—0.091

0.178

1.8
2. 1

2.4
2.7
3.0

0.7024
0.944
1.181
1.423
1.658

sions D were obtained by using standard box-counting
methods; in each case the scale similarity region in the
appropriate log-log plots extended to about two decades.
The multifractal spectrum f (a) was then calculated via
Legendre transforms.

We make use only of a small subset of the data near
q =0 (shown in Table I) where they are more reliable,
and have ignored data for q & 0 because of possible noise
effects. " On the strength of the conclusions in Ref. 11
we attempt to solve the characteristic equation of (the
lowest-order approximation to) the transfer matrix of the
circle map. This means we will assume a =g. Motiva-
tion for this assumption comes from the Fourier spectra
of the time signal that shows clear peaks at powers of the
golden mean (Fig. 18), indicating golden-mean dynamics.
We fix this value of a in the characteristic equation and in
addition use the experimental fact that Do=1 and plot a
family of (intersecting) curves as a function of o, (00)
versus the product o i(01)o 1(10). Each of these curves
corresponds to the solution at a different experimental ~
of the characteristic equation. Recall the conclusion in
Ref. 17 that in extracting information from thermo-
dynamic quantities like the Renyi dimensions, one can do
no better than extract cri(01)oI(10) as a product.
Different values of o I(01) and o i(10) that keep the prod-
uct the same will yield identical D curves.

It is seen that the curves intersect in the vicinity of two

regions marked 3 and 8 in Fig. 21. These intersections
correspond to solutions of the characteristic equation of
the transfer matrix. Both these solutions give two param-
eter fits to the D curve of the circle map. Note that the
solutions corresponding to region 8 lead us to conclude
that o i(00)=0.47 and the product o i(01)oi(10)=0.53.
These are in excellent agreement with the theoretical
values for the circle map which were found in Sec. V.
Note, however, for reasons discussed earlier (with only
two free parameters), only part of the D curve can be
fitted at this level of approximation. We can in principle
find higher-order scaling lengths and get better fits, but
choose not to due so, in light of the accuracy of the ex-
perimental data.

B. Energy dissipation in fully turbulent flow

The physical quantity of interest here is the energy dis-
sipation rate c in fully turbulent flows, one of whose strik-
ing characteristics is its spatial intermittency. An exam-
ple of a one-dimensional section through the energy dissi-
pation field was shown in Fig. 2; the underlying dynamics
is believed to be a cascading process of energy transfer
from larger to smaller scales. It is therefore natural to
expect that the distribution of the energy dissipation
might possess self-similar scaling properties. This was
indeed shown to be the case in Ref. 25 for one-
dimensional sections of c. In Ref. 10 it was further
shown, by empirical comparisons of the experimental D
and f (a) data with those of two-scale Cantor measures,
that the dynamics leading to the observed multifractal
distributions of c can be well approximated by a single
multistep process involving unequal energy distribution
in the ratio —'„ the eddy size contraction at each step be-

ing equal. (As already mentioned, eddy subdivision into
equal pieces is motivated by expectations that energy
transfer tends to progress from one scale to the neighbor-
ing size. There is no conclusive justification for this as-
sumption, but it is the simplest case to examine. ) Our in-
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tention here is to deduce this result via the formal
transfer-matrix technique described in Sec. III, and to see
if one can improve on the conclusions of Ref. 10.

The experimental data used in Ref. 10 were obtained
(in the order of decreasing Reynolds number) in the at-
mospheric boundary layers several meters above the roof
of a four story building, a laboratory turbulent boundary
layer, the turbulent wake of a circular cylinder, and final-
ly, a turbulent Aow behind a square grid of round bars-
the last three created in a wind tunnel. The Reynolds
number (based on a characteristic oncoming mean veloci-
ty and an integral length scale) varied approximately be-
tween 10 and 10 . More details can be found in Ref. 25,
where it was shown that the measured D and f (a) data
for e were universal features of all fully turbulent Aows.
A partial list of the averaged D data is given in Table II.

Using the procedure described in Appendix A, we use
the mean D data from these experiments to determine
the primary scales p &

and p2 for a two-scale P model with
no memory. From Fig. 22, which shows the result of
such an e6'ort, we conclude that p &

and pz are close to 0.3
and 0.7. In particular the negative q's lead us to believe
that p, is 0.3, while the positive q's agree better with the
value of p, =0.29. This small discrepancy may be due to
the lesser reliability of high-q data.

A somewhat better fit to the data can be obtained by
allowing both unequal L's and unequal P's (LP models),
the formalism for which is described in Appendix B. We
choose not to present the calculations here in view of the
fact that such results are harder to interpret physically,
and that the somewhat limited experimental accuracy
does not at present justify such refinements.

