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One-dimensional systems of annihilating and coalescing random walks and Brownian motions
with arbitrary initial configurations of particles are studied. Exact results are derived for site-

occupancy probabilities (densities), local fluctuations in these probabilities, and distributions of
nearest-neighbor distances. Two types of initial configuration are investigated in detail: the homo-

geneous Poisson process and a one-parameter family of pairwise clustered locations. The systems
studied can be regarded as simple models of diffusion-controlled chemical reactions and hence the
exact results derived here can be compared with the predictions of traditional, deterministic models
that are based on simplifying assumptions about the evolution of the spatial structure of the sys-

tems, It is shown that, although the asymptotic behavior of the annihilating systems does depend
on the structure of the initial configuration, the deterministic approximations are not able to detect
this dependence, and the approximation is poor when the particles are initially highly clustered.

I. INTRODUCTION

Diffusion-controlled reactions in solution, in which the
rate of reaction is determined by the rate at which parti-
cles encounter each other in the course of their Brownian
motions, are the simplest known reactions. Chemical
theories of diffusion-controlled reactions are usually for-
mulated in terms of a singlet density, or concentration,
which evolves according to a diffusion-reaction equation.
Such a formulation, which we label deterministic, disre-
gards the discrete nature of the reacting particles and ig-
nores correlations which may exist in random initial
configurations of particles. Even when the particle loca-
tions are initially uncorrelated, correlations develop as a
consequence of the progress of the reaction. Determinis-
tic models take account approximately of the pairwise
correlations which appear, but assume that the effects of
higher-order correlations are negligible. Another major
drawback of these models is that there is no satisfactory
method of estimating errors due to such simplifying as-
sumptions.

Recent results by a number of authors' show that lo-
cal spatial fluctuations which are ignored by determinis-
tic models can dominate the large-time reaction kinetics
in many important cases and hence more sophisticated
models are required. One clear example is the case in
which the particles are initially clustered, which occurs in
high-energy electron radiolysis. ' Another striking ex-
ample is that of two types of particles which react ac-
cording to A +B~E (i.e., the particles annihilate) for
which, in dimensions d 3, clusters of like particles de-
velop and reaction is largely constrained to the boun-
daries of these clusters. In the special case of the
trapping reaction with a single A particle and the B par-

ticles fixed, the reaction rate is related to the volume of
the Wiener sausage. ' In each of these cases knowledge
of the evolution of the spatial structure of the system is
crucial to understanding the reaction kinetics and deter-
ministic treatments are inappropriate.

In order to gain insight into the validity of the assump-
tions inherent in deterministic formulations, attention
has recently focused on simple model stochastic systems
which incorporate details of spatial structure. ' To
simplify the mathematical analysis, these models are usu-
ally restricted to one dimension. In this paper we exam-
ine some one-dimensional stochastic models of diffusion-
controlled reactions which are flexible enough to allow
arbitrary initial particle configurations and sophisticated
enough to account exactly for the effects of spatial struc-
ture on reaction rates, yet remain simple enough to allow
the calculation of detailed, explicit results, not only for
the asymptotic behavior but for the entire time-
dependent evolution of the system. These exact results
are compared with the predictions of relevant determinis-
tic models. This work incorporates as special cases many
of the models referred to above "" ' and provides a
unified treatment which includes and extends known re-
sults.

The model systems to be considered consist of sizeless
particles which move independently according to either
(a) symmetric, nearest-neighbor random walk (RW) on
the integers Z with an exponentially distributed waiting
time of mean one between jumps; or (b) standard Browni-
an motion (BM) on the real line E. Chemical reaction is
modeled by imposing one of two possible interactions
when a pair of particles meet: either both particles van-
ish (annihilating BM and RW, called ABM and ARW) or
one particle vanishes and the other is left undisturbed
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(coalescing BM and RW, called CBM and CRW).
The explicit results for ABM and CBM presented here

are for standard Brownian motion, in which there is an
implicit diffusion coefficient of —, for each particle. Exten-
sion to an arbitrary diffusion coefficient D is obtained
simply by replacing t with 2Dt.

