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We present a quantum theory of the nondegenerate parametric oscillator above threshold. The
effect of signal and idler phase diffusion on the various types of external squeezing spectral measure-
ments is discussed.

I. INTRODUCTION

There has been recent interest and success in generat-
ing squeezed states of light. Possible applications in-
clude ultrasensitive interferometry ' and spectroscopy.
Some recent efforts have focused on trying to generate
squeezed light with a nonzero coherent amplitude. '

Heidmann et al. have recently achieved a reduction of
intensity difference fluctuations in the non degenerate
parametric oscillator. This comes about because the sig-
nal and idler intensity fluctuations are correlated. Similar
correlations occurring at much lower intensities in non-
degenerate parametric arnplification have also been
demonstrated. '

The experimental interest in the quantum behavior of
the nondegenerate parametric oscillator has been comple-
mented by several recent theoretical works. ' Early
quantum theories were presented by Graham and Hak-
en. ' McNeil and Gardiner' gave the first squeezing cal-
culation for the intracavity field. From these analyses it
is apparent that the nondegenerate parametric oscillator
displays a mode of oscillation above threshold which is
very different from the degenerate case. In the degen-
erate case, the oscillation above threshold displays bista-
bility. There are two possible metastable phases that are
available for oscillation. The theoretical treatments of
this problem usually involve a linearization around one of
these metastable phases. ' ' After linearizing, it is found
that the oscillator produces squeezed radiation. ' How-
ever, this neglects the possible quantum switching on
long time scales that can occur between the phases. The
radiation is different to that produced below the thresh-
old, since the above-threshold radiation has a coherent
part whose coherence time is very long compared to the
decay time of the interferometer.

In the nondegenerate case, there is a continuum of
above-threshold phases for the signal and idler
modes. ' ' The parametric oscillator undergoes a steady
phase diffusion amongst its possible output phases. Well
above threshold the rate of phase diffusion is reduced. '

The recent analyses of Reynaud et al. and Bjork and
Yamamoto essentially assume this limit and linearize

fluctuations, thus assuming that the phase is stable. Such
analyses predict squeezing in certain combinations of the
output signal and idler.

The presence of the phase diffusion in the signal and
idler mode will, produce a coherent part in the output ra-
diation with a finite coherence time greater than the de-
cay time of the interferometer. Thus we expect large
phase fluctuations at low frequencies. Previous calcula-
tions of noise spectra have not analyzed this effect. It is
our aim to present an analysis of the nondegenerate para-
metric oscillator which includes the effect of the phase
diffusion on the various types of external squeezing spec-
tral measurements. We find that squeezing does occur in
the above-threshold output radiation. Phase diffusion
tends to destroy this nonclassical effect at sufficiently low
frequencies.

II. DERIVATION OF STOCHASTIC EQUATIONS

A standard procedure is used to analyze the optical
nondegenerate parametric oscillator. The parametric os-
cillation occurs via a nonlinear medium placed inside a
suitably tuned optical cavity. Three near resonant intra-
cavity modes are considered, of frequencies ~, , co2, and
co3 where cu, +co2 =~3. This implies that co, 2

=coo+e,
where coo=cu3/2. The field at frequency ~3 is pumped by
a resonant external driving field. The model Hamiltonian
for the system is taken to be, in the rotating-wave ap-
proximation,

~rev +~irrev

where

Hrev h CO ]& &8 &
+A Q)PQ 2&2 + A C03& 3 3

+ifig(& t& ~~a3 —8,82& 3~)

+i fi[Etl t3 exp( i to3t ) E*a
3 exp(ico—3t )], —

a„„„=e,f', +e ', f', +e,f",+e,'f', +a, f 1+a,'f', .

Here, co&, co2, and co3 are the signal, idler, and pump fre-
quencies, respectively. The term g describes the non-
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linear coupling due to the medium and E is the input
driving amplitude. The a, , a, are boson annihilation and
creation operators for the cavity modes at frequency co, .
The decay of the cavity modes to the external modes of
the field outside the cavity are described by the reservoirs
f', , f'z, and f'3. This decay will give rise to cavity damp-
ing rates K&, K2, and K3 for the cavity modes 8, , d2, and
a3, respectively. For simplicity we consider all detunings
to be zero. We also assume that the modes decay into
distinct uncorrelated reservoirs, and hence that the cavity
linewidths are small compared to the cavity spacing and
the resonant frequencies. However, the treatment holds
for the case of co, =co2 provided these modes have orthog-
onal polarizations. For nonorthogonal polarizations, we
require that the signal-idler detuning e is much larger
than either of the cavity linewidths.

This model Hamiltonian has been studied by previous
authors. ' ' We follow the procedure used previous-
ly' ' to obtain an equation of motion for the density
operator p as a master equation. This is achieved by
transforming to an interaction picture in which all opera-
tors rotate in the frame related to that of the driving field,

a (t)=a e ', a (t)=a &e (2.2)

Standard techniques are then applied to convert the mas-
ter equation into a c-number Fokker-Planck equation.

The density operator p is expanded in a positive P rep-
resentation' so that

where

P( at)d 6ad 6ata)(a'
(a"la)

(2.3)

a=(a&, az, a3), a—:(ai, a2, a3)

There is thus a correspondence between the c numbers a,
and o.';, and the operators a,- and &, . In this representa-
tion o,'; and n, are independent complex variables. The
Fokker-Planck equation derived can be transformed into
the following stochastic differential equations

a& = —aa&+ga3az+(ga&)' g, (t),
a2= —t~a~+ga3a, +(ga3)' (2(t),
CZ3 =E —

K3Ct3
—ga&Q2,

a, = —i~a", +ga3a, + (ga, )' g, (t),
a ~t= —aat~+ga3a, +(ga, )' (2(t),

(2.4a)

(g, (t)g, (t') ) =6(t —t'),
(g, (t)g, (t'))=Alt —t') .