The better fits to the D curve by the LP models can be
understood purely in terms of the number of free parame-
ters available. As already shown in the example of the
two scale Cantor measure, the thermodynamics of LP
models, where both L and P vary, can be replicated by L
or P models with one time step memory (i.e., introducing
one more free parameter). A D curve generated by an L
model represented by a 2 X 2 transfer matrix with a =2 is
shown in Fig. 23. The excellent agreement of the two
curves is not unexpected in light of the discussion in Sec.
IV. Here we would like to caution the reader that the
only evident justification for assumption of a binary pro-

0. 1

0.0

-0. 2

0.0
I

0.5 1.0

cess by Meneveau and Sreenivasan' is that it is the sim-
plest model that would to a good approximation replicate
the observed statistical properties of the data. As shown
here, it is only one of the infinite models that would give
rise to the observed D curves. A D curve generated by
an L model represented by a 4X4 transfer matrix with
the a =g (golden-mean dynamics) of the same data is
shown in Fig. 24.

VII. CONCLUSIONS

We have shown by a variety of examples, both theoret-
ical and experimental, that the procedure of extracting
dynamics from the thermodynamic data [the Dq or f (a)

FIG. 22. Determining the scales o.~(0) and cr~(1) from the
Dq curve for open flows (each curve corresponding to a different
positive q from Table II). The D~ curve used corresponds to the
mean of several such curves from different realizations as well
as different flows. The dashed lines show the values of
o~(0) =0.3 and o.~(1)=0.7 which corresponds to a model pro-
posed in Ref. 10.

TABLE II. A partial list of q versus ~ values of c averaged
from several fully turbulent flows.

—10.0
—8.0
—7.0
—6.0
—5.0
—4.0
—3.0
—2.0
—1.0

—17.70
—14.15
—12.27
—10.50
—8.72
—7.02
—5.34
—3.75
—2.29

0.0
0.5
2.0
3.0
4.0
5.0
6.0
7.0

10.0

—1.00
—0.45

0.79
1.40
1.92
2.46
2.92
3.38
4.81

-20 20

FIG. 23. A plot of Dq curves from an L model with a =2,
2X2 TM. The excellent fit shows that the earlier proposed P
model (Ref. 10) is not the only possible fit to the data.
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Z

o1L

digit denotes whether the interval itself was a left or right
offspring, and the second digit denotes whether its parent
was itself a left or right offspring. Thus we have a total of
four different contracting scales. Denote these length
contraction ratios by o &(00), cr&(01), o &(10), and o&(11),
respectively. Then following the procedure described in
Refs. 17 and 6 and in Sec. III of the text we can denote
such a process by a 2 X 2 transfer matrix,

o( '(00) o( '(01)

o( '(10) o, '(ll) (A 1)

The characteristic equation of this transfer matrix is sim-

ply Eq. (24). Now writing A. as aq, we get

-20 20 a ~ —[o, '(00)+o I '(00)]a
g

FIG. 24. A plot of D~ curves from an L model with a =2,
2 X 2 Tm and a P model with a =g, 4X4 TM. This shows that
binary dynamics is not the only dynamics consistent with the
data; golden-mean dynamics works just as well.

+ [o, '(00)o, '(ll) —o, '(01)o& '(10)]=0 .

Remembering that

r(q) =(q —1)Dq,

{A2)

(A3)

curves] is nonunique. However, if additional dynamical
information can be brought to bear on the problem, one
may in fact use the thermodynamic formalism to extract
information about the underlying multiplicative process.
We have examined several experimental circumstances
from which dynamical models could be constructed. We
warn the reader, however, that the additional informa-
tion required to make a judicious choice among the
infinity of possibilities is often nontrivial in nature.
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APPENDIX A

In this appendix we will outline some details of how
the thermodynamic quantities D are calculated for the
various models discussed in this paper. For the first half
of this Appendix will draw heavily from the work of
Feigenbaum. '

1. L models

We first consider a binary process where each piece
splits into two pieces at the next level of refinement.
Denote the left piece by the number 0 and the right piece
by the number 1. Further, consider a process that has a
one time step or one level memory, i.e., it remembers if
its parent was a left or right offspring. Thus for the pur-

pose of deciding the contraction ratio it will undergo,
each piece can be encoded by two binary digits. The first

we now have an equation that relates the fundamental
length contraction ratios with D and q. It is important
to note that we are constraining ourselves to a binary
process with only one time step or one level memory.
Restricting ourselves to such a model is not as bad as it
may seem at first sight because it seems that chaotic sys-
tems, at least the ones at the onset of chaos, have
memories that die off exponentially. Thus considering
an n time step or n level memory would have an exponen-
tially small correction with increasing n. For such a 2X2
matrix, the requirement that &=0 for q = 1, restricts the
possible values a to 0, 1, (&5+1)/2 and 2, of which 0
and 1 are trivial values. The value of a is the golden
mean when ol(11)=0 [see Eq. (A2)]. One of the points
this paper makes is that at least to experimental accura-
cy, it really does not matter which of the nontrivial
values of a one uses.

