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Static and dynamic properties of liquid lead computed by molecular dynamics
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Using a six-center Lennard-Jones (12-6) pair potential, we modeled lead liquid at two different
thermodynamic states by molecular-dynamics (MD) computations. While the static structure factor
is found to agree with experiment at both states, the pressure is reproduced only for the lower tem-
perature. Self-diffusion and shear viscosity are in reasonable agreement with experimental results.
However, the thermal conductivity is predicted far too low. We emphasize the following points: (i)
the chosen multiple center pair potential has only three free parameters that were fitted by about ten
test MD runs, each of which required only 3 min on a supercomputer; (ii) the production computa-
tions for the structure factor and the self-diffusion were carried out with 500 molecules, while the
transport coefficients were obtained by runs with 32 molecules. Thus our findings stand in sharp
contrast to recent calculations of Dzugutov, Larsson, and Ebbsjo [Phys. Rev. A 38, 3609 (1988)]
who claimed that a seven-parameter pair potential and a very large number of particles are required
to model liquid lead by MD computations.

I. INTRODUCTION

Computer modeling of liquid metals by simple effective
pair potentials is a dificult task, particularly when static
as well as dynamic properties ought to be given in agree-
ment with experimental data. ' A recent good account
of the structure and self-diffusion of liquid lead by
molecular-dynamics (MD) methods was achieved at the
expense of a very complicated and artificial form of the
pair potential. We present here a simple three-
parameter six-center Lennard-Jones (LJ) potential, which
we used to calculate various static and dynamic quanti-
ties of liquid lead by molecular dynamics with a rather
small number of molecules. The proposed potential gives
agreement between MD and experimental results for
various transport properties and also yields realistic
values for even the pressure at lower temperatures. To
our knowledge all the earlier computations produced
pressures that were orders of magnitude higher than ex-
perimental values.

The success of the six-center pair potential seems to
originate in a certain flexibility associated with the
different interaction sites and partly in its steepness
caused by the "internal structure. " In the present study,
we have examined the ability of the potential of approxi-
mating several experimental properties of liquid lead via
MD computations rather than optimizing exhaustively
the adjustable potential parameters to represent precisely

one or two chosen quantities. Thus we believe that fur-
ther refined optimization of the potential leads to a better
description of many measured and unmeasured proper-
ties of liquid lead.

II. THERMODYNAMIC STATES, POTENTIAL MODEL,
AND MD COMPUTATIONS

A. Thermodynamic states of liquid lead

For our comparisons we chose two thermodynamic
states of liquid lead previously experimentally investigat-
ed by Larsson and co-workers and Olsson and
Dahlborg. These state points lie near the freezing point,
i.e. , the boiling point of lead, where a lot of measure-
ments have also been carried out for thermodynamic and
transport properties. For these states a few experimen-
tal quantities, which are of interest here, have been gath-
ered in Table I. The origin of these data is Ref. 6, if not
indicated otherwise. Structure-factor data have not been
considered in the table, as we shall discuss them exten-
sively together with our MD results later in the article.

B. The potential model

A multiple-center Lennard- Jones pair potential was
chosen for the MD calculations, which may be expressed
in the following form:

TABLE I. Thermodynamic and dynamic properties of liquid lead at two states near the freezing and
the boiling point. The last three columns represent self-diffusion, shear viscosity, and thermal conduc-
tivity coefficient.

State
point

615
1160

P
(g cm ')

10.645
9.943

P
(bar)

0.0
0.0

10 D
(cm s ')

1.9
6.7

10'r]
(Pa s)

25.0
1 1 ' 5

(W m-' K.-')

16.0
20.0
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TABLE II. Potential parameters of the six-center Lennard-Jones pair potential used for the descrip-
tion of the interaction of particle in liquid lead.

