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By treating a liquid metal as a mixture consisting of nuclei and electrons, we have derived a set of
integral equations for calculating radial distribution functions (RDF's) from the atomic number as
the only input data; the internal atomic structure of an ion in a liquid metal is obtained self-

consistently with the liquid structure at the same time. Here, we apply this formulation to liquid
metallic lithium using further two approximations: (1) the local-field correction factor for electrons
in a liquid metal is approximated by that of the jellium model, and (2) the ion-ion bridge function is
replaced by that of the Percus-Yevick equation for a hard-sphere Quid. We calculate the structure
factors at 470 and 595 K, which show excellent agreement with the experimental ones. Simultane-

ously we obtain the electron-ion RDF, which gives the charge distribution p(r) of a neutral pseudo-
atom taking account of nonlinear screening. We extract a nonlinear pseudopotential wb'(r) from the
density p(r); this yields an interatomic interaction U' (r) giving the ion-ion RDF. Thus we deter-
mine the ion-ion and electron-ion RDF's, the charge distribution p(r) of a pseudoatom, the pseudo-
potential mb'(r), and the pair interaction U' (r) in a self-consistent manner; they are also regarded as
consistent with experiment.

I. INTRODUCTiON

In the standard procedure' to determine the structure
of a metallic liquid, the problem is solved by the follow-
ing two steps: (1) the construction of a pseudopotential
which provides an effective interatomic pair interaction,
and (2) the evaluation of the liquid structure with the use
of the pair interaction obtained in the first step using a
method of liquid theory, such as integral equations. In
reality a liquid metal is a coupled ion-electron mixture;
nevertheless, the presence of the electrons is taken into
account only in the determination of a pair interaction in
this approach, and after that a liquid metal is viewed as a
quasi-one-component system consisting of ions only.
Since an effective pair interaction is constructed by apply-
ing the linear-response formula using a pseudopotential,
this approach is evidently valid only for the system whose
electron-ion interaction is sufficiently weak. Moreover, it
happens to become necssary for some liquid metals which
have a strong electron-ion correlation that many-body
forces such as a three-body interaction be introduced to
describe the system in addition to a two-body one, since
the two steps as mentioned above are quite independent
of each other.

In contrast to this situation, in the usual treatment of a
liquid metal, the electronic structure of atoms and solids,
for example, can be calculated on the basis of density-
functional theory, only if the atomic number of the
system is known as the input data, at the present stage.
In a similar way, the structure of a liquid metal may be
determined from knowledge of the atomic number Z~ as
the only input data, when we treat a liquid metal as a
nucleus-electron mixture instead of modeling as an
"ion"-electron mixture, since the interparticle interac-
tions are all Coulombic in this model. However, it may

be more difficult in some sense to determine the electron-
ic and liquid structure of a liquid metal with this model
than to obtain the band structure of a solid; the reason
for this is that the positions of the nuclei are given before-
hand in the case of a band calculation, while in a liquid
metal the configuration of ions must be determined self-
consistently with the electronic structure of valence and
bound electrons in the system. If this approach is possi-
ble, there occurs no condition in dealing with a liquid
metal that an electron-ion interaction should be weak, as
is required in the pseudopotential theory based on the
linear-response formula. Moreover, a liquid metal can al-
ways be described only by an effective pairwise interac-
tion with the density-functional theory based on the
nucleus-electron model, since this scheme reduces the
many-body problem to the one-body problem under an
effective external potential.

Previously, by applying the density-functional formal-
ism to the nucleus-electron mixture we have derived a set
of integral equations for correlations in a liquid metal as
an ion-electron mixture in conjunction with the condition
that the ionic structure and the electron-ion interaction
are determined self-consistently with the liquid struc-
ture. Already we have calculated the ion-ion and
electron-ion radial distributions (RDF s) for a liquid me-
tallic hydrogen or a fully ionized hydrogen plasma us-
ing the quantal hypernetted-chain (QHNC) equation9 set-
up for an ion-electron mixture; this system is the simplest
one in the sense that there is no ionic structure and the
electron-ion interaction is pure Coulombic. It is of in-
terest to apply our method to a liquid metal with ionic
core electrons and to know to what extent the calculation
can give the structure factor, in agreement with experi-
ment, using the atomic number as the only input data.
Moreover, in a plasma such as that produced by laser
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compression, for example, the ionic valency Zz and the
electron-ion interaction u, z( r) may vary over a wide
range as its temperature and density change. As a conse-
quence, it is significant in the treatment of plasmas that
our method based on the nucleus-electron model can cal-
culate these quantities in a self-consistent manner from
the atomic number of the system. A liquid metal can be
considered as one kind of a high-density plasma. There-
fore, before applying this formulation to a plasma, the ex-
perirnents of which are difficult to perform with sufficient
precision, it is important to apply it to liquid metals
which have a great deal of reliable experimental informa-
tion, and to ascertain the validity of the theory by com-
paring with experiment. As the first application of our
theory to a liquid metal with core electrons, we choose
lithium, since it has the fewest bound electrons forming
ions in liquid metals: the two 1s electrons in a liquid state.