We take two approaches to obtaining results for these
systems. The first, more general, approach is based on
methods from the mathematical interacting particle sys-
tems literature ' and obtains results for the RW sys-
tems by exploiting their relationship with the invasion
process (IP) introduced by Cliff'ord and Sudbury. Re-
scaling and taking limits, corresponding results for the
BM systems are obtained. The present work extends re-
sults reported by Balding, Cliff'ord, and Green. ' The
second, more direct, approach follows from the results of
Balding' and applies the reflection principle to finite,
periodic versions of the annihilating systems, with results
for the infinite systems derived by taking appropriate lim-
its.

After describing the mathematical techniques em-
ployed, we present general results and applications to
some particular initial configurations of interest, includ-
ing uncorrelated particle locations and a one-parameter
family of correlated configurations. For each of our mod-
el systems we obtain the probability that a particular site
is occupied at any time. For the coalescing systems we
describe pairwise occupancy probabilities and the distri-
butions of interparticle distances at large times, while for
the annihilating systems we derive the time-dependent
mean and variance of the number of particles in a finite
interval. In Sec. VI corresponding deterministic models
are formulated and appropriate comparisons made. The
present paper emphasizes results and applications. Fur-
ther details and proofs will be published elsewhere.

II. INVASION PROCESS AND DUALITY EQUATIONS

The IP is a system of black and white particles, one at
each site of the integer lattice Z. Each particle, after in-
dependent, exponentially distributed waiting times of
mean one, destroys one of its two neighbors, chosen
equiprobably, and replaces the neighbor with a copy of it-
self. If the particles at two neighboring sites have the
same color then no change is observed, all the activity in
the system occurring at the borders between regions of
black and white particles. A key to describing IP is the
observation that these borders perform ARW. Further
relationships between ARW, CRW, and IP follow from a
joint construction of all three processes on a random
graph known in the mathematical literature as the per-
colation substructure. ' Briefly, the graph is obtained by
associating a time axis with each integer site and con-
structing directed arcs between neighboring pairs of sites
so that the time intervals between the arcs are indepen-
dently and exponentially distributed with mean 1 and
each arc has an independent probability —,

' of pointing in
each direction.

To construct realizations of CRW and ARW on this
graph, a convenient fluid-flow terminology is often used.
Let A be a set of sites and imagine that at time 0 unit

CCB
(lb)

More generally, duality equations similar to (1) hold for
random initial configurations, when the set of sites ini-
tially occupied is chosen according to a probability distri-
bution p on the set of subsets of Z. The fixed initial
configuration A can be considered as the special case that
p assigns probability one to the set A. The utility of the
duality equations lies in the fact that probabilities of
events for systems with arbitrary (possibly random, possi-
bly infinite) initial configurations can be expressed in
terms of probabilities of events for systems with finite ini-
tial configurations. Further, it can be shown that the
probabilities on the left-hand side of (1) give a complete
description of ARW and CRW so that, knowing these
probabilities, all questions of interest about the systems
can be answered. Analogous duality equations also hold
in higher dimensions but it is only in the one-dimensional
case that, using the fact that borders in IP perform
ARW, the right-hand side of (1) can be explicitly evalu-
ated, which is undertaken in Secs. III and IV.

III. SINGLE SITE OCCUPANCY PROBABILITIES

Consider the case that B consists of a single site b, so
that the duality equations express the probabilities that
site b is occupied at time t in ARW and CRW in terms of
IP with initially only the particle at b black. Incorporat-

volume of fluid emanates from each site in A. Each
stream of fluid flows in the direction of increasing time
until it reaches the tail of an arc, when it follows the arc
to the neighboring time axis and then resumes its
increasing-time journey. If two flows meet at the head of
an arc, they merge into a single stream with the volume
of flow added. Notice that a particle exists at site a and
time t in CRW with initial configuration A precisely
when the fluid flow in the graph reaches the point (a, t),
while a particle exists in ARW if the volume of the fluid
flow reaching (a, t) is an odd integer.