(2.4b)

We have taken for simplicity K& =K2=K. These equations
have been derived and studied, in part, before. ' We note
that an alternative stochastic method of Ciraham used the
Wigner representation. '

CX 3
—E K3CX3 gCX jQp

where t;(t) and g;(t) are independent real noise sources
with nonzero correlations,

The equations of motion for the classical (slowly vary-
ing) amplitudes are recovered from Eq. (2.4) by simply
dropping the noise functions g, (t). The steady-state semi-
classical solutions are readily derived by solving with all
time derivatives put equal to zero and with a, =a*, . The
steady-state solution a, is therefore'

K3K
a, =a2=0, a3=E/tc3 for ~E~ ( (2.5a)

or

02 02 02
g g g

K3K
for IEI & (2.5b)

Thus ~a;~ is the steady-state semiclassical intensity (in
units of photon number). The stability of these solutions
with respect to small fluctuations is checked by deriving
the linearized equations of motion for the fluctuations
6a;=a,- —a,-. The solutions are stable provided the ei-
genvalues of the appropriate drift matrix of the linearized
equations are positive. The solution (2.5a) is called the
below-threshold solution since it is stable for, and only
for, a driving field amplitude E satisfying

~
E

~
(Er, where

Ez =K3K/g denotes the threshold driving field intensity.
The detailed properties of this situation will be treated in
another paper. '

In this paper we consider only the situation of large
threshold photon numbers (corresponding to large
x3tr/g ). In this case, which corresponds to all current
optical experiments, the effect of quantum noise is to
cause small perturbations about the stable steady-state
semiclassical solutions (2.5), where a, =a, *. We there-
fore study the quantum properties by linearizing about
the classical deterministic solutions only, ignoring the
nonclassical deterministic solutions with a,- Wa; *.

III. ABOVE-THRESHOLD EQUATIONS
AND SOLUTIONS

We now wish to analyze the stochastic equations (2.4)
above threshold. An analysis of the equations, linearized
about the solutions (2.5b), reveals the presence of a zero
eigenvalue. The system is not stable and cannot be ana-
lyzed correctly by the assumption of small fluctuations
and methods of linearization. This is physically due to
phase diffusion in the signal and idler modes. A similar
situation exists in the laser above threshold. ' We follow
the standard approach used for the laser problem and
transform to phase and amplitude variables, noting that
the stochastic equations (2.4) are equivalent in either Ito
or Stratonovic formulations of the stochastic calculus.
From now on, we will use the Stratonovic form of the
stochastic calculus, which permits variable changes
without any extra variable-change terms. In the intensity
and amplitude variables, the stochastic equations become
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I, = —2trI)+2g(I)IqI3)' cosQ+F)(t),

g—(I3I2/I& )' sing+ f&(t),

Iz = —2~I2+ 2g (I,I2I3 )
' cosf+ F2 ( t),

p2= —g (I3I, /I2 )'~ sing+ f2(t),

I3 =2~E ~I3~ cos($3 —po) —2tr3I3

—2g(I, I2I3)' cosP,

(3.1)

I, = 2t—rI, +2g(I3I2I, )' cosf+F, (t),
I2 — 2x—I2 +2g (I3I2I, )

'
co sf+ F2 ( t ),

p+ =[—g (I3I2/I, )' g(—I3I, /I2)' ]sing

+f, (t)+f~(t),

(3.5a)

(3.5b)

(3.5c)

I3 = —2tr3I3 + 2~E ~I3~ cosp3
—2g(I3I2I, )'~ cosf,

(3.5d)

$3= —~E~I3 ' sin($3 —po) g(I&I2—/I3)'~ sing .

Here I,P have the obvious definitions in terms of the
stochastic variables a,a, while P is an auxiliary phase,

p3= —~E~I3 ' sin/3 —g(I&I2/I3)'~2sinp,

=[—g(I3Iz/I&)' +g(I3I&/Iz)'~ ]sing

+f&(t)—f, (t) .

(3.5e)

(3.5f)

I) =Q)Q) )

P =ln(a /a )/2i, j=1,2, 3

0=4'i+6 —6 .

(3.2)

We have written the external driving field as—i@0E =
~
E~ e '. The stochastic forces F( t ), f( t ) are defined

as

F (t)=(ga, )'~'a g (t)+(ga, )'~'a g (t),
f (t) =(ga3t)'~ gt(t)/(2ia ) —(ga3)'~2( (t)/(2ia ) .

It should be noted again that in the positive P representa-
tion used here, the a and a - are independent complex
amplitudes. This implies that I, P are complex stochas-
tic variables, and it is this complex character that directly
results in nonclassical behavior in the output fields. This,
in fact, causes no additional algebraic problems, since the
observables are all analytic functions of I,P, .

The above-threshold steady-state semiclassical solu-
tions in terms of the intensity and phase variables are

Io=~E~2/ 2 I'=I'=
(3.4)

We see the pump phase P3 and the signal-idler sum phase

P, +Pz are locked to Po, the phase of the external driving
field. However, unlike the below-threshold solution,
there is no unique solution for the signal and idler ampli-
tudes themselves. The individual phases P, and Pz are ar-
bitrary. For this reason a linearized eigenvalue analysis
around any chosen phase P will always generate a zero ei-
genvalue. This property of the nondegenerate parametric
oscillator has already been noted and discussed by Gra-
ham and Haken' and Brunner and Paul. '

To correctly analyze Eq. (3.1), it is helpful to factorize
the equations into a part which is stable and a part that
undergoes phase diffusion. Following this, the stable set
can be linearized, while the equations associated with the
zero eigenvalue must be treated exactly without lineariza-
tion. A similar procedure was used by graham and Hak-
en, ' who analyzed the nondegenerate parametric oscilla-
tor with quantum operator equations.

Accordingly we write Eq. (3.1) in terms of new vari-
ables P =P,+Pz..