In Sec. II, we sketch the derivation of integral equa-
tions for correlations in a liquid metal using the nucleus-
electron model, which has proved to lead to the ion-
electron model described in the first part of Sec. II. Also,
some important comments on treating a liquid metal are
added from the viewpoint of our formulation. Next, we
solve these integral equations applied to a liquid metallic
lithium, and compare the result with experiment in Sec.
III. The general comments given in Sec. II are
exemplified there in the case of liquid metallic lithium.
Section IV is devoted to a concluding discussion.

g~ ~(r) =nJ(r II )In 0 =n~(r~v) z)/no,

g, z(r) =n, (r~I)lno =n, (r~v,'z)lno,
where

n~ (r~ U) =—noexp[ f3U(r)], —

for ions being classical particles, and

n,'(r~ U)=gf(e, )~P, (r)l',

(2)

II. SUMMARY OF FORMULATION

In this section we give an outline of treatment of a
liquid metal, first on the basis of the ion-electron model
and second on the nucleus-electron model. For details,
see Refs. 7 and 6. In the first approach, a liquid metal is
considered as a mixture of ions and electrons; the former
can be treated as classical particles and the latter behaves
as a quantum quid. Because ions are classical particles,
the electron-ion and ion-ion RDF's are equal to the elec-
tron and ion density distributions around a fixed ion in a
liquid metal, respectively. Since a fixed ion causes exter-
nal potentials U, (r)—:u, z(r) [with interparticle interac-
tions v; (r)] acting on ions (i =I) and electrons (i =e), the
problem of determining the RDF's is altered to evaluate
the inhomogeneous density distributions under external
potentials applied to a homogeneous liquid metal. There-
fore, on the basis of the density-functional theory we
can obtain exact expressions for the ion-ion and
electron-ion RDF's, gz z(r) and g, ~(r), in terms of the
density distributions of noninteracting systems n, (r

~ U,' )

under effective external potentials U,' (r):

Here, the effective external interactions U,' (r) —= u ~(r)
are given by

5
,
u' (~r) =v, ~(r)+ —p';"',

5n, (r~I)

with the use of 7;„,and p',-"', the interaction part of the in-

trinsic free energy and the chemical potentials of the sys-
tem, respectively. These effective interactions can be
rewritten by expanding with respect to the density devia-
tions from the uniform densities n 0 in the forms

5 7,„,
u, (r)=u, ,(r)+g f 5n; r)5n&(r')

with

X5n&(r' j)dr' B, (r)/P- "

=v,~(r) —1,&(r)/P B&(r)/P—,

I, (r)=g f C&(~r —r'~)[n~(r'~j) —no]dr',
I

on using the bridge functions B, (r) and the "direct corre-
lation functions (DCF) defined by

5 V;„,
C,, (~r —r'~)—:—P (10)

5n, r 5n r')

At this point, it should be noted that the ion-ion RDF
g~ z(r) in the two-component system can be taken as the
RDF of a one-component Quid interacting via an effective
interaction: '"'

e+0
Pv' (Q) =f3ui i(Q) —

~ C, i(Q) ~

1 —n OC, , (Q)yg

since vf z(r) can be rewritten as

fsvf z(r)=f3u' (r) no f C(~r —r'~—)[gz, (r') —1]

X dr' BJ z(r), —(12)

with the help of the definition of the one-component
DCF,

noC(Q) =1—1/S~ ~(Q),

in terms of the ion-ion structure factor in a liquid metal.
In the density-functional scheme, where the RDF's can
be exactly defined as the density distributions under some
effective external potentials, it is important to notice that
a pair-potential description of a liquid metal as a one-
component system is always possible on the basis of Eq.
(11) and we need not introduce many-body forces, provid-
ed that a liquid metal can be taken as an ion-electron

for electrons constituting a quantum Auid, with

f(e):[ exp[P(e —p, )]+1]
In the above the electron density, n, (r~ U) is calculated by
solving the wave equation for an electron under the exter-
nal potential U(r):
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mixture. If we use the effective interparticle interaction
(11) for a liquid metal, the bridge function of this one-
component system should become identical with Br r(r),
that of the two-component system as an ion-electron mix-
ture.