To construct on the same graph IP with the initial
black particles indexed by A, suppose now that each site
in A is a source of fluid at some fixed time s & 0 and flow
is in the direction of decreasing time. This flow is
suppressed on reaching the tail of an arc but at the head
of an arc the stream divides in two, one stream ignoring
the arc and the other stream following the arc to its tail
and then continuing its decreasing-time flow. For
t H [O,s), there is a black particle at site a and time t in IP
precisely when at least one stream reaches (a, s —t) in the
graph. For further details of these constructions, see
Grlffeath. '

Let g,
" denote the configuration of particles at time t in

CRW with initial configuration A, so that go"= 3; the
corresponding set of occupied sites for ARW is denoted
by il,

" and g,
" is the set of sites occupied at time t by

black particles in IP when initially the particles located at
sites in A are black. For B a finite set of integers, the
joint construction of ARW, CRW, and IP described
above implies immediately the duality equations

(la)
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ing random initial configurations, Eqs. (1) become in this
case

P(b & P)= g P(gI ~ =C)N„(C),
CCZ

P(beq~)= y P(gI") =C)O„(C),
CCZ

(2a)

(2b)

where N„(C) is the probability that in the random initial
configuration p at least one site in C is occupied and
O„(C) is the probability that initially an odd number of
sites in C are occupied. The two borders of gI ) form
ARW with initially two particles occupying adjacent sites
and so P( gI

" ) =C) is readily evaluated using the
reAection principle. ' In many cases of interest the initial
configuration p is spatially stationary, which means that
the probability that any set of sites is occupied remains
unchanged when all the sites undergo a common dis-
placement. In the stationary case Eqs. (2) are inde en-
dent of b and, introducing the concise notations S, for

P(bing,

) and SP for P(b Eq", ), the duality equations
reduce to

that the initial configuration of the particles forms a spa-
tially stationary point process, the site-occupancy proba-
bility densities for CBM and ABM are given by

f x exp( —x /4t)N(x)dx,
2t&(~t) o

C,"= f x exp( x—/4t)O(x)dx,
2t &(n.t) o

(6a)

(6b)

where N(x) is the probability that in the initial config-
uration there is at least one particle which lies in the in-
terval [O,x) and O(x) is the probability that there are an
odd number of such particles. The asymptotic site-
occupancy density is 1/&mtf. or CBM and y/&ntfor.
ABM, where

x-y= lim —f O(y)dy .
x~~ X 0

In the case that initially the particles are distributed as a
parameter-/3 Poisson process, so that the probability that
a particle occupies a short interval of length du is Pdu
and the particle locations are uncorrelated, we have

Sf = —e ' g jI,(2t)N„(j ),
j=1

(3a)
N(x)=1 —e

O(x) =
—,'(1 —e '~)

S,"=—e ' g jI, (2t)O„(j),
j=1

(3b)

where I is the modified Bessel function, N„(j) abbrevi-
ates N„( I 1,2, . . . ,j } ) and similarly for O„(j). Some ex-
plicit results for ARW with particular initial
configurations have been given by Balding, Clifford, and
Green, ' who also show, using the known asymptotic
behavior of I, that

(4a)

where the parameter y is defined for all spatially sta-
tionary p by

k

y= lim —g 0 (j) .
k .j=1

Bramson and Griffeath prove (4) when p is restricted to
certain classes, for which y is always —,'.

We see from (4) that details of the initial configuration
which are ignored by the deterministic models inhuence
the asymptotic site occupancy probability of ARW, but
not that of CRW. Further, ARW remembers" only the
information about the initial spatial structure incorporat-
ed by the parameter y and not, for example, the initial
concentration of particles.

Turning now to the continuous state space systems
ABM and CBM, the graphical constructions which led to
the duality equations (1) are no longer available. Howev-
er, continuous versions of the duality equations can be
obtained by showing that, with a suitable rescaling of the
space and time variables, the RW processes converge to
the BM systems. A similar development to that out-
lined above leads to the conclusion that, provided only

and therefore the site-occupancy densities are

Cf =13exp(13 t)erfc(I3&t ),
C&=C~4t

(8a)

(8b)

and O(x) is a "blunt sawtooth" function of period 2A, ,
where

x/A, , x E [0,(1 —a)A, }
0(x)= 1 —a, x H [(1—a)A, , (1+a)A, }

2 —x/A, , x e[(1+a)A,, 2X}

The site-occupancy densities in this case are

where erf(x) =1—erfc(x) =2 joexp( —u )du /&nCuri-. .
ously, Cf~ and C," have the same functional form, with
different time scales. In this case y =

—,
' and so the asymp-

totic site-occupancy densities are 1/v'stand 1/2v'. mt.
Further, taking limits in (8) as P& OD, i.e., as the initial
concentration of particles increases, these asymptotic
densities are exact at all times.