We can use Eq. (A2) for two purposes. First consider a
situation where we know the four length ratios and would
like to calculate the D curve. Then if all the four length
scales were nonzero we would use a =2, substitute the
length contraction ratios in the equation, and simply
solve the equation for r(q) by choosing different values of
q. This then gives the desired r(q) curve. Notice that the
r(q) curve depends only on four parameters a, o I(00),
o ~(11), and the product ol(01)crI(10). Changing the
values of cri(01) and o &(10) in such a way as to keep their
product constant would yield the same r(q) curve. This
degeneracy has been emphasized before by Feigenbaum
and reminds us the D is a macroscopic average and not
a microscopic quantity. Furthermore, one should
remember that at this level of approximation {one level
memory) we have no choice for a. It will be 2 unless
cr &(11) is zero, in which case it will be equal to the inverse
of the golden mean g.

As an aside let us note that one can actually make the
computations somewhat simpler' for the model we have
considered if we instead choose a value of ~ and compute
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the value of q associated with it. Note that the charac-
teristic equation for the eigenvalue of a 2 X 2 transfer ma-
trix is a quadratic equation. Then the leading eigenvalue
of Tis given by

cr, '(00)+cri '( l l )
k( —r) =

2

o, '(000) o., '(001)

crI '(100) o ( '(101)
0 0

cr, '(010) 0

0 (A10)

cr( (00)—cr( '(11)
2

+o., '(01)cr, '(10)

Remembering that A, =a ~, we have

q =log(A. )/log(a) .

1/2
(A4)

(A5)

Then we can compute D froin Eq. (A3).
Now consider the reverse situation. Given an arbitrary

~ versus q curve can we find the matrix elements that
would generate it? First, let us note that there is no
reason that one should be able to find a solution of the
form dictated by considering a binary process with a sin-
gle step memory. However, it turns out that for all the
cases considered in this paper we can. In addition we
find solutions both for a =2 and a =g. To do this we
consider the D curves at three points D, D, and
Dp. Then using the relations

Here each element is specified by its time history at three
time steps, t„+,, t„, and t„,. Thus o, (010) would be the
contraction ratio of an interval designated by (01) con-
tracting onto an interval designated by (10). Since the
first digit of the first pair (t„,t~„,~

) will always equal the
last digit of the second pair (t~„+,I, t„), one simply con-
tracts the two pairs and writes it as a single three digit
number. The forbidding of two successive 1's makes the
matrix sparse so that there are only three free parameters
that determine the r(q) curve. We get these from the
values of D, D, and Dp, where now a =g. Having
arrived at a three-parameter equation for the golden-
mean dynamics we find that we can once again get good
fits to all the r(q) curves constructed in this paper.

B. I' models

The equations for computing r(q) curves from P mod-
els is similar to those for L models with a few twists.
Consider once again a one time-step memory binary mod-
el, the transfer matrix for which isD„=l go[ cr(00)]/log[o i(00)],

D „=log[cd (11)]/log[o, (11)],
(A6)

(A7)
o~(00) crt(01)

cr~(10) crt(11) (Al 1)

and by substituting q =0 (which implies r= Do) in Eq-.
(A2) gives

But now we have two additional conservation equations,

I —[o ( '(00)+cri '( 1 1 )]+a., '(00)cr, '( l l )

—0 I "(01)crI "(10)=0 . (A8)
and

cr (00)+cr (10)=1

cr (01)+cr (11)=1 .

(A12)

(A13)
Thus using Eqs. (A6)—(A8) we can calculate the three pa-
rameters, cr&(00), o., (11), and o&(01)o&(10), required to
generate a r(q) curve from a binary one time-step model.