(a) Distance from center of mass of molecule
to each of six interaction centers

Mass of each center

(b) Lennard-Jones interaction center parameters

d=1.05 A
—'(207. 19 a.u. )

F7=1.77 A

e/k=268 K (k is the Boltzmann constant)

2.30o

side of model cube

(c) MD computation cutoff

for transport properties

for pressure and structure factor

uL, (r,,~)=4m g
i=1 jr 1

0
aP
IJ

12
0
u/3
IJ

6

where ri ~ denotes the separation between two interaction
centers of two different molecules. The molecules are
here numbered by a, /3 and the interaction centers by i,j
For our purpose we placed n=6 interaction centers on a
molecule and considered N=32 up to N= 500 molecules
for the MD system. The e and 0. parameters are the
common Lennard- Jones potential parameters.

In order to model compact globular and rigid mole-
cules, we put the six "LJ centers" in rhombic order at
equal distance d from the center of mass. This fixed dis-
tance and the final LJ potential parameters are listed in
Table II. Note that for the calculations each "LJ center"
bears —,

' of the mass of lead. This table shows (A) the dis-

tance from the center of mass of "molecule. " The six in-
teraction centers were placed in rhombic structure. Each
center was assumed to bear the mass m/6, where m
denotes the total mass of lead (207.19 a.u. ); (B) the pa-
rameters characterizing the Lennard-Jones interaction
centers; (C) the cutoff's for the MD computations.

Though, in general, a multiple-center pair potential
represents a highly complicated angle-dependent one, it

acts here nearly as a spherically symmetric potential due
to its symmetry properties and the extremely small struc-
ture parameter d. The presently employed site-site pair
potential may be compared with those used for molecular
liquids containing globular molecules, for instance SF6.
However, the d parameter suitable for a SF6-SF6 interac-
tion potential model is by about 50%%uo larger than in our
case.

C. The MD computations

Using site-site pair potentials the most appropriate
method to perform MD calculations appears to be the
"constraints method. " This technique has been intro-
duced by Ciccotti and collaborators and has been re-
viewed recently. ' A few comments on this method are
in order. The computation proceeds in two steps. In the
first step the common equations of motion are solved for
the interaction centers of suitable mass m, . Afterwards,
the structure of molecules is iteratively restored by
fulfilling certain constraints associated with the molecule
structure, which also accounts properly for the forces ex-
erted between the interacting mass centers. (See Table
III.)

The self-diffusion coefficient D as well as the shear
viscosity and the thermal conductivity coefficients have

TABLE III. Technical details of the MD computations with constraints.

Runs

Molecule number (N)
Number of interaction sites per molecule (n)
Integration time step
Number of time steps

Number of equilibration steps
Computation time per 1000 steps

32—500
6
0.5x10- '4 s

4X 10' [for S(k), P, and D]
10' {for g and A )

2x10'
728 s (500)
3.1 s (32)

Further details

Ensemble

Integration algorithm
Number of averaging events for the correlation functions

AVE p
( V is the total volume; E is the total
energy, p is the total momentum)
Stoermer-Verlet
10 [for S(k) and D]
10" (for g and X)
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been determined via the Green-Kubo integral relations.
These integrals contain the so-called Green-Kubo in-
tegrands, which are here the autocorrelation functions
(ACF's) of the single-molecule velocity, the off-diagonal
part of the pressure tensor, and the heat current of the
molecular system. The formulas for the Green-Kubo in-
tegrands of g and k of the molecular system have been
given explicitly in a recent work. D is easily determin-
able by the center-of-mass velocity of a molecule.

The computations for the collective transport coef-
ficients require about 10 integration time steps. For-
tunately, these quantities do not depend largely on the
number of molecules used for the MD, and hence we re-
duced the system size appreciably for the determination
of the shear viscosity g and the thermal conductivity k.

The statistical error for the transport properties is
about 10%. We give, however, the precise uncertainties
of the coefficients in the relevant tables.

