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From automata to fluid flow: Comparisons of simulation and theory
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Lattice-gas automata have been proposed as a new way of doing numerical calculations for hy-

drodynamic systems. Here, a lattice-gas simulation is run to see whether its behavior really does

correspond, as proposed, to that of the Navier-Stokes equation. The geometry used is the two-

dimensional version of laminar pipe flow. Three checks on the existing theory are performed. The
parabolic profile of momentum density arising from the dynamics is quantitatively verified. So is

the equation of state, which arises from the statistical mechanics of the system. Finally, the well-

known logarithmic divergence in the viscosity is observed in the automaton and is shown to
disagree with the earliest theoretical predictions in this system. Proper agreement is achieved, how-

ever, when the theory is extended to include three extra (recently discovered) conserved quantities.
In this way, checks of both linear and nonlinear parts of the hydrodynamic description of lattice-gas
automata have been achieved.

I. INTRODUCTION

Recently, Frisch, Hasslacher, and Pomeau' have pro-
posed a novel technique, the lattice-gas automation
(LGA), for the numerical solution of the incompressible
Navier-Stokes equation in two dimensions (2D). This
technique has been extensively applied in numerical
simulations and it has been extended to schemes for the
simulation of 3D incompressible Navier-Stokes flows,
binary fluids, buoyant fluids, and other related prob-
lems. '

The idea in Ref. 1 is to mimic a two-dimensional gas
with a collection of particles that can move along the
edges of a regular lattice in such a way that they are on
its sites at integer times. There is only a finite number of
velocities; collisions between particles can happen only
on the sites of the lattice, and these collisions can be set
up to satisfy local conservation laws of mass and linear
momentum. Macroscopic fields (e.g. , number and
momentum density) can be obtained by a coarse-grained
averaging in space and time of the corresponding micro-
scopic quantities. The fictitious world of the LGA and
the dynamics of its inhabitants are rather arbitrary. Pre-
vious workers' ' have argued that in the long-
wavelength limit the conservation laws completely dor. i-
inate the description of the lattice-gas automata. Hence,
they argue, the LGA should have hydrodynamic behav-
ior. The derivation of the hydrodynamic description of
the lattice gas is based on general many-body physics ar-
guments and it seems rather convincing. The hydro-
dynamics of the LGA is described in terms of conserved
quantities. These are divided into two classes. The first
were imposed on the model, i.e., mass and momentum;
the second are the conserved quantities that correspond
to extensive invariants peculiar to the LGA model. The
second class of conserved quantities was discovered only
recently. They are the analog of the phenomenon of fer-
mion doubling well known in lattice gauge theory. They

are discussed in some detail in Refs. 9 and 10; however,
the presence of these new invariants can be easily under-
stood by using a trivial one-dimensional example. Let
g(x ) be the linear momentum of the particles present at
site x, define

G, (t)= g g(x, t), G, (t)= g g(x, t)
x even x odd

as the total momentum of the particles on even or odd
sites, and let the collision rules conserve the momentum
and the number of particles at each site. Since the parti-
cles can only hop between nearest neighbors, G, and G,
are exchanged at each time step. The dynamics of this
one-dimensional model allow three conserved quantities:
M, G, + G„and H =( —1)'(G, —G, ). The first two are
the usual total number of particles and the total linear
momentum; the third is due to our extremely simplified
dynamics. The staggered momentum H and its related
density h can be easily generalized to the two- and three-
dimensional models currently used, since they are all
based on local collision rules and a finite number of veloc-
ities. In particular, for the two-dimensional model intro-
duced in Ref. 8 there are three independent conserved
densities, h, a=1,2, 3 (one for each symmetry axis of
the hexagonal cell), that are the analogs of the staggered
momentum density described above.

The hydrodynamic behavior of the two-dimensional
LGA is therefore described by six hydrodynamic vari-
ables, i.e., the number density, the two components of
momentum density, and the three staggered momentum
densities. The staggered momentum density and the
momentum density are nonlinearly coupled. However, if
the staggered momentum densities could be neglected
(i.e. , put to zero), the resulting equations for the momen-
tum and number densities would then be qualitatively
similar to the equations controlling a simple two-
dimensional fluid, and it would be possible to regain the
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Navier-Stokes equation in the incompressible limit by an
opportune redefinition of the units of momentum density
and time.

While the h appear in the expression for the momen-
turn current as a source term, the staggered momentum
densities are merely convected by the momentum density
and there is no mechanism, at the order at which the
equations have been derived, for the self-generation of h.
Thus, if the staggered momentum densities are not
present in the simulation initial conditions, i.e., if the ini-
tial condition's projections on the h modes are negligible,
it should be possible to use the LGA for the numerical
solution of the Navier-Stokes equation. This seems con-
sistent with the many simulation results previously re-
ported, which, with the exception of a purposely con-
structed pathological case, do not seem to be affected by
the staggered momentum density. (See, however, Appen-
dix D.)

The purpose of this paper is to check the hydrodynam-
ic behavior of the lattice-gas automaton. Quantitative
and semiquantitative tests of the lattice-gas automaton
properties have already been reported by various au-
thors. " ' The tests we describe in this paper are at least
one order of magnitude more accurate than those previ-
ously presented. They probe a gross and a rather delicate
feature of the system. The gross feature is the parabolic
momentum density profile expected in pipe (or Poiseuille)
flow. The more delicate feature is the famous' ' long-
wavelength divergence of the transport coefficients of
simple two-dimensional fluids. By comparing the simula-
tion results with the analogous theoretical prediction, we
obtain an incisive and significant test of both the gross
and the delicate aspects of the lattice-gas automaton hy-
drodynamic description.

The flow we actually simulated, even though it gives
parabolic momentum density profiles, is not a standard
channel flow; rather than using traditional' ' '' (i.e., no
slip) boundary conditions on the channel walls parallel to
the flow, we doubled the channel width, set up periodic
boundary conditions in both directions, and forced the
LGA fluid along opposite directions in the two halves
(see Sec. II B 1 and Fig. 1). The resulting flow avoids
corrections to the momentum density profile due to wall
effects (of the order of the ratio between the particle
mean free path and the width of the channel). Instead,
the major corrections expected are exponentially small
(of order exp [(-channel width)/(mean free path)]). This
approach permits us to use the simulations as a precise
viscorneter even for small channel widths.

We chose this simulation geometry because of its sim-
plicity and because the resulting flow, at the level of forc-
ing we used, is steady and thus allows the construction of
local equilibrium densities by time averaging. It should
be mentioned, however, that the simulation results that
we report here were obtained before one us us (G.M. )

discovered the staggered momentum densities, and thus
the amplitudes of the staggered momentum modes were
not monitored. We will argue in Appendix D, however,
that in our simulation, the h densities can give correc-
tions of order 1/(volume) to the quantities we measure,
corrections that can be safely neglected. These correc-

tions may, in fact, be the dominant errors in the calcula-
tion.