A simple case of a correlated initial configuration
occurs when the separation of the particles alternates be-
tween the fixed values (1—a)k and (1+a)A., for some
A. )0 and a&[0, 1). Let a particle be located at random
uniformly on the interval [0,2A, ), place another particle a
distance ( 1 —a Q. to the right of the first, and then contin-
ue placing particles along the whole line with alternate
spacings. The resulting configuration is spatially station-
ary with

'x/k, x E[0,(1—a)A, )

N(x)= +, x E[(1—a)k, (1+a)k)1 —a x
2 2A.

'

1, x ) (1+a)A,
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1 f ( I+a)k f (1—a)A.erf +erf
2& 2i/t 2i/t

(9a)

1 2k —1+(—1)"
(4/A )i/t

2k —1+(—1) (2a —1)—erfc
(4/A. )i/t

(9b)

Further, y= —,'(1 —a ) and so the asymptotic site-occu-
pancy probabilities are I /i nt and (1—a )/2&crt and,
as for the Poisson case, these values become exact at all
times in the limit as the initial concentration of particles
increases, i.e., as A, &0. However, notice that in the alter-
nate separation case Ct~ is not a time rescaling of C,",
which held in the Poisson case.

IV. SPATIAL STRUCTURE

P(i),"=Z)= g s(w) Q P(ri, ' ' =0),
teE W& i j Cw

(10)

where 8'z is the set of all partitions of the integers 1 to N
into pairs [i,j j, abbreviated to ij with i &j, and s (w) = 1

if the permutation obtained by concatenating the pairs in
w is even, otherwise s (w) = —1; for example, if X =6 and
w = [13,26, 45j then s (w) = —1 since 132645 is an odd
permutation.

Intermediate cases can be expressed in terms of the ex-
tremes M =0 and M =N discussed above:

N/2
P(nl" B)= M/2—— s'(C)P( , i=)B)P(i), ~ =P),

Ccw
Jc/ =M

where A gC denotes the set of the elements of 2 which
are not also elements of C. In (11),s'(C) = 1 if the permu-
tation obtained by arranging the indices of the elements

We have seen in Sec. III that the duality equations lead
readily to expressions for site-occupancy probabilities (or
densities) in all our model systems. If we wish to answer
more detailed questions concerning spatial structure,
such as joint occupancy probabilities for two or more
sites, the duality equations can again be employed to con-
vert the original problems for systems with arbitrary ini-
tial configurations into problems for ARW or ABM with
fixed initial configurations consisting of finite and even
numbers of particles. We now describe how these
simplified problems can be solved directly using the
reflection principle.

Suppose that 2 = [a& (a2 & &azj (:Z, with N
even. We require P(ri, =B), for B = [b, « bM j
with M even and 0 M N. If M =N, i.e., the case that
no annihilations occur prior to time t, the required proba-
bility is the determinant of the N XN matrix whose ijth
element is the probability that a lone random walker
starting at a, occupies site b, at time t. The case M =0 of
no particles surviving at time t can be expressed in terms
of two particle probabilities by

+ —exp( —a )erfc(a), (12)

where (1/t)P(a, t) denotes the probability that sites 0
and [2ai/t ] are both occupied, i.e., P (a, t)
=t P( [0,[2ai/t ] j C:P,') and [x] is the largest integer not
greater than x. It follows from the convergence of res-
caled CRW to CBM that (12) holds also for CBM with
stationary initial configuration if we now interpret P(a, t)
as the joint occupancy density at locations x and
x +2ai/t.