III. ADJUSTMENT OF THE SIX-CENTER
LENNARD- JONES PAIR POTENTIAL

Adjustment of the three potential parameters d, e, and
o appeared to be a simple task with the help of experi-
mental values for the pair correlation function (PCF) and
the self-diffusion coefficient of liquid lead. We chose for
the optimization the state near the melting point indicat-
ed as state point 1 in Table I. The height and the posi-
tion of the first peak of g (r) were obtained by Fourier
transforming the experimental data of Larsson et al.

A few short runs with 32 and 108 molecules were satis-

factory to find d, e, and o. approximately. Further test
runs with 256 molecules gave the final potential parame-
ters listed in Table II ~ For all the results discussed in the
following sections we used these parameters and made no
further changes.

IV. RESULTS

A. Structure factor and self-difFusion

The calculations for the static structure factor S(k)
and the self-diffusion coefficient D have been done with
500 molecules throughout. Accordingly, the pressure of
the system has been determined with this larger number
of molecules to avoid significant uncertainties due to
cutoff errors involved in computations with LJ-type po-
tentials.

We compare S(k) measured by Larsson et al. and
computed by MD for state points 1 and 2 in Figs. 1 and
2. Agreement between both data sets is good, although
there are some slight discrepancies. While for state 1 the
first peak of the computed function appears to be some-
what too low, it exceeds the experimental one at the
higher temperature. At the state near the melting point
there exists also a small shift of the higher-order peaks of
the theoretical function.

For both states, S(k) computed by MD shows several
oscillations of minor amplitude in the region of small k
values below the first peak. These oscillations stem from
the numerical Fourier transformation in space of g (r)
originally determined by MD. ' '" The effect is particu-

s(k)

Liquid lead 615 K

2. 00

%. 00

0.00
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I

4. 0
k(A )

6. 0
1

EI. 0

FIG. 1. Static structure factor calculated by MD ( ) and measured. T=615 K; p= 10.645 g cm (near the freezing point).
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s(k)
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FIG. 2. As in Fig. 1, but for T= 1160 K, p=9.943 g cm ' (near the boiling point).

larly pronounced for state 1, where the envelope of S(k)
decays more slowly than for state 2.

If high accuracy is required for S(k) at these small k
values, the function should be directly computed by MD
rather than by inversion of g (r) evaluated with large MD
systems. " MD computations allow a minimum k value
of 2m/t. , where I denotes the length of the model cubus.
In the present examples, we have a minimum k value of
0.25 A ' for state point 1 and 0.24 A ' for state point 2.
This shows that 500 particles suffice to compare the S(k)
results with experimental ones for all the wave vectors ex-
perimentally available.

Straightforward computations of S(k) by MD is per-
forrned with use of the local-density Fourier components.
The Fourier component of the local density may be writ-
ten as

—i k-r, .

e

where k denotes the wave vector and r,- the position vec-
tor of a particle (molecule center of mass) of the N
particle system. Definition of S(k) involves the ACF of
Pk

where the brackets indicate the thermal average. For the
liquid, S(k) depends only on the absolute amount of k,
and thus a chosen ~k~ value may allow the determination
of several S(k) values compatible with

~
k~. Hence the re-

cipe of computing S(k) is simple given the constraint

%e have not exploited this direct way of determining
S(k), as a more detailed study is planned for S(k) at
small k values, in which we shall make extensive use of
that computation method.

Nonetheless, overall agreement of measured and corn-
puted S(k) values is good, even for smaller k values,
where the experimental curve falls well in line with a
smoothed curve which could possibly be drawn through
the small oscillations. Related to g(r) is, of course, the
pressure of the liquid. However, in MD calculations, we
may straightforwardly evaluate the virial sum to yield the
pressure value. '

For states 1 and 2, the pressure calculated by MD may
be compared with the experimental values in Table IV.
Evidently, good agreement exists for the neighborhood of
the freezing point and disagreement near the boiling
point. Apparently, the employed Lennard-Jones poten-
tial increases too rapidly with decreasing separation thus
causing high repulsion of the moleeules at higher temper-
ature and hence giving by far too large pressures. How-
ever, the pressure depends very sensitively on form of the
pair potential, and for liquid metals, one should not be
surprised to find discrepancies of this kind. In any case,
the good accordance of the computed and real pressures
near the freezing point indicates the general capability of
multiple-center potentials of accounting properly for the
structure and thermodynamics of liquid metals.