The local equilibrium momentum density profiles ob-
tained from the simulations agree very well (Fig. 4) with
the momentum density profile predicted by the long-
wavelength expression for the conservation laws derived
in Ref. 1 and the assumption of negligible h

The simulation scheme described above provides us
with a precise viscometer. It is true that it measures a
transport coefficient in a stressed medium, ' ' instead of
the true equilibrium kinematic viscosity v, but the correc-
tion to v due to the applied stress appears to be negligible
at the level of forcing used (see Sec. III B 1). Moreover,
in contrast to the other direct measurement techniques
attempted thus far, namely, transverse wave relaxation
and direct measurement of the Green-Kubo autocorrela-
tion function, our method allows measurements of kine-
matic viscosity averaged over very long times (many
turnover times, =L. /v, of the largest eddy in the sys-
tem). Thus there is enough time to build up hydro-
dynamic contributions to v and hence permit us to study
this delicate feature of the system.

To get the theory for this effect, we recall that the bare
transport coefficients of a simple fluid are renormalized
by corrections whose origin is essentially hydrodynamic.
By using standard mode-mode coupling or other
equivalent techniques, ' ' ' it is possible to estimate, in
first-order perturbation theory, the structure and the am-
plitude of this correction in terms of bare transport
coefficients and some thermodynamic derivatives. The
result of the calculation is logarithmically divergent in
the long-wavelength limit for two dimensions. If we as-
sume that the dynamic of the LGA fluid fluctuations is
controlled by the macroscopic conservation laws [Eqs.
(1)—(4) of Sec. II], then the same calculation applies to
the lattice-gas automation and gives a quantitative esti-
mate for the amplitude of the logarithmic correction.
Note that this amplitude is a sum of contributions corre-
sponding to the nonlinear term present in the momentum
density current. Thus it includes contributions due to the
staggered momentum densities that would not be present
in the equivalent calculation for a simple two-
dimensional fluid. We now summarize our results and
conclude this section with an outline of the body of the
paper.

There is no evident discrepancy between the macro-
scopic (long-wavelength) description of the lattice-gas au-
tomaton given in Ref. 1 and the simulation data: our re-
sults indicate that this fluid is able to reproduce parabolic
momentum density profiles in the simulation of a uni-
formly forced channel flow with an accuracy better than
1%. We also have direct evidence that the kinematic
viscosity depends indeed on the width of the simulation
channel and that this dependence is quantitatively con-
sistent with the logarithmic prediction of the mode-mode
coupling calculation. Our simulations studied the largest
range of channel width, from 10 to 70 typical mean free
paths, that we thought was compatible with our comput-
er resources. For each viscosity measurement point, we
performed several runs so that we could quote error bars
with reasonable confidence.
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According to theory, the nonlinear coupling between
momentum and staggered momentum densities clearly
makes a 30%%uo contribution to the amplitude of the renor-
malization. The agreement between the calculated and
observed viscosities then demonstrates the necessity for
the inclusion of this effect in a correct description of the
system.

This paper does not make any claims about the relative
efficiency of this simulation technique versus the other
more standard ways to solve the incompressible Navier-
Stokes equation, and neither do we claim to have ex-
plored in detail how the h modes affect the macroscopic
flow of the LGA. We are only concerned with studying
the hydrodynamic properties of the lattice-gas automaton
in a very simple situation.

The paper is organized as follows. Section II is dedi-
cated to the setting up of the channel-flow simulation to-
gether with a brief introduction to the LGA. The main
results presented in this section are the parabolic momen-
tum density profile (Fig. 4) and the check of the equation
of state for the gas (Fig. 6).

The first part of Sec. III outlines the mode-mode cou-
pling calculation (the actual calculation is done in Appen-
dix A), while Sec. III B discusses how the measured
viscosity depends on the parameters of the simulation,
i.e., average particle density, system size, and forcing lev-
el. Once again, the main result, the comparison between
the simulation data and the mode-mode coupling predic-
tion, is a graph (Fig. 10). Section IV of the paper summa-
rizes our conclusions. Appendix 8 is dedicated to the
discussion of the linear stability of the channel flow; Ap-
pendix C gives some estimates for the statistical errors in
the measurement of the kinematic viscosity, while in Ap-
pendix D we estimate the influence of the staggered
momentum densities on our simulations.

II. CHANNEL FLOW

A. The lattice gas

In this section, we examine the hydrodynamic behavior
of the LGA fluid by simulating a forced two-dimensional
channel flow. We start with a brief introduction to the
lattice gas, intended to fix the notation used in the rest of
the paper. The reader will find a more complete descrip-
tion in Ref. 8.

The LGA used in the simulations admits seven
different "flavors" of particles, each type being defined by
its velocity. There are six velocities parallel to the
nearest-neighbor lattice directions with a magnitude of
one lattice spacing a per time step. (See Fig. 1.) The
seventh type is a stationary particle with velocity zero.
Hence the seven velocities are [C; a=0, . . . , 6I, with

CO=0,

C =a(cos[m(a —1)/3], sin[sr(a —1)/3]), a=1, . . . , 6

where we have chosen to orient the lattice as shown in
Fig. l. At each site r (we use r to label the sites of the lat-
tice) we allow no more than one particle with velocity C,
and we indicate with the Boolean vector If (r)I the

FIG. 1. The simulation model. Periodic boundary conditions
are employed in both x and y directions. The dotted line indi-
cates the separation of the system into two channels. A uniform
body force induces fluid flow in each channel in the direction in-
dicated by the solid arrows. The representative lattice site
shown in the upper right-hand corner illustrates the orientation
of the underlying hexagonal lattice.

presence [f (r)=1] or the absence [f (r)=0] of a parti-
cle with velocity C at site r.

With each site we can now associate the microscopic
number density, n(r)=g J' (r), and the microscopic
momentum density, g, (r)=g C .;f (r) (we formally as-
sume that each particle has unit mass). From here on-
ward we reserve the latin indices for the Cartesian coor-
dinates, and summation on repeated indices is under-
stood.

The time evolution of the system is expressed as the
composition of two steps: in the "streaming" step, each
particle hops from its current site to the next-neighbor
site lying in the direction of its velocity. In the "col-
lision" step, the particles at each site are redistributed
among the seven velocities in such a way that, site by site,
the number of particles and the momentum is conserved.