The Fourier transforms of the DCF's (10) can be ex-
pressed in the matrix form

&Xc(Q)&X=(yog)-' —(zg )-~, (14)

using the density response functions yg ——
lly$ ll

and
pg= llpg5;r ll

of the interacting and noninteracting sys-
tems, respectively, and JV—:lln Q5,, ll. Therefore, the ex-
pressions for the partial structure factors Sr r(Q) and
S, r(Q) are obtained inversely from (14) in terms of the
DCF's C;, (Q) and the density response function yg ——yg
of the noninteracting system in the forms

Sr r(Q)=[1—noC, ,(Q)rg VD(Q»

S, r(Q) =(n Qno)' C, r(Q)yg/D(Q)

= pQ s, ,(Q),
QZr

(16)

with

p(Q) —=noC, r(Q)Xg/[I —noC, , (Q)rg j

D(Q) =[1—noCr r(Q) )[I—n oC, , (Q)rg j

nQnQlC r(Q)l gg

(17)

Here, we have used the fact that the density response
functions yg concerning ions (i =I or i =e) become
identical with the structure factors S, r(Q) and gg =1,
since the ions in a liquid metal can be treated as classical
particles. In particular, Eq. (16) can be represented in the
r space as

nog r(")=p(r)+" -o J p( r —r'l)gr r{r')dr', -(19)

p(Q) = o'P b(Q)yg/[1 —„'C"(Q)yg ]

noPvrb(Q)y'g' . — (20)

This is also obtained from Eq. (17) in the following ap-
proximations:

C r(Q) = Pvrb(Q), — (21)

which states that the valence-electron distribution around
an ion can be expressed exactly by the superposition of
surrounding "neutral pseudoatoms;"' each ion carries
about a screening electron cloud p(r), which has a charge

fp(r)dr=Zr and therefore makes it electrically neutral
as if it were an atom. In this respect, it should be em-
phasized that any liquid metal (or plasma) can always be
regarded as composed of neutral pseudoatoms irrespec-
tive of the strength of ion-electron interaction, as shown
by Eq. (19), which is derived without use of any approxi-
mation. In the usual theory of liquid metals, using the
jellium model, the screening cloud p(r) is determined by
the linear-response formula for the induced density in an
electron gas by a fixed ion with a pseudopotential urb(r)
as follows:

C, , (Q) =C,",'(Q), (22)

5
v,'rr(r) =v, ~(r)+ —p',"',

5n, r
(23)

in terms of 2;„,= V—Vo, the difference of intrinsic free
energy between the real and reference systems 2 and Vo,
respectively. Thus, the electron distribution n, ( r

l
N)

around the fixed nucleus is determined by solving the
wave equation (6) with respect to the effective potential
(23) as follows:

n, (rlN) = n, (r l v,'z) =n, (rlN)+n, '(rlN) . (24)

Here, n, and n,' denote the bound- and valence-electron
distributions, respectively. When we position ourselves
at the nucleus fixed at the origin, we can see a world,
where some bound electrons move around it, the valence
electrons are accumulated, as described in Eq. (24), and
other ions are pushed away from it. On the other hand,
even if we position ourselves at any nucleus in the refer-
ence system, we must see the same world viewed from the

which means that the DCF of two-component system
C, , (Q) is approximated by that of the jellium model
C,",'(Q); thus Eq. (17) becomes a linear-response expres-
sion for p(r) with the response function of the jellium
model gg'. Since a screening electron cloud p(r) is exact-
ly represented in terms of C, r ( Q) by Eq. (17), we can
think of the DCF C, r(r) as playing the role of a pseudo-
potential wb'(r), which can take into account nonlinear
screening in the same form as that of the linear-response
formula (20).