We have taken for notational convenience go=0.
Equations (3.5a) —(3.5e) describe the behavior of the

variables I, g, and P3, which have a unique steady-state
solution. It is possible to linearize this subset for the fluc-
tuations about the steady-state solutions, since we will
show the linearized equations to be stable. Thus we
define

AI I I
~4+ =Pi+02 4'o-
~6 =43 —0o

(3.6)

and linearize Eq. (3.5) with respect to I~, P+, and P3. The
linearization procedure is an excellent approximation
provided the size of the quantum noise is not too large,
i.e., provided we have a large threshold photon number:
~3m/g &&1. This is the situation of all current optical ex-
periments. With the partial linearization (3.6), Eqs. (3.5)
may then be rewritten as follows:

bI+ =(2g I /a)bI3+F+ (t),
AI3 ——v36I3 —&AI +,
b,I = —2mb, I +F (t),
bp+ = 2trbp++2~bp3+ f—+ (t),
b, $3= —t~3bp3 —(g I /tr)bp+,

=f (t),

(3.7)

where

AI+ =AI )+AI2

and the non-zero noise correlations are

(F+ (t)Fo+ (t') ) = —(F' (t)Fo (t') ) =4trIo6(t —t'),
(f' (t)f (t')) = —(f+(t)f+ (t') ) =(~/I')5(t t') . —

We have defined I =I, =I2. The noise correlations are
functions of g and I, which are stable about their steady-
state values. Hence in this linearized theory g and I
may be replaced by g and I in the noise correlations.
The signal-idler difference phase P is not describable as
a small fluctuation about a stable steady-state value. The
bI, hP+, and b$3 are damped quantities and thus have
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stable points of b,I, = b,P+ = b,g3= 0, while P is not
damped and can undergo a continuous phase diffusion.

For the case we have considered here of zero detunings
and equal signal and idler decay rates, Eqs. (3.7) decouple
into four subsystems. These subsystems are of the linear
form x= —Ax+F(t), where A is a matrix, and are hence
readily solved. The eigenvalues A. of the matrix A can be
readily calculated in all cases.

First we examine the equations for the intensity vari-
ables above threshold. The intensity difference EI
decouples from AI3 and AI+ completely and therefore
has the immediate solution

This was calculated by Graham and Haken, ' who used
quantum operator equations.

The b P„hP+ subsystem describes damped fluctuations
in the pump and signal-idler sum phase. The eigenvalues
of the b,$3, AP+ subsystem are, using Eqs. (3.4) and (3.7),

&) 2=(~+x3/2)+[(tr+~, /2) —2g lE I]'/2 (3.13)

These have positive real parts, ensuring stability. The
long-time solutions are found to be

AP+(t)= —,'A, f e ' f+(t')dt'

bI (t)=bI (to)e + f e " "F (t')dt',
'o

(3.8)

where to is the initial time. The fluctuation AI in the
intensity difference between the signal and idler is stable,
decaying to the steady-state value of zero with relaxation
time (2v)

The pump intensity EI3 and signal-idler sum intensity
AI+ fluctuations are coupled. The eigenvalues of this
subsystem are found to be

and
I /tr

b,P,(t) =
[(2tr+ F3) —8g ~E

~

]'

X e' + t'dt'

2 fo ( i)d

where

(3.14)

A, , 2=[a.,+(~~ —8g I )' ']/2

and the solutions in the long-time limit are

(3.9)

IV. CALCULATION OF TWO-TIME CORRELATION
FUNCTIONS AND SPECTRA

bI, (t)= K

(K2 gg2IO)1/2

X f e ' F+(t')dt'

where

(3.10)

We next wish to calculate the nonzero two-time corre-
lation functions of the type (4~(t)4~(t+r)) and
(4;(t)4& (t+r)) above threshold. Here we introduce
the photon-amplitude operators + for the field external
to the interferometer. We follow the notation of Mandel
and Cook, except that we use (4 N) to indicate the in-
tegrated photon emission rate, not the photon density. '

In the case that the only signal and idler cavity losses are
through single output couplers with perfect mode match-
ing for each mode, these operator moments correspond to
stochastic two-time correlation functions so that

K3
A] 2=1+

( K2 gg 2I0) 1/2

We note that the eigenvalues (3.9) have positive real parts
and hence the AI3, AI+ subsystem is stable.

Equations (3.7) for the phase variables above threshold
also decouple into two subsystems. The decoupled
difference phase P equation describes the larger un-
damped fluctuations due to phase diffusion. The solution
for P and hence its correlation function are immediate,

(t)=P (t, )+ f fo (t')dt' . (3.1 1)
'o

(2~) '(4, (t)4, (t +r) )

= (at(t)a, (t +r) )

(2a) '(k, (t)4 (2t +r)) =( a(t) a(2t +r)) . (4.1)

For small signal-idler sum phase and intensity fluctua-
tions one can linearize so that

QI, 2(t)=)II'[1+BI,2(t)l(2I')]
=(I )' [1+(bI++AI )/4I ],

The phase diffusion implies that

([P (t+&) P —(t)] ~ =—
l tlat/rI . o (3.12)

41,2(t) = —'[~0+(t)+0—(t)] .

Thus in the linear approximation

(4.2)

( (at) &(at +r)) =I ( [1+bI,(t)/(2I )][1 +BI,(t +r)/(2I )][]+id/+(t)/2][1 —ikey+(t +r)/2]
Xexp[i [P (t) P(t +r)]/2] ) . — (4.3)
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We have included, to first order, only terms such as
(bP+(t)bP+(t+a)) which involve two times, since
these are the terms giving rise to the broadband in-
coherent part of the spectrum. There are other terms to
first order which contribute corrections to the coherent
part of the spectrum. These only make small
modifications to the value I in the final result and are ig-
nored here. In this particular problem, b,I, (t), AP+(t),
and P (t) are uncorrelated in the linear approximation.
Hence Eq. (4.3) can be reduced to the simpler form

The long-time or steady-state intensity correlations are
readily calculated from our solutions (3.8)—(3.10):

(b.I (t)b,I (t+r))= I'e-
(EI+(t)b,I+(t+r) )

2
0 A1 A1A2+ e

(4.5)

(a, (t)a, (t +r) ) /=I [1+(bI, (t)bI, (t +r) ) l(2I )

+ ( b,P+(t )b,P+(t +r) ) /4]