To achieve this, we follow previous workers ' and
divide the 2 possible configurations at a site into classes.
Each class contains configurations with the same total
momentum g and number of particles n. The nontrivial
classes are those containing more than one element. The
ones involving two or three particles are shown in Fig. 2.
Note that these classes all have either two or three ele-
ments. Since the collision rules are invariant under hole-
particle interchange, it is sufficient to show only the two-
and three-particle nontrivial configuration classes. Dur-
ing the collision step, wherever a lattice site falls into one
of these nontrivial classes, a collision occurs and the
configuration changes to another element of the same
class. In cases where there are two possible choices for
the collision output [such as the class (n =2, g=0) of
Fig. 2], we use the parity of the time step to determine
the outcome, rather than use a random number genera-
tor. Thus we avoid chirality but the model remains fully
deterministic.

The total number of particles and the total momentum
are obviously conserved by the dynamic of the model. A
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0

24

Particle Configurations
h (r, t)=( —1)'( —1) C g(r, t) .

The index a in H runs over I1, . . . , 6I, but
H +3 = —0 and thus it is sufficient to choose a = 1,2, 3.
The total staggered momentum densities are invariant for
the case of periodic boundary conditions with an even
number of lattice rows and columns.

The lattice automaton fluid is expected to have hydro-
dynamic behavior in the long-wavelength limit, and the
microscopic conservation laws become

B,n +Bpgj, =0,
B,g, +c)~H, k =0,
(3, h +8~J k =0,

FIG. 2. We have divided the possible configuration of parti-
cles at a site into classes. In a collision, the input particle
configuration is changed into another element of the same class.
For each class we list n, the total number of particles present at
the site, g the modules of the total momentum, and s the num-
ber of possible configurations that can be constructed from the
given class using the particle-hole symmetry and the hexagonal
symmetry. The classes with only one element (i.e., no collision
is possible) are not listed. All the other possible configurations
can be constructed by using the particle-hole symmetry and the
hexagonal symmetry.

less obvious extensive invariant is the total staggered
momentum

H =( —1)' g (
—1) C .g(r, t),

rBA

where C is obtained by rotating C by ~/2 counter-
clockwise, and B is the reciprocal space vector perpen-
dicular to C, i.e., B =(2/+3)C . The corresponding
density is

where n, g, , and h are the macroscopic densities, while

gk, H, &, and J I, are the respective currents obtained
from their microscopic counterparts by a suitable
coarse-grained averaging procedure.

The macroscopic densities are assumed to be small,
slowly varying perturbations of the thermodynamic equi-
librium state which has zero average momentum and
staggered momentum densities and an average number
density equal to 7d. The reduced density d (0~ d ~ 1) is
the corresponding average number of particles per link.
Equation (1) is considered true in the long-wavelength
limit, and thus r and t are treated as continuous variables
in that expression.

Equation (1) makes a statement concerning the ex-
istence of conservation laws for the macroscopic densities
of the lattice-gas automaton. To be useful, it must be
augmented by a constitutive relation for the stress tensor
H,-I,. and the staggered momentum current J &. The cru-
cial physical assumption is that the LGA will respond to
perturbations by quickly reaching a state for which the
hypotheses of local equilibrium are valid, and in which
there are linear relations between the dissipative fluxes of
the conserved densities and their gradients. These consti-
tutive relations and Eq. (1) provide a closed set of partial
differential equations for the local equilibrium fields n, g,
and h. The current II, (r, t) is given by

3

Il;(r, t)=5;p(r, t)+k g (r, t)g, (r, t)+ g C . C . , h (r, t)h (r, t)
a=]

+v[0 g (r, t)+B„g,(r, t)]+(g—v)5, B g&(r, t), (2a)

and the staggered momentum currents are 1 —2d
12d (1—d)

(3)

J . (r, t)= —(5 +2C . c . )g (r, t)h (r, t)

+(a.,5, +x~C . C . , )8 h (r, t) . (2b)

and the "pressure" p is given to second order in g and h

by

The coefficient of the "convective" term is given explicit-
ly by

p(r, t)=c n(r, t) —
A,c ( —,')[g (r, t)g (r, t)

+h (r, t)h (r, t)] . (4)



FROM AUTOMATA TO FLUID FLOW: COMPARISONS OF . . ~ 4531

The quantities v, g, a.„and az can be identified as trans-
port coefficients, while c is the speed of sound for the gas.
We call v the kinematic viscosity and g the bulk viscosity.
The staggered momentum transport coefficien K& and K2

do not have an analog in simple fluids. In the seven-
velocity model used in the simulations c =&3/7.

The first two terms of the right-hand side of Eq. (2a),
the Eulerian part of II;-, are obtained from the local equi-
librium approximation of the gas. They are the leading
contributions in the Taylor-series expansion of the equi-
librium stress tensor in powers of the equilibrium average
momentum density and staggered momentum density.
The dissipative part of Eq. (2a) can be easily found using
standard techniques. ' In writing it we neglected the
remainder, fourth order in g, h, of the Taylor-series ex-
pansion and, as usual in the long-wavelength limit,
higher-order derivatives. The constitutive expression for
the h current has been obtained in an analogous way.

The physical processes described in Eq. (2b), the con-
stitutive equation for the h current, are convection [by
the g, (ur, t )] and diffusion, but neither of the correspond-
ing terms in Eq. (2b) has rotational symmetry. This
should not be surprising since the staggered momentum
modes are very strongly tied to the microscopic structure
of the model.

The constitutive equation presented in Eq. (2a) show
some unexpected and striking features. In fact, Eq. (2a)
contains, together with a pressure term and a "standard"
momentum convection term, a term that depends only on
the h (r, t) densities. This term (together with a similar
one concealed in the definition of p) makes the macro-
scopic behavior of the LGA fundamentally different from
that of simple real fluids. In fact, the h modes can act as
a source, through the pressure term and/or the other
term explicitly indicated in Eq. (2a) for the g density.
Hence the LGA can produce flows that are not solutions
of the Navier-Stokes equation. However, there is no pro-
duction mechanism for h in Eq. (2b). Thus, unless h is

injected in the initial conditions of the simulation, the
flow resulting from the simulation should be well de-
scribed by the number and momentum density alone.
This seems to be the case for the simulation results re-
ported in the literature (see Ref. 10, however, for a patho-
logical case) and for our channel fiow (see Appendix D).

The coefficient A. multiplies all the nonlinear terms
present in Eqs. (2a) and (2b). For the purpose of this pa-
per, cf. Sec. III, the dependence of X in d, Eq. (3), has a
useful application. In fact, for d= —,', A, is zero. We will

exploit this fact, easily explained by the particle-hole
symmetry of the gas, as a useful check for the results of
Secs. III A and III B.