When we treat a liquid metal as a mixture of ions and
electrons, the ion charge ZI and the electron-ion interac-
tion v, r(r) must be given beforehand. These quantities
can be determined from the first principles, if a liquid
metal is taken more fundamentally as a mixture of nuclei
and electrons. Then interparticle interactions are only
Coulombic, and the only input data necessary are the
atomic number Z~ of the system, in order to determine
the structure of a liquid metal and the internal electronic
structure of an ion in a liquid state. Here, let us treat a
liquid metal as a mixture consisting of Xl nuclei and
Z&NI electrons. We single out one nucleus and fix it at
the origin. Then a fixed nucleus causes an external poten-
tial v, z(r) = —Zze /r acting on the system consisting of
other (Nr —1) nuclei and Z„Nr electrons. It should be
remembered here that the density-functional formalism
contains some arbitrariness of the choice of a reference
system to describe this inhomogeneous system. There-
fore, in order to obtain a simpler description of the inho-
mogeneous nucleus-electron mixture, we take as a refer-
ence system a mixture consisting of (Nr —1) noninteract-
ing ions and Zr(Nr —I)+Zz noninteracting electrons;
each ion is assumed to have Zz bound electrons with a
distribution pb(r) around it and an ionic charge
Zr ——Z& —Zz. The values of Zrt and Pb(r) are to be
determined self-consistently. Hereafter, this reference
system will be referred to as the average ion model. The
density-functional forInalism gives an effective external
potential for electrons around the fixed nucleus:
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nucleus fixed at the origin. Therefore, the bound-electron
distribution p&(r) of the average ion in the reference sys-
tem should be identical to the bound-electron distribution
nb (rI N) around the central fixed nucleus, i.e.,

p„(r)=n,"(rlN) .

represented in the form

c, ,(lr —r'I }
u,'z(r)=v, z(r)+ f 5n,'(r')dr'

c, ,(lr —r'I }+ n& r' I —no dr' . (32)

As a result, the bound-electron number Zz of the average
ion is given by

1
Zz —— pb r dr=

0 7

jumbo d exp[P(~~ —p', )]+ 1
(26}

where the e&'s are electron bound levels of the central
fixed nucleus. As a consequence, the charge neutrality
condition n 0

=Z~ n o leads to the equation to determine
the chemical potential ~. of electrons:

o

1 2 1
dp

n o exp[P(p /2m —p, )]+ 1 (2n)

lEbo d exp[P(&i —v', )]+1
(27)

because of the relation

lim n, (rlN) = 1

&;~„),„„exp[P(e;—p, ))+ 1

=no . (28)

In this way, the average ion structure in the premise at
the beginning can be determined self-consistently by Eqs.
(23)—(27).

In order to obtain a tractable expression for u,'~(r), we
introduce here two approximations to the chemical po-
tential involved in (23),

6
p s(rI nr n, )+p",', ( rI -nr n, )

5n, (r)

+ f v, , (lr —r'I)n, (r')dr' . (29)

(i) The electron-ion interaction part of the chemical
potential p, ~(rln~n, ) is approximated by the functional
expansion with respect to the density deviation up to the
first order, i.e., the hypernetted-chain (HNC) approxima-
tion,

+p,„,(n, (rIN)+no} —p„,(no) . (33)

Thus we find that the treatment of a liquid metal as a
nucleus-electron mixture in the average ion model is
shown to lead to the ion-electron mixture model, where
the electron-ion interaction v, z(r) and the atomic struc-
ture of the ion p&(r) can be determined in a self-
consistent way.

Concerning the effective electron-ion interaction (32), it
is interesting to note that the following three types of ap-
proximate expressions for v,'z can be derived from it,
when we apply the random-phase approximation (RPA)
to Eq. (32):

C, ~(r) = Pu, ~(r) . —

The first one is written as

v,'z(r) =u, z(r)+no f v r( lr r'I-)[gi s(r'}-
c, , (lr —r'I )+ f ' '

5n,"(r')dr',

(34)

(35)

which shows that because of u, ~(r) =Zze /r the eff'ective
potential for electrons around a nucleus can be approxi-
mated as a superposition of the ions surrounding it, in ad-
dition to the contribution of valence electrons. This ex-
pression can be rewritten approximately in the second
form

u,'&(r)=u„,(r)+no t u, (lr r'I)[g~ ~(r') —ll«'
with

u, (r):—u, &(r)+no f u, ,(lr —r'I)p, (r')dr'

This is essentially equal to u,'z(r) given by Eq. (8), except
that the bare electron-ion interaction is now given in a
self-consistent manner in the form

v, ~(r)—:v, ~(r)+ f u, ,(lr —r'I )n, (r'IN)dr'

(30) +p„,(p~,(r)), (37)

(ii) The exchange-correlation potential p",', (rlnzn, ) for
electrons in a liquid metal is represented by the local-
density approximation to the bound electrons and by the
HNC approximation to the valence electrons:

p,"',(rln&n, ) =p„,(n, (rlN)+no }—p„,(no )