Another useful description of spatial structure is
(1/t)Q(a, t), the probability that sites 0 and [2ai/t ] are
both occupied while all the intervening sites are vacant,
which at large times is given by

CX
lim Q(a, t)= —exp( —a ) .

taboo

77
(13)

Further, joint interparticle distances are asymptotically

lim Q( pa, t)= —[exp[ —(p —a) —a ]—exp( —p )j,
t +oo 7T

(14)

in which

Q(a, p, t)=t'"P([0, 1,2, . . . , [2pi/t ]j Ag
= [0,[2a~/t ],[2pv't ] j ),

with 0(a&p. Equations (13) and (14) also apply to
CBM on interpreting Q(a, t) and Q(a, P, t) as corre-
sponding joint site-occupancy densities. Further, it fol-
lows from these equations that the interparticle distances
are not independent, so that the influence of a particle on
the locations of other particles in CRW and CBM ex-
tends beyond nearest neighbors at all times. This con-
trasts with the result of Arratia who shows that, in di-
mensions d & 1, CRW with initially each site occupied
converges, after appropriate rescaling, to a homogeneous
Poisson process.

Unlike the coalescing case, the spatial structure of the
annihilating systems does depend at all times on the ini-
tial configuration, through the parameters y and y, and it

of C in increasing order and then appending the indices
of 3 &C, also increasingly ordered, is even, otherwise
s'(C) = —1; for example, if X =6, M =4, and
C = [a&,a2, a3, a6 j then s'(C) =1 since 123645 is even. A
result corresponding to (11) holds for ABM in terms of
joint occupancy probability densities. See Balding for
further details and proofs.

Using (1), (11), and the fact that the borders of IP per-
form ARW, the entire spatial evolution of our model sys-
tems can be described. In the case of the coalescing sys-
tems, it can be shown that asymptotically CRW and
CBM are independent of their initial configurations,
given only spatial stationarity. In particular, the joint oc-
cupancy probability of two sites in CRW with stationary
initial configuration p is described asymptotically by the
limit

1
lim P(a, t) = ———exp( —2a )

t +oo 7T 7T
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seems that explicit asymptotic expressions corresponding
to (12) through (14) cannot be obtained. However, in the
cases y= —,

' and y= —,', joint occupancy probabilities for
ARW and ABM are —„' those for CRW and CBM given by
(12). Further, Bramson and Cxriffeath have obtained for
these cases an approximation to the interparticle distance
corresponding to (13). However, in Sec. V we are able to
derive expressions for local fluctuations in the annihilat-
ing systems which provide useful descriptions of spatial
structure.

V. PERIODIC ABM

M(1, ) (t) =E(R, !/(R, k)!)—
~(w) g f (x, —x),

i j Hw
(15)

where f, (y) is the survival probability for two-particle
ABM with initial separation y on the circle of circumfer-
ence L, given by

The methods used to derive Eq. (11) in Sec. IV suggest
an alternative method of obtaining results for the annihi-
lating systems which are of interest from the perspective
of the diffusion-controlled reactions applications: calcu-
late exact results for finite systems and take appropriate
limits. In order to study finite numbers of particles
without distinguishing "end" particles, it is convenient to
consider ARW and ABM on finite, periodic state spaces.
We focus on ABM because it is more amenable to explicit
calculations, but entirely similar arguments apply to
ARW.

Suppose that initially N particles are located at sites
X = [x, &xz « x~ ) on a circle of circumference L
and they subsequently perform annihilating Brownian
motions. This system is called periodic ABM. The
large-time behavior depends strongly on whether X is
odd or even. Here, we will assume for convenience that
N is even, the odd case is treated elsewhere. Let R,
represent half the number of surviving particles at time t.
The factorial moments of R, are given by

N N —1 I- 2y
L L 0 L f'(y)dy . (17)

Notice that C,~ is also the survival probability for two-
particle periodic ABM with initial separation x satisfy-
ing, for a E [0,L /2),

N —12'P(x )a)= 1—
L

Substituting (16a) into (17) and taking the limit as N and
L increase with p=N/L constant, we obtain Cp in the
Poisson case derived already in (8), but we can now addi-
tionally observe that C," in this case is precisely the sur-
vival probability for ABM with initially two particles
whose separation has the exponential distribution with
mean 1/2p. An alternative expression for C," in the uni-
form case, particularly useful for t large, is obtained on
substituting (16b) into (17). This expression has the im-
portant property of separation of the space and time vari-
ables which facilitates the calculation of higher factorial
moments. We omit the details which are tedious, and
merely report that V,", the variance of the number of
surviving particles per unit interval can be obtained.
Once again taking the limit as X and L increase in con-
stant ratio p, we obtain Vp, the variance of the number of
surviving particles per unit interval for ABM in the Pois-
son case, given by

tion s(w) is the following: list the integers 1 to N in in-
creasing order; successively choosing each pair ij in w,
count the number of integers in the list between i and j
and delete i and j from the list; then s ( w) = ( —1),where
m is the total count.