Before After

width W is &3/2 times the length L due to the unequal
row and column spacings. We divide the system into two
horizontal channels, as indicated by the dotted line in
Fig. 1. Fluid flow is established in the two channels by
injecting momentum in the +x direction in the upper
channel, and in the —x direction in the lower channel.
This momentum is injected uniformly across the width
and length of each channel in the following fashion.
After each time step we randomly select a lattice site and,
if possible, apply one of the microscopic forcing rules de-
scribed in Fig. 3. Each successful application of a forcing
rule adds one unit of momentum to the system. The forc-
ing process is repeated until the desired amount of
momentum has been transferred to the gas; fractional
amounts of momentum to be added to the system are ac-
cumulated across time steps until they sum to an amount
greater than 1, at which time one additional unit of
momentum is added to the gas. The same number of
forcing operations is performed in each channel; conse-
quently, the total x momentum in the system remains
constant at its initial value of 0 (the total y momentum is
also initialized to 0). The result of this process is a con-
stant body force applied to the gas uniformly across the
width and length of each channel, but acting in opposite
directions in the two halves of the system.

The forcing level employed in the present work varies
from 0.2 to 0.5 units of momentum applied to each chan-
nel per time step. Within this range, the resulting flow is

B. Channel simulations

1. Simulation setup

The simulation system we have employed is a model of
forced 2D Poiseuille flow. ' ' ' ' ' The system is a hexago-
nal lattice with an equal number of rows and columns
and periodic boundary conditions in both the horizontal
and vertical directions (Fig. 1). Note that the system

FICs. 3. Forcing rules. The four pairs of diagrams represent
the four microscopic forcing rules used to inject momentum
into the upper channel. The shaded symbols represent particles
while the outlined symbols represent holes. Each transforma-
tion adds to the fluid one unit of momentum in the plus x direc-
tion. A similar set of forcing rules, obtained by reflecting the in-
dividual diagrams about the y axis, is used in the lower channel
to inject momentum in the minus x direction.



4532 KADANOFF, McNAMARA, AND ZANETTI

steady when averaged over a period of the order of a few
dissipation times, =L /v. For a steady flow, the equa-
tions for the forced flow ' become

(5)

where f is the average force per site. The combination of
a uniform body force aligned with the x direction and the
assumption of vanishing fluid velocity along the channel
boundaries gives rise [through Eq. (5)] to a parabolic
momentum density profile in each channel:

2. Momentum profile

Figure 4 shows a typical momentum profile obtained
from our simulation. The average number of particles
per link in this run is d =0.3, the system dimensions are
W=32i/3 and L =64 (corresponding to a 64X64 lat-
tice), the forcing level F=0.5 units of momentum per
time step, and the collision rules used are described in
Fig. 2. The profile was obtained by averaging the micro-
scopic momentum density g in the direction parallel to
the flow and on 2 million iterations. The solid line
represents a parabola fitted to the simulation results
which are shown as symbols. The fit is very good. If we
define

g„(y)= [( W/4) —y )],
( W/4)

(6) ~g (y) —h(y)l
e(y)=

g (y)
withg =Oand

&max
i/3 WF
32L v

where F is the total force applied to the channel (notice
that with the definitions we use I is equal to X, the
number of sites in the system), y is measured from the
center of the channel, and we have neglected the correc-
tions O(g (r) g ) ) due to variation of n across the width
of the channel. We extract this momentum profile from
the simulation by averaging the microscopic momentum
density in time and along the lattice rows (lines of con-
stant y).

This sort of flow exhibits long-wavelength instabilities
related to the existence of inflection points in the momen-
turn profile at y =0, y = 8'/2. The critical Reynolds
number given by linear stability analysis for infinitely
long channels (Kolmogorov flow ) is quite small,
R„=1.11, but a finite length-to-width ratio increases
R„. The particular width-to-length ratio used in our
simulation, &3/2, is linearly stable even for the largest
Reynolds number obtainable in our simulation ( =50),
see Appendix B.

The alternative to the double channel with periodic
boundary conditions described above would be the use of
a single channel with no-slip boundary conditions' '' (for
instance, random scattering of the particle impinging on
the walls) at the upper and lower boundaries. Both simu-
lations dissipate the momentum injected into the gas by
the applied body force, but the no-slip condition creates a
layer at the boundary (a Knudsen layer ) whose thick-
ness is of the order of a mean free path l. This layer is
caused by the matching between the artificial particle dis-
tribution externally imposed at the walls and the none-
quilibrium particle distributions imposed by the macro-
scopic flow in the bulk of the fluid. Since I for our model
is typically about three lattice spacings and our chan-
nels are only from 32 to 192 lattice rows in width, Knud-
sen layers along both the upper and lower boundaries
would significantly distort the expected parabolic
momentum profile, Eq. (6), making it very difficult to
detect small corrections to v which depend on the size of
the system.
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FIG. 4. Typical momentum profile. The x-momentum densi-

ty profile for a 64X 64 system run at reduced density d =0.3 and
a forcing level F=0.5 momentum units per time step in each
channel. The profile was averaged over 2 million time steps.
The solid line is a parabolic fit to the simulation data points
(symbols).

where h (y ) is the fitted parabola, then
max~

~
e(y )

~

& 6 X 10, except for the two outermost rows
on each side where e(y ) &0.035 (see Fig. 5). The g com-
ponent appears to be due entirely to statistical noise; it is
very small: max ~g (y)/g (y)~ &6X10, except for the
two outermost rows on each side where it is smaller than
0.035.

These results show that our system has a parabolic
momentum profile, with a very high accuracy. This re-
sult is then a partial justification for the claims of previ-
ous authors that this LGA obeys the Navier-Stokes equa-
tion. The momentum density profile can be improved by
increasing the number of time steps on which the simula-
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FIG. 5. Relative error for momentum profile. Defined as

[g„(y)—h(y)]/g„(y ), where h (y ) is the solid line and g, (y ) are
the simulation data points of Fig. 4.

FIG. 6. dn /d(g ). The simulations are run at constant pres-
sure. This introduces a linear relation between the number den-
sity n and the square of the momentum density g (see text).
We plot the slope measured in the simulations (symbols) for
various values of d. The solid line is obtained from Eq. (4).

tion is averaged. However, improvements obtained by
averaging are limited by systematic deviations from a
parabolic profile, which can only be reduced by decreas-
ing the amplitude of g. These systematic deviations are
due to higher-order terms, O(g ), neglected in Eq. (5)
and to the presence of a term proportional to g in Eq.
(4). This gives a linear dependence of n in g for uniform
pressure simulations such as those used in this paper.
This effect can be easily observed, and the relation, Eq.
(4) checked. In Fig. 6 we compare the slope dn ld(g )

measured in the simulations with that predicted by Eq.
(4). A data point is obtained for each reduced density by
plotting n versus g for various positions across the
width of the parabolic momentum profile. The slope of
the resulting graph is a quantity, a thermodynamic
derivative, which can be computed using only the local
equilibrium assumption for the gas. The agreement be-
tween theory and experiment is once again excellent,
better than l%. Together with measurements of mean
free times between collisions (see also Ref. 22), the results
of Figs. 4 and 6 indicate that the gas attained the expect-
ed equilibrium.