X (exp[i [P (t) P(—t + r)]/2] ).
(4.4)

Similarly, the sum-phase correlation is, for (3.14),

(bP+(t)bP+(t +r) )
2

+
4I 2~1

2

4I 2X2

e+Ar2

A1A2+
k)+ A, 2

(4.6)

We point out that the correlations (b,I (t)b,I (t+ r))
and (b,P+(t)bP+(t +r) ) of the signal and idler intensity
difference and phase-sum variables, respectively, are both
negative in the P representation. This indicates a reduc-
tion of fluctuations below the shot-noise level. The
intensity-sum correlation (bI+(t)bI+(t+r)), in con-
trast, is positive. A reduction in the signal and idler in-
tensity difference fluctuations was predicted by Reynaud
et al. and has been experimentally detected by Heid-
mann et al. "

Next, it is necessary to calculate the correlation of the
signal-idler phase difference P (t). This diffuses so that
one cannot assume small fluctuations. A complex Gauss-
ian variable g with zero mean satisfies '

( e g) — (et )/2

The variance ( [P ( t ) P( t—+r ) ] ) has been calculated
from (3.12), and thus

(exp[i[/ (t) P(t+—)r]/2J ) =e (4.8)

The steady-state two-time correlation (4.4) is therefore

(a,(t)a, (t +r) ) =I e " ' '[1+(bP+(t)hP+(t +r) )/4

+[(bI (t)b,I (t+r))+(bI+(t)AI+(t+&))]/(4I')'] . (4.9)

0 K'l7
l /SIThe first or leading term (I e ' } in (4.9) describes a

decorrelation over a time ~, =8I /~ due to phase
diffusion. In our analysis here we have linearized the I,
P3, and P+ variables, which is valid for large I . This ap-
proximation will break down for smaller I near thresh-
old where fluctuations become large. As I increases
above threshold the decorrelation time 8I /~ becomes
very large. The phase diffusion in this leading term will
show up in the intensity spectrum as a very large but nar-
row Lorentzian component. '

The other terms in Eq. (4.9) describe the damped fiuc-
tuations in the I, P3, and P+ variables and are of a much
smaller magnitude than the leading term. These fluctua-
tions decorrelate on typical time scales much smaller
than that needed to see phase diffusion. Thus these fluc-
tuations will show in the intensity spectrum as small but
broad Lorentzian components. Previous calculations'
have often been interested only in the spectral linewidth
and have not studied these smaller fluctuation terms in
detail. In the phase-sensitive measurements we describe

Sj(co)= f e'"'(4, (t)k~(t +r) )dr . (4.10)

The cross-correlation spectrum C;J(co) is similarly defined
as

C~(co)= f e'"'(4,.(t)k~(t+a))dr,

C; (co)= f e' '(4, (t)ki(t +r) )dr .
(4.11}

later, these smaller terms become relevant and interest-
ing, and are responsible for the nonclassical behavior.

Other correlation functions are similarly calculated.
The results are symmetrical upon the interchange of 4,
and 42, since ~1=~2. It is straightforward to show that
in the presence of phase diffusion the steady-state mo-
ments of the type (4 (ti)4&(t+&)), (4z(t)4&(t +r)),
(4&(t) ) . become zero.

We now wish to calculate stationary spectra. The re-
sults for the fluctuation spectrum are readily obtained
from the following definition:
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When the integrals are performed the results are obtained
in the form of Lorentzians. We find that
S~&(co)=Sz, (cu) =C» (co) = C~~(co) =0. The only nonzero
cross-correlation spectra can be written in the form

S»(co)= Szz(co)=2I Li + —,'Ct (co)+ —,'C& (co)

+ —,
' Ct (co),

(4.12)
C, ~(co) = C,~(co) =2I L p

—
—,'Ct (co) ——,'C~ (co)

+ —,
' Ct (co),

above threshold. The difference variables are decoupled
from the pump equations, which remain coupled to the
signal-idler system only through the signal-idler phase
and intensity sum variables. The two components L p and

Lz are new in the nondegenerate spectrum, when com-
pared to the degenerate spectrum discussed by Collett
and Walls. '

The third component C& (co) in the spectrum S»(m) is

due to fluctuations in the signal-idler phase sum P+. We
define the scaled parameters

where
W

LU— k' E (4.16)

Lq=2A. ~/(k +co ),
(x,+~.-)

A
C~ (co)= —g v

2A

Ct (co)= g~ +
2 j

A, Az
(A. . +ho)L

where ET is the threshold value of the driving field ampli-
tude. The phase sum fluctuations are decreased below
the vacuum noise level, as were the intensity difference
fluctuations. The spectral shape, however, is a much
more complicated function of pump decay rate r and
pump amplitude P, and can become two peaked as the
phase-sum eigenvalues k& z become complex. In this case
we can write the spectrum as the sum of two Lorentzian
components. We have for A, , complex

Here A,p:K/8Ip. We note that L& is obtained from

L —Kz
—Kg e (4.13)

B(1/8I +Rek,
&

/a. )+C(co+Iml, , /v)
(~)=

(1/8I +Rek, /x) +(co+Imk, /K)

The expressions L&, C~, C&, and C~ are the different

Lorentzian components corresponding to the different ei-
genvalues (0, 2a., A. , z, and A. , ~) of the deterministic part
of Eq. (3.7). These terms describe the diff'usion of the
phase-difference P variable and the relaxation of the
b,I, AP+, and b,I+ variables, respectively.

The first term in the solutions for S»(cu) and C&~(co) is

B(1/8I +Rek. , /~) —C(co —Imk, , /x)
+

(1/8I +Rel, &/~) +(cu —Imk. &/v)

where X, =A. z =Rek. , +i Imk, , and

(4.17)

2I LR (1/8I ) +(co/v)
(4. 14)

Re (1 —Im A )+2—r
K (1+Im A )

Rek/~

This is the large but narrow spectral component due to
the phase diffusion of the signal-idler phase-difference

The full width at half maximum (FWHM) of the
Lorentzian is 2~/8I . Thus the width narrows with in-
creasing pump power.