In the important case of the first moment, when
M~&)(t) is half the expected number of surviving parti-
cles, each w E W~ consists of a single pair ij, so the prod-
uct in (15) is redundant and s(w) is simply —( —1)J
For example, if initially N particles are independently
and uniformly distributed on the circle then the site-
occupancy density is

X —2

f, (y) = erf
2&t

4x +3x C„2xP
&(~/2)

2x P —(1 —2x )C~,2

——(2x +5x +1)(C") (18)

(16a)

QO t 2

f, (y)= —g . exp —(2j+1)'
, 2j+1 4L

X sin (2j + 1)
L (16b)

In (15), W& is the set of all selections of k disjoint pairs
[i,j I & [ 1, . . . , N I and s ( w) = 1 if the permutation ob-
tained by concatenating the pairs in w and appending the
remaining integers in increasing order is even, otherwise
s (w) = —l. An alternative construction of the sign func-

in which x stands for 2p&2t and C," is given at (8). For
large times we have

hm &m.t V,"=1—1

fQoo v'2 ' (19)

CP= f h (x)dx,
A, VT' 0

(20)

and the same limit holds as p& ~.
Turning now to periodic ABM with an initial

configuration of fixed, alternate spacings of sizes
(1 —a)L/N and (1+a)L/N, we obtain, in the limit as L
and N increase with L/X =A, , a constant, two expres-
sions for C," in the alternate spacing case, one of which is
given already at (9) and the other is
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where

h (x)=2 g g((2k —1)r«+x)+g((2k —1)vr x—)
k =1

and

g (y) =exp( —ty IA).cos(ay) —cos(y)
y sin(y)

1 oo

«(x, t)= ro(y) exp
2 (~t)

—exp

—(x —y)
4t

—(x +y)
4t dy .

(25)

Further, we have in this case a concise expression for the
variance

For the annihilation reaction, the rate coefficient k (t), in-

1.0

V,"= h x 1 —h x dx,
A7T 0

from which we calculate the large-time behavior

lim V at VP=2y(1 —yV2),
fQoo

and we recall that in this case y =
—,'(1 —a ).

(21)

(22) 0.5

VI. COMPARISONS WITH DETERMINISTIC
MODELS

log&pt

The deterministic theory of ABM and CBM is based
on the model for colloid coagulation proposed by Smolu-
chowski and subsequently generalized by the same au-
thor to diffusion-controlled reactions. The theory de-
scribes the evolution of the mean concentration of parti-
cles, ignoring local spatial fluctuations, by writing a
classical kinetic equation for the concentration c,

0.5-

(b)

dc = —k (t)c
dt

(23)

07 —p2~
at

(24)

subject to the initial condition r(x, O)=ro(x) and the
boundary condition r(O, t)=0. The solution is straight-
forward

The coefficient k(t) is obtained by treating a surviving
particle as a fixed sink and assuming that a diffusion
equation describes the motions of the other particles rela-
tive to this sink. The sink is destroyed by reaction in the
case of ABM, but not for CBM. Notice that, in order
that the description of the system is independent of the
particle chosen to be the sink, this approach can only be
applied if the initial configuration is spatially stationary.
In this way Smoluchowski takes approximate account of
pairwise correlations in the particle locations, but' ' '

higher-order correlations are neglected. The approxima-
tion inherent in the Smoluchowski formulation can now
be tested by comparing the solutions of the deterministic
models with the exact results obtained in Secs. III—V.

As for the exact results, an arbitrary diffusion
coefticient may be accommodated by replacing t with
2Dt; of course, expressions for k(t) must also be multi-
plied by 2D.