The results of this section are rather encouraging. The
lattice-gas automaton seems to reproduce quite effectively
what was predicted by Eq. (6). There is no evidence of
discrepancy between the results of the simulations and
the prediction of rotational invariance in Eq. (2); also
there is no direct evidence of pernicious effects due to the
staggered momentum modes.

The lack of Galilean invariance is visible only in the
corrections to the number density across the channel and
it agrees well with what was predicted by Eq. (4). The
distortions to the parabolic profile due to the latter can

be, nevertheless, kept negligible by opportunely choosing
low forcing. For the runs discussed in Sec. III we use
forcing levels, and therefore g„(y ), small enough to keep
the variation in n across the channel less than 0.2%.

III. LOGARITHMIC DIVERGENCE

A. Mode-mode coupling calculation

In this subsection we will describe our result for the
hydrodynamic contribution to the kinematic viscosity of
the LGA. The actual calculation follows the line of Ref.
36 and is given in Appendix A.

We start with the assumption that Eqs. (l) and (2) are
actually a good description of the dynamic of the hydro-
dynamic Auctuations of the LGA Quid. In particular, we
deduce from Eq. (2) that a small amplitude fluctuation of
wave vector q will quickly relax into six modes. The
first two are sound waves with a complex "decay rate:"

z+ =+&'pq+ I q

where the sound damping coefficient I is given by
I =

—,'(v+g). The third is a transverse mode with decay
rate

sg =vq

and finally there are three hydrodynamic modes describ-
ing the diffusion of the staggered momentum densities.
Their decay rates are given by

s =K (q)q = [a, +az(C .q) ]q
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where q is the unit vector along the direction of q. The
kinematic viscosity for the LGA fiuid can be given in
terms of a Green-Kubo expression, equivalent to the one
found by Frisch and Rivet in Ref. 38,

1
OC

y y ((II„(O,O)II„(t,r)))+v, .
rCA t=0

The sum in r is on the finite region of the lattice con-
sidered (0 will indicate both the region and its volume);
the ( ( ) ) indicates the equilibrium average on the
grand-canonical ensemble consistent with average density
per site of 7d and ((g )) =((h )) =O. Here, y, is the
momentum density susceptibility, explicitly y l

= 3d ( 1
—d ), defined by the derivative of the macroscopic
momentum density with respect to the intensive parame-
ter conjugate to the momentum density B((g, )) /By~, or
equivalently as the equal time momentum autocorrelation
function. The quantity II is the off-diagonal term of the
microscopic stress tensor, defined as the sum

II;, =gC ;C ,f (r) . . .

Finally, vy ( = —
—,
'

) is a contribution to the viscosity only
due to the discreteness of the lattice that, since it is not
relevant for the following calculations, we will henceforth
neglect.

Equation (12) relates the kinematic viscosity to a sum
on the two-point correlation function of the stress tensor.
To find this correlation function is a rather difficult
many-body problem. Following Ref. 36 we assume that
the hydrodynamic contribution to the transport
coefficient can be written in terms of projections of the
microscopic stress tensor on intermediate long-
wavelength multitransport modes that are constructed as
products of hydrodynamic modes and whose decay rate is
given by the sum of the decay rates, Eqs. (9) and (11), of
the component modes. %'e will consider only two-
coupled mode contributions, since it is possible to show
that the terms involving three or more modes do not con-
tribute to the asymptotically dominant logarithmic diver-
gence. The vertices relevant to the calculation are the
projection of the stress tensor on the sound-sound,
transverse-transverse, and coupled staggered momentum
diffusion modes. They can be readily evaluated (see Ap-
pendix A), and after inserting the result in Eq. (12), we
obtain

v(L ) =vo+
1' 2X-'

2 2
2 1 1 qxqy 3 1 1

v(L) I (L) N l l q6 4 N l l K(q)q2
(13)

~here vo is the part of the kinematic viscosity that we
have not explicitly considered but which is assumed not
to depend on L. In the above expression the sum on the
reciprocal lattice has a ' as the ultraviolet cutoff and we
have inserted as infrared cutoff the typical linear size of
the system L =&0. If the linear dimensions of the sys-
tem are enlarged by a factor e with b small, the previous
formula would predict, for large L, a change in viscosity:

( bL) (L) (1 —2d) 2 1

96d(1 —d) v(L ) I (L)

ones described in Ref. 40. However, the values thus ob-
tained cannot be used in Eq. (14) since the relaxation time
scale is not Iong enough for the buildup of the hydro-
dynamic corrections. To compensate for this we multiply
the value of the transport coefficients obtained from the
relaxation measurement by v(L, )/v„, where v„ is the ki-
nematic viscosity obtained by the relaxation measure-
ment. This is a completely heuristic procedure. It, how-
ever, seems a reasonable assumption.

In conclusion, we predict a linear ' growth for v in the
range of L considered, with slope

6 1

Kl Ql+K2/K, Cj V

d lnL
&3(1—2d )

3072~d(1 —d )
1x — b,

N 16~ (14)

where Q, =(V'3/2)N is the volume of the systeln, and we
have substituted for all the thermodynamic derivatives
their explicit expressions (see Appendix A). In principle,
we should integrate Eq. (13) and its equivalent for I, K, ,

and ~2 to obtain the transport coefficients as functions of
ln(L ).

Using our channel How we are able to measure the ki-
nematic viscosity v with good accuracy. Unfortunately
we were not able to devise an equivalent steady-fiow
scheme for the measurement of the other transport
coefficients. We obtained reasonably accurate values for
the latter by using relaxation measurements similar to the

2 vr 1 6
vg vg I

I l
K 1r Q 1 +K2r /lrK

(15)

Note that the divergent term in the viscosity given by
Eq. (15) is zero for d =

—,'. This is not surprising since the
nonlinearity of the convective term of the stress tensor,
Eq. (2), is the source of the coupling to the multitrans-
port modes, and we already noted that the coefficient
A, (d ) multiplying the convective and other nonlinear
terms is also zero for d =

—,'.
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B. Simulation results I I I

In this section we describe the results of the viscosity
measurement for various channel sizes. The results we
present are the distillate of about 150 runs. Each simula-
tion ran for 1 —4 million time steps. For each run we esti-
mate an error in the measured v as described in Appendix
C. The measured kinematic viscosity does indeed depend
on L and the increment in v due to the channel enlarge-
ment is consistent with the prediction of Eq. (15).

1. Viscosity as a function of the forcing level

We do not measure any apparent dependence of the ki-
nematic viscosity, for a fixed channel width and reduced
density, on the forcing level. Within the "experimental
errors, " runs with different forcing levels give the same v.