(31)

Here, C;;(r):—C, ,(r)+Pu, ,(r). From Eq. (23), with
these approximations, the effective potential for electrons
around the fixed nucleus based on the electron-nucleus
model is shown to become identical with the effective
electron-ion potential in an electron-ion mixture

p„(r)=pb(r)+p(r),
which is derived by the aid of Eq. (19). Since p~, (r)
denotes the electron density distribution of the neutral
pseudoatom including bound electrons, Eq. (36) shows
that the effective potential for electrons produced by the
nucleus at the origin can be constructed by the superposi-
tion of neutral pseudoatoms around it. This relation
gives a foundation to the Mattheiss procedure" to con-
struct the muffin-tin potential in the calculation of the
band structure by the superposition of potentials caused
by free neutral atoms, since the density distribution of the
neutral pseudoatom is almost the same as that of a free
atom, as will be shown later numerically. Finally, the
third type of approximate expression for u,'~z(r) is ob-
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tained by replacing u, I(r) in Eq. (32) with —C, I(r)//3 as
follows:

u,'I(r) =w (r)+no J w ( ~r
—r'~ )[gi I(r') —1]dr',

where
—C, , (Q)//3

9'g[ w (r)]=
1 —n OC, , (Q)yg'

(39)

This is essentially the same as the muffin-tin potential
given by Meyer and Young. ' Here, note that Eq. (39)
can be applied only as a potential for valence electrons in
a liquid metal.

Now, on the basis of the nucleus-electron model, the
integral equations for the structure of a liquid metal are
written in the alternative forms for the DCF's

G (Q) =G'"( Q),
where the LFC is defined by

C, , (Q)= —/3u, , (Q)[I —G(Q)] .

(47)

(48)

a liquid metal the electron-ion correlation is not so strong
that we have neglected the bridge function B, I(r) be-
tween electron and ion in Eq. (42). In the usual treat-
ment, the exchange-correlation effect of electrons in
liquid and solid metals is assumed to be equal to that of
the jellium model; that is, the influence of ions on the
electrons is neglected, and the ions are replaced by the
uniform positive charge in the jellium model. On the
basis of this model we can use an approximate expression
for the local-field correction (LFC) G(Q) for electrons in
a liquid metal using the LFC G""(Q) of the jellium model

CI I(r) =ex-p[ /3ul 1(—r)+ I -I J(r)+B-I I(r)]-
—1 —I I I(r), (41)

In our calculation, we use the LFC proposed by Geldard
and Vosko' for G'"(Q), which is written as

C, I(r) =B '[n, '(r~ u, I —I, I //3 B, I //3)/no ——1]

(42) with

2
Gjel ( Q)

2q +4g
(49)

These are the rewritten forms of (1) and (2) by the use of
the Ornstein-Zernike (OZ) relations for the mixture

g = 1/(1+0.0155avrr, ),

g, , ( ) 1=C„(—)+r, , ( ),

g, I(r) —1=BC,I(r)+BI, I(r),
(43)

(44)

and q =Q/QF and a—:( —4n)' . The local-density ap-
proximation for the exchange-correlation potential in Eq.
(33) is taken to be of the form proposed by Gunnarsson
and Lundqvist

where B denotes an operator defined by

yg[B f(r)]—:(Xg) Wg[f(r)]

=(yg ) fe'~'f (r)dr, (45)

for an arbitrary real number a. Here, it should be noted
that only the valence-electron part of density distribution
n, '(r~ u,'I) is taken in Eq. (42) to evaluate the electron-ion
RDF g, z(r)—:n, '(r~ u,'I)/no, and that the bound-electron
part n, (r~N) is only involved in the electron-ion interac-
tion u, I(r) defined by Eq. (33) to provide the screening
and exchange-correlation effects due to bound electrons.

III. APPLICATION TO LIQUID METALLIC LITHIUM

BI 1(r) =Bpv(r, g), - (46)

where B(prv, )its/that of Percus-Yevick equation for the
hard spheres of diameter o. and density n 0

—=n o
= n o with

the packing fraction g:—mnoo. /6. On the other hand, in

In order to obtain the closed integral equations for the
DCF's Ci 1(r) and C, I(r) we must introduce further two
approximations to C, , (r) and BI I(r), which are con-
tained in Eqs. (41) and (42) as unknown functions, in ad-
dition to the HNC approximation B, I(r) =0 in Eq. (42).
Rosenfeld and Ashcroft' proved that the bridge function
in a classical liquid is almost independent of an intera-
tomic potential and that it can be approximated by the
bridge function of a hard-core fluid with the proper
choice of the hard-sphere diameter. Following their
theory, here we make the approximation to the bridge
function of the two-component system:

2 [1+0.0545r, ln(1+11.4/r, )] Ry .