For the one-dimensional case the relative concentra-
tion profile r(x, t) satisfies the diffusion equation

log~pt

1.0—
(c)

0.5

0

Logqp~

FIG. 1. (a) Exact and deterministic site-occupancy densities
for Poisson point process of parameter P= I (left-hand curves)
and equally spaced points, A. = 1, o.=0 (right-hand curves).

, exact solution, Eqs. (8b) and (9b); ———,deterministic
approximation, Eqs. (27) and (29). (b) Exact and deterministic
site-occupancy density for pairwise clustered distribution, A. = 1,
a=0.9. , exact solution, Eq. (9b); ———,deterministic
approximation, Eq. (29). (c) Exact site-occupancy standard de-
viations:, Poisson process of parameter /3=1;
pairwise clustered distribution, A, =1, a=0.8; . . - ., equally
spaced points, k = 1, a =0.
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troduced in (23), is the total fiux into the reactive bound-
ary, given by

k (t) = f [ro(y)+re( —y)]2t&(~t)
2

Xy exp dy .
4t

(26)

c(t) = —+4i/t/~1
(27)

which may be compared with the exact solutions given at
(8). At large times c (t) is approximately ,' &vr/—t, a factor
of ~/2 larger than the exact value, which was noted by
Torney and McConnell. "

The same model is applied to the coalescence reaction
but with k (t) reduced by a factor of 2 so that the relative
error is also ~/2 at large times in this case.

Turning now to the case of initial alternating interpar-
ticle distances, for which the exact solution is given at (9),
the relative concentration profile ro(x) has atoms of unit
probability mass at each point i Rand ( ,j —a)A, for every
nonzero even integer i and every odd integers j. There-
fore the rate coeScient for the annihilation reaction is

In the case that the particle locations initially form a
Parameter-P Poisson Process, we have ro(x)= f3 for all x.
The rate coefficient is k(t)=2/&(~t) and hence the
deterministic solution for the site occupancy density of
ABM in the Poisson case is

Comparisons between exact solutions and the deter-
ministic approximations are shown for several cases in
Fig. 1. In all cases the deterministic formula overesti-
mates the site-occupancy density, but a particularly strik-
ing discrepancy is found when the clustering is strong,
such as the case a =0.9, A, = 1, where the deterministic
solution shows two phases, one associated with geminate
recombination (within the pair) and one associated with
recombination outside the pair; the exact solution shows
no such behavior, but follows the geminate recombina-
tion solution over almost the whole range. In the region
dominated by the long-time asymptotics, the determinis-
tic approximation is a factor of ir/(4y) larger than the
exact solution, which is arbitrarily large as the pairwise
clustering becomes more pronounced.

Comparisons between deterministic and stochastic
solutions can also be made for the distribution of inter-
particle distances in the coalescing systems. This com-
parison is possible because the deterministic theory calcu-
lates the relative concentration profile r (x, t) about a typ-
ical particle. Interpreting r(x, t) as the weight function
of a nonhomogeneous Poisson point process, the proba-
bility R (a, t) that the distance to the nearest neighbor is
greater than a is given by

r

R (a, t) =exp —I r (x, t)dx (3&)
0

In the case that the initial configuration is parameter-f3
Poisson, we have r (x, t) =f3 erf(x /2&t ) and hence

oo

k(t)= f (2i —1+a)+2f (2i)+f (2i —1 —a),2t&(~t),

aR (a, t)=exp —P aerf
2&t

( 1
a l4s)—

i/7r

(28)

where f (x) =x exp[ —x A, /(4t)], and hence the site oc-
cupancy density is

oo

c(t)=— g erfc
k =1

2k —1+(—1)"
(4/A, )&t

2k —1+( —1)"(2a—1)+erfc
(4/A ) t

(29)

Asymptotically, c (t) is ,'&tt/t for all a and—sothe deter-
ministic model fails to distinguish the effect of the initial
configuration on the long-time kinetics.

which is approximately exp( —pa /2&(crt)) for t large.
Similarly, for the pairwise clustered initial configuration
with alternating distances, the asymptotic interparticle
distance has the same distribution with p replaced by
1/k. Comparison with the exact results given in Sec. IV
shows that the interparticle distance is not correctly de-
scribed by the deterministic theory.
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