The second term in the solutions for S» (co) and C, ~(co)
is derived from the intensity difference fluctuations
(b,I (t)b,I (t +r) ). For 1/8I «2, this becomes

2 Re ImA — Im (1 —ImA )
K K

iXAi'

ImA =( A
&

—A *, )/2i =(2—r)/[8rP —(2 —r) ]'~~

For the case we consider here where 1/8I is very small
(1/8I « Rek, Rekz), we may simplify as follows:

4
Ct (co) = L~, =——

4+ (co/~)
(4.15) 4(r +co )

Cy Q7
+ (2rP —co ) +co (2+r)

(4.18)

This is the spectral component due to fluctuations in the
signal-idler intensity difference AI . This component
was derived and discussed by Reynaud et al. We notice
a lower and broader Lorentzian compared to that
describing the phase diffusion. The negative sign means
fluctuations are reduced below the coherent shot-noise
limit, the maximum reduction occurring at zero frequen-
cy co=0. The width of this broad component is 4~,
reflecting the time scale for relaxing of AI fluctuations,
which is much shorter than that of phase diffusion. We
notice that the fluctuations in the intensity difference are
independent of the pump decay rate and pump intensity

Figure 1 plots this spectrum for various r and P. This
spectrum has been derived and discussed in part by Rey-
naud et al. and also Bjork and Yamamoto. We point
out that the limiting spectral fluctuations given by (4. 15)
and (4.18) are derivable by linearizing Eqs. (2.4) assuming
a metastable phase and Fourier transforming to solve for
the steady-state fluctuations. ' Such an analysis, howev-
er, cannot predict the spectral component (4.14) which is
caused by the diffusion in the signal-idler phase
difference.

The fourth component Ct (m) is the spectrum of fluc-
+
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tuations in the signal-idler intensity sum I+. For 1/8I
very small (I/8I «Remi, Rek2), the result simplifies to

with the original expressions derived by Drummond
et al. ' and Collett and Walls, '

4(r +to )
Ct (co =

[2r(P —1)—to ] +6 r
(4.19)

S„(co)= —,'C~(co)+ —,'Ct(co),

C,~(to) = —
—,
' C~(to) + —,

' Ct(to) .
(4.20)

We notice an increase in the intensity sum Auctuations
above the vacuum noise level. As with the phase sum
spectrum C& ( co ), the shape Ct (to ) depends on the

pump amplitude and decay rate (P and r) Th. e spectrum
may show a splitting into peaks where the eigenvalues
k& z become complex.

At this point it is instructive to compare the solutions
(4.12) for the nondegenerate parametric oscillator above
threshold to those derived' for the degenerate paramet-
ric oscillator above threshold. For the latter one defines
the pump mode &3 driven by the field E as before, and a
cavity mode a „both with corresponding c-number am-
plitudes defined in the positive P representation. One
may transform to radial and phase variables and linearize
about one of the stable steady states discussed in Refs. 15
and 16. We define a, = v'I e '~ and derive the final result
for the linearized Auctuations spectrum in agreement

Here C& and CJ are directly related to the limiting solu-
tions (4.18) and (4.19) for C& and Ct as follows:

C&=2C& and Cz=2C& . The scaled parameters co, r,
and P have similar meanings in the degenerate case.

V. SQUEEZING MEASUREMENTS AND SPECTRA

We now discuss the various types of "squeezing" mea-
surements and the corresponding squeezing spectra possi-
ble.

A. Intensity Auctuations

Perhaps the simplest type of measurement is direct
detection of intensity Auctuations. In general, one can
define intensity correlation spectra of the type

G;~ ( co ) = f e ' '( I, ( t ),I, ( t + r ) )d ~, (5.1)

where I =N N is the external field operator and we use
the notation (x,y ) = (xy ) —(x ) (y ). The steady-state
moments in the linearized approximation used here are
rapidly expressed in terms of the stochastic variables,
whose correlations correspond to time-ordered, normal-
ordered' operator correlations.

We assume [4~(r),4~(0)]=5(r). We have

G; (co)=2t~I 5; +4x f e'"'( I5, ( 0) 5I (r))dr .

-10

(5.2)

The stochastic solutions 6I have already been obtained
[Eqs. (3.8) and (3.10)]. The intensity correlations depend
only on the stable 5I+ subset and are independent of
phase. Hence the solutions for the intensity correlation
spectra are readily obtained by Fourier transforming the
subset equations (3.7) and solving algebraically for
5I (co), 5I+(co), and 5I3(to) where, for example,

(b)
5I (to) = —f e'"'5I (t)dt .

277
(5.3)

0-

FIG. 1. Spectral fluctuations in the signal-idler phase sum:
1+C~ {co). {a) r =0.1, {b) r =0.01, P =20.

This is the approach used in a recent paper by Lane
et al. '

A calculation of the reduction (or squeezing) in the in-
tensity difference Auctuations was given by Reynaud
et al. Heidmann et al. have measured the signal and
idler intensity correlation above threshold and shown a
reduction of intensity difference Auctuations below the
shot-noise level ~ The signal and idler fields are spatially
separated and impinge directly on two separate photo-
detectors. The Auctuations in the difference current from
these detectors are then measured using a power spec-
trum analyzer. Thus one measures

SD(co)= f e' '(I (t),I (t +r) )dw, (5.4)

where I =I& —I2=@&P] 4p4 p is the external photon
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The solution is obtainable directly from the intensity
diff'erence equations and solution (3.8). The result ob-
tained by Lane et al. ' is in agreement with that calculat-
ed by Reynaud et al. The shot-noise level is the noise
level corresponding to uncorrelated coherent fields at the
signal and idler detectors. This corresponds to the nor-
mally ordered variances and covariances given by the sto-
chastic variables in the P representation becoming zero.
Thus the shot-noise level is 4~I, and hence one can
define the normalized intensity difference squeezing spec-
trum

SD(co)
SD(co)= =1 I.~, . —

4~I
(5.6)

B. Single local oscillator experiments

difference operator. In terms of the stochastic quantities
we have calculated, one rewrites'

SD(co) —4KI +4K f e (5I ( r)5I (r +T))dr

(5.5)

V(8, v+ e) = 1+S"'(8, v), (5.10)

where we have defined v as the displacement from the
frequency e (co= v+e).