(51)

Under these two approximations, (46) and (47), Eqs. (41)
and (42) combined with the electron-ion interaction (33)
constitutes a set of integral equations for calculating
CI I(r) and C, I(r) self-consistently, with g remaining as
a parameter to be determined by some condition.

The atomic number of lithium is Z~ =3 and its ionic
valency in a liquid state is Zz = 1; two electrons are bound
in the 1s orbital. States of the liquid metallic lithium can
be specified by the two parameters, the plasma parameter
I =/3e /a and r, =a /az, where the average spherical ra-
dius a is defined by (3/4mno)' a.nd as is the Bohr ra-
dius. Because of a large plasma parameter I =200 and
large r, =3 of this system, it is difficult to solve iteratively
these integral equations when applied to a liquid metallic
lithium. Therefore we can obtain the convergent solution
for this system, only when initial values for C& I(r) and

C, 1(r) used in the iteration process can be chosen prop-
erly. Let us imagine that we position ourselves at a nu-
cleus at the origin and assume that the ion distribution

gI I(r) around it is already known. The bound- and
valence-electron distributions around the nucleus at the
origin depend on the ion distribution gi i(r) which we

suppose to be given at the beginning. Inversely, the in-
teratomic pair interaction which determines the ion-ion
RDF gI I(r) depends on how valence electrons are accu-
mulated, n,'(r~N), and also on how many electrons are
bound around it, n, (r~N); hence, the electron distribution
must be self-consistent with g~ I(r). Therefore it is im-
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portant to set up the pair interaction determining gi I(r)
and the electron density distributions [n, (r~N) and
n,'(r~ N)] as close to the real ones as possible in the choice
of the first guesses used in the iteration solving Eqs. (41)
and (42) with (46) and (47). Considering this fact, we take
the following three steps to solve the integral equations.

In the first step, we use the jellium-vacancy model to
obtain initial input data, i.e., the RDF gi I(r) is approxi-
mated by the step function 6(R r):—

gl 1(r)=8(R —r)= .
1 for r)R, (52)

with R being the signer-Seitz radius, and the DCF
C, I(r) in Eq. (32) being approximated by the Coulomb
potential PZIe /r between electron and ion. These ap-
proximations to Eqs. (41) and (42) lead to the same prob-
lem in determining the electron distribution around a
lithium nucleus fixed at the center of vacancy in the jelli-
um. This system generates the potential for electrons
caused by a charge Z„ fixed at the center of the jellium
vacancy in the form

v,'I(r) = v, I(r)+f (r) —I, I(r)/P,

with the definition of new functions

I, I(r) —= f C,"",( ~r —r'~ )5n,'(r')dr',

Zl e [3—
( r /R ) ]/2R for r & Rf(r)=

ZIe /r for r)R .

(53)

(54)

(55)

Because of the relation derived by the Fourier transforms
of Eqs. (54) and (56),

(57)

The integral equation for C, I(r) described by Eq. (42) in
this approximation is rewritten in the form of the equa-
tion for C, I(r):

B C, 1(r)=n, "(r~Iv, I+f —I, I/P)/no —1 —B I, I(r) .

(56)

and

Vg[s(r)]= ~C, 1(Q)~~
1 —noC,",'(Q)yg

y(r)=—no f C(~r —r'~)[gl 1(r') —1]dr' .

(60)

This equation is the modified HNC equation' for one-
component fluid with an interatomic potential v' (r)
determined by Ivb'(r) = —C, I(r)/P using Eq. (11).
Therefore, we can calculate an approximate gi I(r) by us-
ing v' (r), which is generated from the C, I(Q) of the
jellium-vacancy model in the first step.