If, however, oI(11)=0, then from Eq. (A2) one re-
quires a =g. The transfer matrix is

o., '(00) cr( '(01

crI '(10) (A9)

i.e., we have only two free parameters cr&(00) and the
product cri(01)cr&(10). We can thus find these values by
using any two of the three relations, Eqs. (A6)—(A8). We
find, however, that the fit will not be good for most of the
curves considered in this paper. This is because one
needs at least three free parameters to get good fits to
these D curves. To construct a model with one more
free parameter, one must go to the next order of the
transfer matrix. This means we now consider a two level
memory, each piece remembering if its parent and its
grandparent were left or right pieces. Each piece thus de-
cides its contraction ratio through a three digit binary se-
quence. Remembering that the 11 transition is forbidden,
the transfer matrix then reads as

These equations simply represent the conservation of
probability of each sub branch in the tree. They imply
that only two of the four elements of T are independent ~

Therefore for a three-parameter fit to the D curve we
need to use one more piece of information. This is ob-
tained from the Hausdor8' dimension of the support of
the measure. For although each of the pieces are of equal
length, their length will be dependent of the value of Dp.
In particular, at the nth stage the intervals must satisfy
the equation

1V
n D

( Ln()) o (A14)

(A15)

Now assume, (consistent with our model) that at each
level of refinement, each interval splits into two smaller
pieces each shrinking by some constant ratio b. Then at
the nth level there will be a total of 2" intervals each of
length b " Thus Eq. (A14) becomes



4610 CHHABRA, JENSEN, AND SREENIVASAN

0.)(00)+ tr )(11)
A, (q) =

2
+

o )(00)—o )(11)

+o )(01)o)( 10)
1/2

(A16)

Since k=b ', we have

r = —log(A. )/log(b), (A17)

which enables us to compute r(q) from our knowledge of
[cr (00), cr (11),and b].

Conversely, given a D curve one could use any three
points on it to determine the three parameters that
represent the binary model. The simplest way would be,
given D, D, and Do one could use the relations

D„=log[a (00)]/log(b '), (A18)

D „=log[o (11)]/log(b '), (A19)

and Eq. (A15) to find o (00), o (11),and b.
To replicate the golden-mean dynamics, one lets

cr (11)=0 (which then makes b =g when Do = 1). Com-
puting the desired q(r) curve for this model is done in
the same way for the models possessing binary dynamics.
Just as in the L-model case this restriction reduces the
number of free parameters to two. One then needs to go
to a 4X4 transfer matrix, i.e., a model with two time
steps memory to have three free parameters. The calcu-
lation of the D curve can then be done the same way as
in the binary dynamics case.

An important point that the reader should note is that
these models can be refined to greater complexity and the
fits to the Dq curves made arbitrarily accurate simply by
increasing the number of free parameters. However, in
all of the fits shown in this paper, we have chosen to use
models with at most three free parameters, and used the
values of D, D, and Do to find them. The D curves
generated from an underlying multiplicative process
defined from these three parameters were then used to fit
the data from experiments. The reason for such good

Knowing Do we can solve for b. Once again in analogy
to the L model, we need three free parameters [o (00),
tr (11), and b] which are present in the 2X2 transfer-
matrix representation of the P model (where none of its
elements are zero). Given these three parameters we can
generate a r(q) curve using the characteristic equation of
the transfer matrix which is

2

agreement over the entire curve is unexpected and not
well understood. The remarkable agreement however
obiviates the need to consider more refined models.

APPENDIX B: GENERALIZED CANTOR
MEASURES ( LP PROCESSES)

It is easy to adapt this formalism to the case of fractal
measures living on fractal sets. In the simplest two-scale
case, one can consider a unit interval splitting into two
pieces of unequal length. However, rather than giving
the two pieces the same probability, we assign them un-
equal probabilities p, and p2. This process is then repeat-
ed, and is similar to the well known (contracting) Bakers
transformation. We now elaborate on the thermodynam-
ics of the partition function where both L, and P, vary.
We can define two variables, E, = —In(L, ) and
PV, = —ln(P, ). Then the partition function can be writ-
ten as

I (q, r) = g (P, )~/(L, )'= g exp[ p(E, —P V—
, )], (B1)

i.e., we are making the following identifications of r=P
and q = —p. Then

I (q, r) =exp[ —G (13,p)], (B2)

o~ (00)/cr( '(00) cr~ (01)/crt '(01)

ap ~(10)/crt '(10) crpq(11)/o. t
'( ll) (B3)

where the leading eigenvalue is 1. The relevant quantities
are once again found by solving the characteristic equa-
tion of this matrix. This is more complicated as we now
deal with more variables, and multidimensional root-
finding methods tend to become rapidly unstable as we go
to higher-order approximations.

The problem with this model is that one does not know
how to choose the partitions correctly except in some
special cases. Thus in principle one almost always works
with either the L or P model.

where we have absorbed the P in the definition of G.
There is nothing special about our choice of variables,
one can use any conjugate pair of thermodynamic vari-
ables. The fractal dimension of the set, then corresponds
to the value of —P that makes G (P,p) zero.

One can also derive the appropriate transfer matrix
with a view of extracting the relevant multiplicative pro-
cess. In such a case it is convenient to use both the scal-
ing functions (o, and az) defined in the previous sec-
tions. Similar manipulations as used for the L and P
models lead to a transfer matrix of the form
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