It goes without saying that the range of forcing levels
possible in the simulations is very small; for too weak
forcing the time averaging required to damp the statisti-
cal noise becomes prohibitive and for too strong forcing
the distortion to the parabolic profile due, for instance, to
mass redistribution makes the measure meaningless.
However, we ran each channel simulation for four forc-
ing levels with the largest forcing used 2.5 times the
smallest.

2. Viscosity as a function of L
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FIG. 8. Normalized kinematic viscosity as a function of the
system size L. We show two sets of kinematic viscosity data,
d=0. 2 and 0.5, normalized by the value of v at L =64. The
solid lines are weighted fits to the two sets of data.

C)
Ol

C)

I I I

In Fig. 7 we depict v as a function of L. The reduced
density used is 0.2, and the viscosity points are obtained
as weighted averages of numerous runs for each L value,
with different initial conditions and forcing levels. The

effective viscosity increases with L and, in a linear-
logarithmic plot, the curve appears to be linear. As a
qualitative test for the consistency of this effect with Eq.
(15) we again plot the viscosity, Fig. 8 (this time normal-
ized with its value at L = 32), as a function of L for
d =0.2 and 0.5. As expected, d =0.5 gives no L-
dependent term in the viscosity. Thus we conclude that
boundary corrections, such as those of Knudsen, propor-
tional to (1/L ), do not explain our observed dependence
of v upon L, and neither do possible staggered momen-
tum density effects since, as we argue in Appendix D,
they wi11 give contributions proportional to 1/L .

l5a
Q

g)

0 0
E
C:

hC

3. Viscosity as a function of the density

We have performed the same viscosity measurement
for various values of the reduced density. The range of d
explored is 0.2 —0.5 in steps of 0.05. Figure 9 shows the
measured viscosities as a function of d for various values
of the channel size. The solid line is the value of the kine-
matic viscosity predicted by the Chapman-Enskog calcu-
lation ' for the collision rules of Fig. 2.
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FIG. 7. The kinematic viscosity as a function of the system
size. The reduced density for the data shown is d =0.2. The er-
ror bars are obtained by comparisons between different runs and
the solid line is obtained from a weighted fit.

4. Comparison between the mode-mode coupling result
and simulation data

The last and most interesting figure we present is a
comparison between the slopes of linear fits to the v
versus ln(L ) data for various values of d and the mode-
mode coupling prediction, Eq. (15). The symbols in Fig.
10 a're the experimental values, while the solid line is
given by Eq. (15). The error bars reported are obtained
by propagating the errors on the single viscosity measure-
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FIG. 9. Kinematic viscosity as a function of the reduced den-
sity. The three sets of symbols are obtained from measurements
on systems of size L =64, 128, and 256. For a given reduced
density the viscosity is increasing with channel size. The es-
timated errors are smaller than the symbols used in the plot.

ments done at each density value and channel width. For
a given density we fitted a straight line on all the viscosity
points we had. Hence the reported measured slopes are
presumably affected by finite-size corrections to the
asymptotic law, Eq. (15), and the error bars in Fig. 10 are
only indicative of our numerical errors and not of our
(unknown) systematic errors. The fit is reasonably good.
It is, however, clear that there is a systematic effect; all
the measured points are below the theoretical curve. We
have not been able to explain this discrepancy. It could
have a rather prosaic origin, e.g. , the v(L )Iv„correction
used in Eq. (15) could be an underestimate of the hydro-
dynamic corrections on the other I,K] Kp transport
coefficient, or higher-order perturbative effect neglected
in our theory. It could, however, be something deeper,
e.g. , some mischievous side effect due to the staggered
momentum modes.

IV. CONCLUSIONS

We think that Figs. 4, 6, and l0 are good indications
that Eqs. (1)—(4) give, at least under the simulation con-
ditions described in this paper, an accurate description of
the dynamical property of the lattice-gas automata. The
most important result is contained in Fig. 10. The solid
curve is a compendium of various of the gas's assumed
dynamical and thermodynamical equilibrium properties
with assumptions on the nature of the essential mecha-
nism for the divergence of v (intermediate long-
wavelength multitransport modes). The agreement be-
tween this curve and the simulation results can be read in
two directions. The first takes for granted the prediction
of the mode-mode coupling calculation, Eq. (15), and
effectively tests if the long-wavelength dynamics of the
gas is controlled by the conservation laws, Eqs. (1)—(4).
The second, in the same spirit as the molecular-dynamics
simulations, " takes the LGA as a two-dimensional
fluid of well-known properties and uses it as a tool to give
a simulative verification of Eq. (15). The LGA, from the
last point of view, is a very efficient tool.

Why is this so7 The lattice-gas automaton is very noisy
(Appendix C). This is a source of problems when it is ap-
plied to the solution of the incompressible Navier-Stokes
equation ' but it is an advantage in our case since it
enhances the thermodynamic derivative in the coefficient
of Eq. (13). Moreover, the collision rules used in our
simulation give small transport coefficients [i.e. , a small
denominator in Eq. (13)] and very short particle mean
free paths. With very short mean free paths it is possible
to have a good local equilibrium description even with
small simulation systems (e.g. , L =64) and thus it is pos-
sible to investigate a reasonable range of system sizes
without going toward systems that are too large to simu-
late.

All in all, we do believe that we have shown that the
LGA does simulate hydrodynamic equations, and that
the actual equations obeyed are potentially more complex
than the Navier-Stokes equation.

FICs. 10. dv/dlnL as a function of the reduced density d.
The solid curve is from Eq. (15) while the simulation data (sym-
bols) are the slopes obtained from weighted fits like that shown
in Fig. 6.
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APPENDIX A

gl(q)=q '[q.g. (q)+q, g, (q)]

with decay rates

s+ =+icq+ I q

(A5)

(A6)

where the sound damping coefficient I is given by
I =

—,
'

( v+ g ); the transverse mode

tor q, in terms of a transverse mode 4i(q), two sound
waves ++, and three staggered momentum modes,
4, a =0, 1,2 defined by

1
(q ) [cR (q )+gll(q )

V'2X&

In this appendix we will derive Eq. (13) of Sec. III.
The calculation is a straightforward application of the
method illustrated in Ref. 36. The only modification is
the translation of the relevant thermodynamic derivatives
into the language of lattice-gas automata. This is rather
easy because the equilibrium probability distribution for
the lattice-gas automaton factorizes on the sites and
directions in the product of one-particle equilibrium dis-
tributions. The latter property is essential for the local
equilibrium description of the gas and hence for the
derivation of Eq. (2) and it guarantees that the particle
populations at diiferent sites and/or directions are com-
pletely uncorrelated, i.e.,

«[f (r) d ][f (r') ——d ]» =d (1—d )6 5„ ,

4i(q ) = gi(q ),
v'x,

'[ —
q, g. (q)+q. g, (q)]

with decay rate

si —vq

and the staggered momentum modes

4 (q)= 0 (q),
v'xi

with decay rates

s —K (q)q =[v&+zz(C q)]q

(A7)