In the third step, Eq. (42) is taken as a closed integral
equation for C, I(r), n, (r ~IN), and n,"(r~IN), with the use of
gi ~(r) obtained in the second step, since CI I(r) and
C,",'(r) are now known functions. In this step, we can
evaluate new C, I(Q) and n, (r~ N) by using the results
(C, i, n, , and n,') of the first step as initial data in the
iteration. After some repetitions of the second and third
steps, we can obtain initial guesses to CI I(r), C, I(r), and
n, (r), which are used to finally solve a set of integral
equations (41) and (42) determining CI I ( r ), C, I ( r ),
n, (r~N), and n,'(r~N) in a self-consistent manner. In solv-
ing these integral equations by the iterative method, we
must use the procedure to avoid the divergence due to
the long range of the Coulomb force [for details, see Ref.
7(a)]. In this way, we have solved a set of integral equa-
tions for liquid metallic lithium at two temperatures 470
and 595 K and compared it with the experimental results
of Olbrich, Ruppersberg, and Steeb the parameter g in-
volved in the hard-sphere bridge function is chosen so as
to yield the experimental values of SI I (0) by the calcula-
tions.

In the first place, the structure factor SI I(Q) is calcu-
lated at temperatures of 470 K, which is near its melting
point 453.7 K. At this temperature, the number density
is 4.45 X 10 atoms A, which gives the plasma param-
eter I =203. 1 and r, =3.308. The parameter g con-
tained in the bridge function is chosen as 0.48, which
yields SI 1(0)=3.15 X 10, while the experimental value
is 3.06X10 (Ref. 16). In Fig. 1, the solid curve is the

Eq. (56) constitutes an integral equation for C, I(r). Once
C, I(r) is obtained from Eq. (56), the DCF C, I(Q) which
appears in the pair interaction (11) is calculated from the
relation

4 Z
(Q)C(Q)+3p4~ZI csin(RQ)

—RQcos(RQ)
(RQ)

(58)

2.4—

T=470K
I' = 205. l

r, = 5 308
'g = 0.48

In the second step, we notice that Eq. (41) with (46) can
be rewritten in the form of the integral equation for the
DCF C (r) in one-component fluid as is shown by Eq.
(12):

C(r) =CI I(r) x(r)—
=exp[ —Pv' (r)+y(r)+B'av(r, q)] —1 y(r), (59)—

where

0.8-

J'

~—~~~~ I I I I I I I I I I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Q(A )

FIG. 1. Ion-ion structure factors for Li at 470 K; the calcu-
lated Sl z(Q) (solid circles) is compared with those observed by
the neutron diffraction t,'solid curve) and x-ray diffraction
(dashed curve) experiments performed by Olblich et al.
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IV. CONCLUDING REMARKS

By applying our formulation based
1 t odl to th 1'o e iquid metallic lithium, we have
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shown that the electron-ion and ion-ion RDF s in a liquid
metal can be calculated with the use of the atomic num-
ber Zz as the only input data. It is important to remind
the reader that the RDF g, I(r) contains the information
for the electron cloud p(r) of the pseudoatom, as shown
by Eq. (16), and the electron cloud p(r) leads to giving the
nonlinear pseudopotential wb"'( r )

—= —C, I ( r) /f3 which
yields the interatomic pair potential v' (r) by Eq. (11);
finally the RDF gi I(r) is obtained by this pair potential.
Consequently, the RDF g, I(r), the electron cloud p(r),
and the pseudopotential —C, 1(r)/P can be regarded as
determined in a self-consistent way to agree with the ex-
perimental Si I(Q), since the structure factor SI I(Q) is
calculated from the pair interaction v' (r) based on these
quantities and shows quite good agreement with the ex-
perimental result as shown in Figs. 1 and 2.

In our formulation the liquid structure of a liquid met-
al is always described by a pair interaction, i.e., we need
not introduce many-body forces such as a three-body one,
provided that a liquid metal can be considered as a binary
mixture of ions and electrons. The reason why the
description of a liquid metal by a pair interaction is al-
ways possible is that in our formulation we can calculate
such a pseudopotential as is self-consistent with the ion
configuration gi I(r) and takes account of the nonlinear
screening around a nucleus; the DCF —C, I(r)/P plays
the role of a "nonlinear" pseudopotential as was dis-
cussed by DRT. ' Furthermore, it is important to note
that we need not use a nonlocal form of the pseudopoten-
tial. Also, the neutral pseudoatom model proposed by Zi-
man' is shown, in terms of the DCF —C, I(r)//3, to ex-
actly hold for any liquid metal taken as an ion-electron
mixture, irrespective the strength of the electron-ion in-
teraction.