The self-diffusion coefticient calculated and measured
can be compared for both states in Table EV. Reasonable
agreement appears, although the theoretical value lies
somewhat below the experimental one for the low-
ternperature state. The computed D values are mean
values determined from the mean-square displacement of
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TABLE IV. Pressure, self-diffusion, shear viscosity, and thermal conductivity coefficient of liquid
lead calculated by MD and measured, Experimental values appear in parentheses.

State
point

P
(bar)

0+ 10
(0.0)

17.5 X 10'+10-'
(0.0)

10'D
(cm s ')

1.3+0. 1

(1.9)
2.8+0.2

(6.7)

10 g
(Pa s)

30.0+6.0
(25)

22.0+4.0
(12)

(W m-' K-')

0.26+0.03
(16)

0.27+0.03
(20)

a molecule and the velocity ACF. Usually the results in-
ferred from the mean-square displacement differed by
only 3% from those obtained by the velocity ACF.

B. Shear viscosity and thermal conduction

Collective transport processes depend explicitly on the
behavior of all molecules. ' Thus comparison of collec-
tive transport coefficients like g and A, determined by ex-
periment and computer calculation indicates unambigu-
ously the usefulness of the pair potential inserted. Table
IV contains experimental and theoretical values for the
shear viscosity and thermal conductivity constants at
state points l and 2. Evidently the computed values for g
agree roughly with the experimental ones, while the MD
k values fall below the experimental data by about the
same amounts two orders of magnitude.

Though the shear viscosity is not reproduced within
the mutual error bars, the theoretical numbers fall
reasonably well in the range expected from experiment.
Furthermore, the state dependence of the measured data
is quite well reflected by the computations. A finer op-
timization of the six-center potential might certainly im-
prove the computer calculation results. Apparently, the
steep repulsive part of the present form of the potential
leads to this overestimate of the shear forces.

The heat transport process in a liquid metal is certainly
much more difficult to understand on the basis of a pseu-
dopotentia1. This is indicated by the considerable
disagreement of the theoretical and experimental A,

values. Apparently, the characteristically high thermal
conductivity in metals cannot be accounted for by the
present pseudo-pair potential. At present, we have no
simple proposal for a modification of the six-center po-
tential in order to avoid this defect ~

indicate clearly the effectiveness of the proposed six-
center Lennard-Jones potential. The potential is a simple
three-parameter potential, which acts nearly spherically
symmetrically and permits MD calculations with small
particle numbers. Our finds are in remarkable contrast to
recent MD calculations of Dzugutov et al. who propose
a complicated seven-parameter potential to determine the
self-diffusion coefficient and the structure factor in good
agreement with experiment. These authors are, of
course, forced to utilize a large amount of computation
time to optimize the potential parameters, and they
furthermore claim that they must perform the production
runs with 16,000 particles to avoid distortions in their
S(k) functions.

Moreover, these authors do not report any thermo-
dynamic values or collective transport coefficients ob-
tained from their calculations. As they use this artificial
pair potential, we expect that the pressure as well as the
shear viscosity coefficient would lie far off the experimen-
tal values, had these quantities been reported in that
work. Preliminary results of those authors for the pres-
sure indicated indeed far too high values. '

With regard to all these aspects, we should like to
recommend the use of the potential presented here for
model calculations on liquid metals. A more sophisticat-
ed version of the applied multiple center potential could
be constructed for closer agreement of MD and experi-
mental results. A physically more reasonable approach
to reliable pseudopotentials has been proposed by another
group. ' This way of calculating the pair potentials is,
however, very expensive.
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