(A8)

(A9)

(A 1)

where d = « f
As a first step in obtaining Eq. (12) we explicitly write

the Fourier transform of the microscopic fluctuations
around « n » =7d, «g, » = « h » =0:

n(q) = —g e 'q'n(r),1

&N, ~n
(A2)

g (q)= —g e 'q'g (r),+&,~n
(A3)

h, (q)= —g e 'q'h, (r) .
N rcn

(A4)

In the long-wavelength limit we expect them to be con-
trolled by the hydrodynamic equations, Eqs. (1)—(4), and
hence to have a natural description, for a given wave vec-

The 4 (o =l, +, —,a) defined above are normalized to
1, &+, ~%, &=1, where we have introduced the scalar
product & f ~g &

=
&& fg &&. The coefficient y& inserted in

Eqs. (A5) and (A7) is defined by &gi(q ) ~g (q') &

=y|61 5 ~ while c=Qg&/go is the speed of sound for
the gas with &R'(q)iR(q')&=y06 . It is easy to see, us-
ing Eq. (Al), that g0=7d(1 —d ) and y, =3d(1 —d ).

The modes 4, cannot be directly used to explain the
long-time behavior of the integrand in Eq. (11). In fact,
in Eq. (11) the correlation function in the integrand is
really the correlation function of the part of the micro-
scopic currents orthogonal to the transport modes 4, . In
Eq. (11) it is not necessary to write the projection explic-
itly because H is already orthogonal to the O', . On the
other hand, the 0, are not the only slow processes possi-
ble. In particular, we can consider multitransport modes,

, (q, . . . , q'), as intermediate processes. They are
built as products of the transport modes

4, (q) . 4. (q') —«4. (q) +.(q')»

[& Il. (q) +.(q')i4, (q) P, (q')& —« iI', (q) iI', (q') »']' ' (A10)

s, , (q, . . . , q')=s, (q)+ +s, .(q') . (Al 1)

where the indices a, . . . , a' run over l, +, —,and a.
The transport processes coupled together in Eq. (A10)
are, up to cross terms O(1/N ), independent (at equilibri-
um all the sites are decorrelated). Hence their decay
rates can be estimated as the sum of the decay rates of the
component transport modes:

We rewrite Eq. (11), using translational invariance, as

« A, (0,0)ft„,( t, 0) » +v» &t=o
(A12)

where Il (t, q) is the discrete Fourier transform of the
microscopic stress tensor. The structure, Eq. (Al 1), of
the coupled modes suggests writing Eq. (A12) as



4538 KADANOFF, McNAMARA, AND ZANETTI

1 + !a,a', q, —q)(a, a', q, —q!
2! s, (q)+s, ( —q)

a, a'

+ —,
1

3t
a, a', a"

!
fI ~ ix I II ~ Ia, a,a;q, q, —

q
—

q "a,a, a;q, q, —
q

—
q l + ti (0 O))s, (q )+s, (q )+s,-( —

q
—q') (A13)

where the indices a, . . . ,a' run over +, —,I, and a as above, and where we have already performed the time summa-
tion.

We will consider only the first order in the perturbation calculation, i.e., only the contribution of two-coupled trans-
port modes, because the higher-order diagrams give finite contributions. The vertices relevant to the calculation,
sound-sound, transverse-transverse modes, and coupled staggered momentum can be easily calculated starting from

(ft„(0)!g&(q)g (
—q)) = g C .„C . C .iC -. g e ''i'" " '(([f (r) —d][f .(r') —d)[f (r")—d]))

3d(1 —d )(1—2d )

4 N
(5„,5, +5, 5,, ), (A14)

where we used Eq. (A 1) and the definition Eq. (A3).
From Eq. (A14) and the previous definitions we obtain

A,2 O'G
(83)

(A (0)!J., J.;q, —q) =
2 N q

( fi (0)!+, +;q, —
q ) = ( ft„(0)!—,—;q —

q )

(1—2d) qxqy

4v'N q
2

(& ~(0)!&,~;q, —q) = —C . C .
(1—2d) J

(A15)

(A16)

(A17)

The R thus defined is 32 times larger than the "natural"
Reynolds number, R =X(2W)g,„/v [cf. Eq. (7)].
Hence the maximal R considered in our simulation be-
comes R =1500.

The viscous fiow solution of Eq. (82),

g~(x, y ) =0,
+ —,

' (y —n ) ( n + —,
' —y )

Inserting Eqs. (A15) —(A17) in Eq. (A13) gives then Eq.
(13) of Sec. III.

APPENDIX B

for n y (n+ —,',
——'(y —n —1)(n +1—y)

(x )='
2

for n+ —,
'

y &n+1,

(84)

(81)

with n integral. For time-dependent incompressible flow,
Eq. (5) becomes

a,g, =o,
a,g, +g„a„g,= a,I +R -'(a„a„g—, +f, ) .

(82)

In Eq. (82) and in the rest of this appendix we will use

g, t, r, p, and f to indicate the nondimensional momen-
tum density, time, position vector, pressure, and force
density, respectively. To write Eq. (82) in nondimension-
al form we use (2 W) as the unit of length,
G=[ A(2W) ]/v as the unit of momentum density, and
T=(2W)/(A, G) as the unit of time. R is then the "Rey-
nolds" number

In this appendix we discuss the linear stability of the
parabolic profile, Eq. (6). It is sufficient to study the
linear stability of the unidirectional steady solution of Eq.
(5) with the periodic "square-wave" force field of ampli-
tude 3 and wavelength 28 given by

r

( A, O) for 2n W'&y &(2n +1)W,
f*(x, )= '

(
—A, O) for (2n + 1)W'&y & 2(n + 1)W,

R„=3X64v 35/17 . (85)

The critical Reynolds number, Eq. (85), is valid for an
infinitely long channel where modes of arbitrary long
wavelength can be excited. However, for a channel (such
as the one depicted in Fig. 1) with a finite length-to-
width ratio, P = ( 2 W ) /L, there is an infrared cutoff on
the possible perturbations and thus an increase in the
critical Reynolds number. We want to show that the
channel used in the simulation, for which P=i/3/2, is
linearly stable in the range of R used. Since the flow is
incompressible we will write the nondimensional momen-
tum density field g& in terms of a stream function g,

g„=—a, q,
g, =a„q .