In the present calculation the parameter q of the hard-
sphere bridge function was determined so that the solu-
tion of the modified HNC equation would yield SI z(0), in

agreement with the experimental value. Alternatively
this parameter may be determined without use of the ex-
perimental result by the requirement of the thermo-
dynamic self-consistency which states that the virial and
compressibility equation should lead to the same iso-
thermal compressibility as a one-component system with
a pair interaction (11):

a(pI, )

Bn o Sr I (0)
(63)

with the virial pressure

PP, =no — no dr r —gf I(r) .P 2
dv' (r)

dr
(64)

In this expression, the dependence of the pair interaction
on the density need not be taken into account, since we
replace the problem, to determine the RDF gi i(r) in the
two-component system, by that in the equivalent one-
component system with the fixed pair interaction (ll),
which yields the same RDF to gi i(r) in the ion-electron
mixture as was described by Eq. (59). The above pro-
cedure may give almost the same values for the parame-
ter g as given by in Sec. III, since our condition deter-

mining g there is of essentially the same character as this
one.

In the present calculation electrons in a liquid metal
are treated as in a fully degenerate states because of their
high Fermi temperature. But our formulation can be ap-
plied to a high-density plasma where electrons behave as
a quid at absolute zero to temperatures so high as to be-
come a classical quid. Therefore our formulation, which
can provide a temperature-dependent pseudopotential,
can be expected to give a good description of plasmas,
since it is proved that the liquid structure can be calculat-
ed in excellent agreement with the experimental result by
this method. It is interesting to see that the pseudopoten-
tial determined by the jellium-vacancy model, as men-
tioned in Sec. III, gives the interatomic pair potential
v' (r), in fair agreement with that of the full calculation
as shown in Fig. 6. This fact suggests that we can also
obtain a temperature-dependent pseudopotential for a
high-density and high-temperature plasma on the basis of
the jellium-vacancy model as the full approximation.

It is of interest that the valence-electron density p(r),
including nonlinear screening, is given by the form of the
linear-response formula for an electron gas in the jellium
model with the use of —C, 1(Q)/P as an electron-ion in-
teraction:

p(g) =n'C, ,(g)y~Q' . (65)

Moreover, it should be pointed out that this nonlinear
pseudopotential —C, 1(g)/P can yield precisely the den-
sity distribution near the origin, where the usual pseudo-
potential theory does not work well; Fig. 5 indicates this
fact. Furthermore, it should be remembered that Eq.
(65), although taking a linear-response expression, does
not contain the contribution of bound electrons around
the nucleus. If we use the Ashcroft model potential
wb(Q) in the place of —C, 1(g)/I3, the linear-response
formula (65) enables us to give the density p(r) in a fairly
good approximation, except near the origin, as is shown
in Fig. 5, since the Ashcr oft potential excludes the
bound-electron contribution to p(r). However, if we use
the RPA C, I(r) =Pu, z(r) replaced by the bare electron-
nucleus potential or the approximation C, I(r) =PZle /r,
the bare-electron-ion Coulomb interaction, the density
p(r) given by the linear-response formula (65) involves
the contribution of bound states to some extent, which
must not be contained in the valence-electron part p(r)
Hence it may yield a very bad result for the valence-
electron density p(r) in the pseudoatom. For the same
reason as mentioned above, the method proposed by
Dharma-wardana and Perrot' to treat a high-density
plasma may not be applied to a liquid metal, since their
approach involves the approximation C, I(r) =PZle~/r
in the expression for v,'i(r) given by Eq. (32), which leads
approximately to the interatomic pair interaction (11)
with the replacement of C, I(Q) by 4rr13Zle /Q; this
brings about the contribution of the bound electron to
p(r). Accordingly, it is also inappropriate to apply their
method to a plasma when the bound-electron contribu-
tion is not negligible.

In the present paper, we have represented only the re-
sult for the structure as a liquid. Our formulation can
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determine the liquid structure, consistent with the atomic
structure of an ion in a liquid metal. Therefore, it is
another important test of our formulation to examine
whether it can give a proper spectroscopic calculation of
the bound levels of the ion. The method of Slater's tran-
sition state based on our integral equations gives the
value of 51.5 eV for the K edge of Li, which is caused by
the 1s bound electron around the ion in a liquid metallic
state, while 51.3 eV is an observed value for a liquid me-

tallic lithium at 490 K by the soft-x-ray experiments.
The details of this calculation are reserved for another
paper.

The next work is to ascertain how extensively our for-
mulation is applicable in substances other than liquid me-
tallic lithium; the structure of simple metals such as Na
may be calculated by this formulation without difficulty.
Also, it is easy to extend this formulation to the case of a
binary alloy.
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