The phase 0 of the local oscillator may be varied to
change the particular quadrature detected. To minimize
the noise (optimize squeezing) we choose 8=7r/2. The
squeezing in the vicinity of cu =e becomes

The total spectrum V(O, co) is symmetric about co=0
(corresponding to the local oscillator frequency coo). It
comprises two mirror image components centered at fre-
quencies co=+e (corresponding to the cavity resonant
frequencies co, z). These mirror spectra are nonoverlap-
ping and can attain a minimum value of S' "(O,co) = —1.
We have squeezing when V(O, co) & 1, so that the noise is
reduced below the shot- (or coherent-) noise level. It is
sufficient to examine the behavior of the function
S'"(O, co) and realize one has squeezing when
S' "(O,co) &0. Perfect squeezing corresponds to
S'"(O,co)= —1. The squeezing in the vicinity of co=e
may be written approximately as

We now discuss phase-sensitive measurements per-
formed with the use of a strong external local oscillator,
phase shifted in some manner with respect to the pump
field whose reference phase we take to be zero. There are
two types of local oscillator measurements one can per-
form. The first type is the traditional squeezing measure-
ments with nondegenerate signal and idler frequencies,
where a single local oscillator beats with the combined
signal and idler fields, on the surface of a single photo-
detector. The resulting photocurrent fluctuations are an-
alyzed with a power spectrum analyzer. This experiment
has been performed by Slusher et al. for a nondegen-
erate four-wave mixer below threshold. The measurable
output of the spectrum analyzer is directly related to fluc-
tuations in a combined signal and idler quadrature opera-
tor. This type of squeezing was first discussed by Caves
and Schumaker and Yurke and others. ' ' In partic-
ular, we use here the results and notation of Drummond
and Reid' in the limit of perfect efficiency. We define
this squeezing spectrum to be

V( 8, co ) = 1+f e '"'(:Xe(0)Xe(r ):)dr, (5.7)

where

2

Xe(t)= g e ' C, (r)+H. a.
j=l

(5.8)

V(O, co) =1+S"'(O,co —e)+S"'(8,—co —e),
where

(5.9)

S'"(O,co) =S„(co)+S~~(—co)+2 Re[e '
C~, (co)] .

Here 0 is the phase angle between the local oscillator and
the pump field, which we have taken to be real for con-
venience. The frequency coo=&@3/2 is the local oscillator
frequency, and H.a. is the hermitian adjoint. In terms of
the stochastic variables S,. (co) and CJ(co) of Eqs. (4.10)
and (4.11), the squeezing spectrum becomes' '~

V —,v+e =1—
—,'[Ci (v)+C~ (v)] . (5.11)

We notice the dual cancellation, for this choice of
0=~/2, of the phase difference and intensity sum fluc-
tuations, which show noise increased above the
coherent-noise level. In particular, the very large noise
contribution due to the phase diffusion is absent. For this
optimal angle, the fluctuations may be reduced
significantly below the vacuum level. Thus squeezing of
fluctuations is possible in a particular combination of
signal-idler quadrature amplitudes because the quantum
noise of each is correlated. This correlation is seen most
readily in dual local oscillator experiments and is ex-
plained further in Sec. V C.

We discuss now the shape of this optimal noise spec-
trum. The minimum noise is sensitive only to the small
quantum fluctuations in the signal-idler sum phase and
intensity difference. The spectrum of fluctuations —L2
in the intensity difference is the simple inverted Lorentzi-
an described by Eq. (4.15). The shape is independent of
pump relaxation and power (r and P). This intensity
ffuctuation (or correlation) spectrum is directly observ-
able in the Heidmann et al. measurement of the
intensity-difference fluctuation spectrum. However, be-
cause the externa1 local oscillator quadrature phase mea-
surement is sensitive to both phase and intensity fluctua-
tions, we need here a reduction of noise in both quantities
to obtain total noise suppression. The shape of the phase
fluctuation spectrum is sensitive to pump decay rate and
power. For this reason, we shall treat the different re-
gimes of decay rates separately.

In the limit of a very bad pump, r~ oo (v3&&a), the
spectrum is particularly easy to solve. One may either
take the limit of the general solutions or else derive from
first principles by adiabatically eliminating the pump
variables. The minimum noise spectrum is (noting that in
the limit we consider here, 1/8I « 1)
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V{n/z, v+e)

1.0—

noise. The effect of phase diffusion, in practice, is to
eliminate the squeezing at zero frequency.

C. Dual-local oscillator experiments

0

FIG. 5. Spectral squeezing V(~/2, v+e), r =0.01. Various
pump intensities.

A second type of external local oscillator experiment
involves separating the signal and idler beams spatially
and combining each with its own local oscillator, using
two photodetectors. One then adds or subtracts the indi-
vidual photocurrents and measures the power spectrum
or current fluctuations in this combined current. This
scheme corresponds to that obtained with orthogonal po-
larizations incident on a single photodetector. Each po-
larization is detected individually in this case and the out-
put is the sum of the two currents. This general type of
measurement has been discussed previously by Schumak-

et al. ' and Levenson and Shelby. The output
power spectrum is a measure of the spectrum of fluctua-
tions in the signal-idler quadrature phase amplitude sum
or difference. Thus we define'

V(0, v+ e) = 1+2[S„(v)—jC,z(v) ], (5.14)

where j =(cos2b, 0) is the average over the phase jitter
60. Figure 6 illustrates the appearance of the phase

perimental situation, will allow detection of the narrow
phase diffusion spectral component. This shows up as an
increase in noise over the bandwidth of the Lorentzian
L& [Eq. (4.14)]. For 0 not quite optimal, the noise spec-

0

trum can therefore be written

5 (0, , 0z, g, co)

e-. X" O —gX" O

X[X)'(r)—gXz'(r)])dr . (5.15)