(86)

We now write 1( as the sum of a small perturbation p to
itjo, which is the stream function corresponding to the

is for large R linearly unstable with respect to long-
wavelength perturbations parallel to the "channel" axis.
An asymptotic calculation gives as the critical value of
the Reynolds number
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unidirectional steady solution, Eq. (84). Equation (82)
can now be linearized around Po, and, after some stan-
dard manipulation, the result is

m=co
g(x y)= g 1( e'

(Bg)
b.B,/=[ah, (Aa )—]B,P+R 'b, P, (87) (t(x,y)= i 2'(nPx+ my)

n, m

where b, is the Laplacian operator, b, = ( 8„+8 ), and
a =8 1to. We will now use the periodicity of the channel
to write

n, m = —oo

Thus we can rewrite Eq. (87) as

nm = g (U" ~ )P„.= —R '(P n +m )P„(2~)'

+ g $0 (m —m')I [p n +(m') ]—(m m') j—p„pn +m ™ (89)

We then notice that n labels the eigenspaces of Eq. (87).
Moreover, n always appears in Eq. (89) in the combina-
tion (pn ). Thus

(U" .(P, R ))=(U" ~ (n'P/n, R )) . (810)

0 for m=0,
4 sin (~m /2)

(2m.m )
otherwise,

(811)

Hence we have reduced the problem to a discussion of
the eigenvalues of the matrix ( U ~ ). Using the explicit
expression for $0

we can write

U' ~
= —R '5 (P+m )

+ 4P sin [vr(m —m')/2]
(2m. ) (P +m )(m —m')

X I(m —m') —[p +(m') ]) . (812)

p~(P, R,M ) =max
C Re@;p eigenvalue of ( U' )I,

We consider now only a finite number of "modes" in
Eq. (89), i.e., —M m M and then study numerically
the eigenvalues of the truncated matrix ( U' ). We are
interested in the sign of

I I I I} I I I I} I I I I} I I I I} I I

0+

Stable Region

o M~65
+ M=33

Unstable Region

(Re@ is the real part of p). In Fig. 11 we show the stabili-
ty curve, R *=R '(P), in the P, R parameter plane. The
points marked in the figure correspond to R *(p) and are
obtained by solving numerically p'[p, R "(p),M] =0
while keeping M fixed. To test how the result depends on
M, we show two sets of symbols corresponding to M =33,
65. For R &10 the two sets of points agree within one
part in 10 .

In the limit ofp~0, R *(p) converges to the R,„given
in Eq. (85). Moreover, the values of R considered in our
simulation (p=V3/2) are all well within the stable re-
gion of (U' ). Using Eq. (810) we can extend this sta-
bility result to other values of n, n & 1. We conclude that
in the range of R used in our simulation the channel Aow
is stable.

APPENDIX C

+
»I+

10 103
) II

1O'
I I I I I I I I

105 10'

The measured v is obtained by Eq. (7) and the quantity
actually measured in the simulations is a time average of
g „.The latter is proportional to

FIG. 11. Stability curve for the forced fiow, The two sets of
symbols correspond to diferent values of M (M=33,65), the
number of modes at which (U' ~ ) has been truncated. In the
region marked stable (unstable) p* is negative (positive).

t =Tx,y =L
g„( y;xt) .

t=1 x,y=1
(Cl)

The goal of this appendix is to give some estimates of
the standard deviation of g,„
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1

TL

2 t, t'= T

y pig(x 3 r) —g(x ~)l(g(x'3';t') —g(x'3')] (C2)

The lattice gas is extremely noisy; at thermodynamic
equilibrium and for small values of the average micro-
scopic momentum density, the mean-square average of
the microscopic momentum density fluctuation is well
approximated by its value for ((g )) =0 [see Eq. (Al)]:

(((&g)')& =3d(1 —d ) . (C3)

Thus to obtain sensible results g should be averaged over
large regions of the lattice and over long times. In the
following considerations we assume that the grand
canonical ensemble result, Eq. (C3), holds, and for simpli-
city we take all the average values to be zero.

Consider, in Eq. (C2), the sum on the lattice first. For
any given time step, we consider all lattice sites to be un-
correlated" thus we can approximate

1
" 3d(1 —d)

g (x,y) (C4)

For the remaining time sum, we can assume that the
quantity g„g (x,y; t ) becomes uncorrelated after an in-
terval of the order of the diffusion time on a distance L;
therefore

Tv
(C5)

APPENDIX D

The forcing scheme described in Sec. II B 1 is an at-
tempt to impose on the system a square-wave force field.
It is designed so that it will act with the same probability
on all the lattice sites, but it is necessarily discrete. As a
consequence we not only transfer momentum to the fluid
but we also excite the h 2 and h 3 modes (the forcing is ap-
plied along the x direction and thus the resulting projec-
tion on the h, mode is identically null). The nonzero
value of the average staggered momentum density will
then modify the constitutive relations of Eq. (2) since
they were obtained as an expansion around h, =g; =0.
We will argue, however, that the amplitude of the h

Thus the statistical error on v does not depend on the
channel size but rather on the number of time steps on
which the parabolic profile has been averaged. We have
compared formula (C5) with the results of extensive
simulation of an unforced channel for various values of
the density and system size and found good agreement
(about 1%). Hence we used Eq. (C5) to estimate the sta-
tistical errors on the various viscosity measurements we
report.

modes is small, ((h )) ~ I/O, and thus it should only
give a contribution to the measurement described in Sec.
III B comparable with the statistical noise.

We first note that the staggered momentum density can
appear in the equations for the momentum density and
the number density only in even powers. To understand
what is the mechanism that controls the growth of the
staggered momentum density we will abstract from un-
necessary details and consider a simplified problem
which, however, contains all the essential ingredients.

Let us consider two boxes that can accomodate M ob-
jects each and let N, be the number of objects in box i,
i = 1,2. We can define H =N, —N2 and G:N& +N2.

We now start throwing objects in the boxes. The prob-
ability that the next object will land in box i, p, , is

M N, —
1 N, N~, —

2M —(N 1
+N2 ) 2 4M

where we are assuming that N, /M ((1, i =1,2. The re-
sulting time evolution for H is then well approximated by

H(t+1) H(r ) = — —H(r )+f(t ),1

4M

with f ( t ) a random variable that can have the values + 1

with equal probability; it is uncorrelated to H at prior
times, and such that ((f(t&)f(tz))) =5, , It is then

easy to compute

thus (((H/M) )) =2/M.
The parallels between this example and our problem

are easily drawn: the two boxes represent, for a given
staggered momentum density, say h2, the lattice sites for

i~8 .r
which the phase factor e, is respectively, equal to
+1; the "object" is one unit of momentum along the x
direction; G is the total momentum on the two sublat-
tices; while H is the equivalent of the staggered momen-
tum. An argument similar to the one described above ap-
plies to the staggered momentum density in our simula-
tions, and it thus predicts that there should be a correc-
tion to the measured kinematic viscosity of the order of
(( h, )) = Co/0, with C, smaller than l. In this model we
do not give any mechanism to keep (N, +N2)/M ((1
but in the actual simulations this is provided by the
momentum dissipation. This prediction has been
checked numerically using a recently developed
Boltzmann-equation technique (Ref. 40).
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