Since the currents may be individually amplified, we in-
troduce the relative amplification factor g. Although
this equation is for current differences, it also describes
current sums when g (0. The solution for the spectrum
becomes'

b, (0,, 0z, g, co)=1+g +2ReIS„(co)+g Szz(co) —ge ' ' [C,z(co)+Cz, (co)]I . (5.16)

A reduction of fluctuations in this quadrature ampli-
tude difference is indicative of a correlation between the
amplitudes in frequency space. We define normalized
quadratures as (T is the detection time)

V(rrjz. cu+e)

1.0—

0 l r)2,-„, 0-
x '(co)= — e' 'X '(t)dt

&T —Trz
(5.17)

and consider the Hermitian real and imaginary parts of
these operators. It is possible to show' that

6 (0, , 0z, g, co) = (x (cu)"x (~)), (5.18)

where x (co)=x &'(co) —gx z'(co). Thus 6 (0, , 0~,g, cu) is

the average difference between x, '(co) and gxz'(co). It
may be thought of as the average error in inferring the

0l 0~ 02signal amplitude x &'(co) as gx~'(co), where x z'(co) is the
result of measurement of x z'(co). We note that the

0lvacuum-noise level of the signal amplitude x, (co) alone
is 1. Hence where 6 (0, , 0z, g, co) (1, the average error in

FIG. 6. Effect of phase diffusion in external local oscillator
measurements where the effect of phase jitter is to produce noise
near co =0. Here P = 1.01, r =0.01.
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our estimate of the signal by measurement of the idler is
below the vacuum-noise level of the signal. The quantity
b, (8„8z,g, co) is thus closely related to ideas of
quantum-nondemolition (QND) measurement and state
reduction.

If we consider the combined quadrature

x (co)=x, '(ro) —gx2'(co), (5.19)

a squeezing occurs when the noise falls below the total
vacuum-noise level, i.e., b. (8, , 82,g, co)(1+g . This is
also equivalent to violating a "normally ordered"
Cauchy-Schwarz inequality

(:x,'(ro) x, '(~o):) (:x~'(co) x2'(co): )

which is satisfied by classical radiation fields. ' Such a
squeezing brought about by nonclassical correlations has
been demonstrated by Schumaker et al. , and Levenson
and Shelby.

The 6 (8&, 82, g, ro) has a different shape depending on
the value of g chosen. First we wish to choose g to mini-
mize the squeezing spectrum. The squeezing spectrum is
always normalized to the total vacuum-noise level. Thus
the squeezing spectrum is defined,

V(8„82,g, ro)=b, (8„8~,g, ro)/(I+g ), (5.21)

where 6 (8&, Oz, g, co) is given by (5.15) and (5.18). A
check shows that for this symmetrical situation where

2((+~ ) ) =((Xq ) ), V(8&, 82,g, co) is minimized for
g =1. Thus (we take g =1)

V(8), 82, co) = I+S()(co)+Sq2(ro)

—Re[e ' ' [C,2(co)+C2, (co)]I . (5.22)

Because for our particular example we have S» (co)
=S22(co)=S„(—co) =Szz( —co) and C,z(co) =C2, (co),
this double-local-oscillator spectrum has a similar shape
to the squeezing spectrum [(5.9), (5.10)] for a single local
oscillator. The squeezing spectrum is minimized for
8, = —

Oz for the case of g = l. (We note that in the case
of current summing with orthogonal polarizations the
phase angles will depend on the local-oscillator polariza-
tion. For plane polarization, typically 8, =82.) The opti-
cal squeezing is then

Figure 7 gives a schematic diagram of the correlation.
The coherent amplitude of the signal and idler is depicted
by the upper and lower diagrams, respectively. The in-
tensity is a stable quantity and hence is depicted undergo-
ing only small rapid (quantum) fluctuations about the cir-
cumference. Because the signal and idler fields have
correlated intensity, the fluctuations in the intensity
difference are hence much smaller than the intensity fluc-
tuations themselves. The individual signal and idler pha-
sors undergo phase diffusion. The phase fluctuation is
significant over larger time intervals. Again, however,
the drift in phase of signal and idler is correlated in such
a way that the fluctuations in the sum phase (8&+82) are
very small (unnoticeable in the diagram). It is clear from
Fig. 7 that the projections X, —X2 and X, —X2 will
not show the larger fluctuations in the signal and idler
phase and intensity. The fluctuations in these combina-
tions of quadrature phases are very much reduced and
sensitive only to the much smaller fluctuations in the
signal-idler intensity-difference or phase-sum variables.

We may also understand from this picture the reason
for substantial squeezing in the single local oscillator ex-
periment for the choice of phase angle 0=~/2. From
Eq. (5.8) we see that this corresponds to measuring exper-
imentally the fluctuations in the combined quadrature
amplitude X& +X& . Figure (7) shows that this is a
quiet quantity insensitive to the larger phase and intensi-
ty fluctuations. Similar behavior will clearly occur in sin-
gle local oscillator experiments with orthogonal polariza-
tions, as evidenced by Eq. (5.23).

al

V(8, —O„co)= 1 —
—,'[CI (co)+ C~ (ro)] . (5.23)

This spectral shape is identical to the one discussed above
and depicted in Figs. (2)—(5). A maximum reduction in
shot noise is possible. This corresponds to a maximum
correlation of quadrature phase amplitudes according to
quantum mechanics. '

With the choice of quadrature angles 02= —0, we see
that the noise in the signal-idler amplitude difference

0) —0
(X'&' —5'z '

) is independent of the larger fluctuations in
the signal-idler intensity and phase. This significant
reduction of fluctuations is brought about by the correla-
tion between the signal and idler phase and intensities.

FIG. 7. Correlation of signal and idler quadrature phase am-
plitudes: We use the notation X;=X; and Y, =X,
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D. Quadrature phase inference experiments

Of particular interest is the case where g is chosen to
minimize the error quantity b, (9,, 9z,g, co) itself. Given

(92
a result x z'(co) for the idler measurement, we can esti-

01 8~mate the signal 2, '(co) as gX z'(co). The choice of g =g is
defined as that required to minimize the average error as-
sociated with this inference. By differentiation' we have

C(z(co)+ Cz) (co)

1+2Szz ( co )
(5.24)

With this value of g, the minimum variance
b, (8&, 8z, g, co) becomes [we have simplified for our exam-
ple where S&&(co)=Szz(co) and C&z(co) = Cz&(co)]

[1+2S„(co)]—4C, z(co)

1+2S„(co) (5.25)

Note that we have also chosen 02= —0, to minimize
b, (8&, 9z, g, co) with respect to the choice of phase angle
9z. Figure 8 plots this quantity b (8, , co) for various pa-
rameters. When b, (8&,co) (1, this can violate an inferred
Heisenberg uncertainty principle. ' ' ' This is an example
of macroscopic EPR correlations, since the photon num-
ber can be large.

E. Phase fluctuations

The measurements discussed above involve external lo-
cal oscillators. By this we mean a strong field which is
phase locked to that of the pump field. Because there is
no phase locking of the individual signal or idler fields to
this pump phase, this local oscillator measurement which
measures fluctuations along a projection will always see
fiuctuations in both signal intensity and phase (Fig. 7).
Intensity fluctuations alone are measurable with direct
detection. A direct measurement of phase fluctuations
alone is more difficult. Ideally one would like to adjust
the local oscillator phases I9, and 02 to keep track of the
diffusing signal-idler phases and select to measure fluctua-

tions in the quadrature at ~/2 to this phase. This be-
comes feasible far enough above threshold where the
phase diffusion slows down.

An example is the phase-shifting interferometer
developed by Levenson et al. The phase-shifting inter-
ferometer is resonant with the large-intensity "coherent"
peak, but nonresonant with the sideband frequencies.
Thus one can make use of the different coherence times,
or different bandwidths, of the phase-diffusing component
and the smaller incoherent components. The interferom-
eter resonant with the large coherent component has the
effect of phase shifting this component with respect to the
sidebands. The light reflected off the interferometer is
composed of the (unchanged) sidebands, and over nar-
rower frequencies, the coherent part with a phase shift.
If this reflected field then impinges on a photodetector,
the phase-shifted coherent part of the field acts like a lo-
cal oscillator for the sidebands.

With careful selection of the phase shift 0, one can
measure a particular quadrature phase relative to the
original phase of the coherent (phase-diff'using) ampli-
tude. This phase shifting of the coherent amplitude rela-
tive to the sidebands will work only if the amplitude has
stable phase over the storage time of the field in the inter-
ferometer. Thus a long coherence time is required for the
phase diffusion. If this is possible, one can then adjust 0
to measure directly the phase fluctuations of the signal
(or idler) field by choosing 9=~/2.

Suppose two local oscillators (or phase shifters) and
detectors are used for each of the signal and idler fields.
If the resulting photocurrents are added, one might mea-
sure directly the phase sum of the signal-idler fields. The
solution (4.18) and Fig. 1 shows a large squeezing possible
in the phase sum fluctuations in two regimes. The first,
discussed by Bjork and Yamamoto is at lower frequen-
cies near the threshold for oscillation (I' —1 ). The
second regime occurs at all pump intensities but corre-
sponds to excellent pump (r —10), and is at higher fre-
quencies. A similar limit exists for phase fluctuations in
the degenerate case and has been discussed by Collett and
Walls' and Savage and Walls. An experiment of a
similar type has been performed by Shelby et al. and
Schumaker et al. who phase shifted a very stable but
nontheless steadily phase-diffusing pump field relative to
squeezed sideband vacuum components.

This direct rotating quadrature-phase measurement as-
sumes essentially a stable phase for the coherent part of
the field. It is the limit that has been of interest in the
works of Reynaud et al. and Bjork and Yamamoto,
who calculate phase and intensity fluctuations by linear-
izing about a coherent signal or idler amplitude. The va-
lidity of this approximation depends on the time scale of
the phase instability. A similar problem was analyzed re-
cently by Drummond and Reid, who showed that very
long time-scales are indeed necessary.

0
-S

FIG. 8. Inference spectrum 6 (O„co), r =0.01.

VI. CONCLUSION

We have presented an analysis of the nondegenerate
parametric oscillator above threshold. Unlike previous
analyses we calculate the effect of the internal phase
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diffusion on the different types of external squeezing mea-
surements. The solutions are valid in the limit of large
threshold photon number (tc3tc/g ) where one can linear-
ize the effect of stable fluctuations. The experiments
measuring intensity fluctuations are insensitive to phase
as discussed by Reynaud et al. and Lane et al. ' and
show no extra noise due to phase diffusion.

We are chiefly interested in squeezing experiments
which use external local oscillators phase shifted with
respect to the pump phase. The treatment shows that a
correlation between signal and idler phase diffusion ex-
ists. Hence that the sum-phase fluctuations are not
affected by this noise, and in fact are squeezed. Thus one
can detect a particular combination of quadrature ampli-
tudes and obtain in principle a squeezing of quantum
fluctuations at all frequencies. This can occur even in the
presence of quite significant phase diffusion.

However, because of the large size of the phase fluctua-
tions and because a realistic external local oscillator will
have some phase drift, the result for an experimental situ-
ation is a destroying of squeezing at low frequencies. We
have calculated the bandwidth of this effect and discussed
the squeezing possible at higher frequencies for certain
optimal angles and certain cavity parameters.

We have analyzed squeezing measurements which use
either one or two local oscillators. The twin local oscilla-
tor measurements can be used for nonlocal. inference
measurements of the EPR type. In these measurements,
one quadrature measurement is used to infer the quadra-
ture result at the other detector. A violation of an in-
ferred Heisenberg uncertainty principle is possible. Fi-
nally, we mention that since the phase diffusion rate de-

creases sufficiently far above threshold it seems possible
to make quadrature phase measurements relative to the
signal or idler amplitude itself.

Note added in proof

Recent computer simulations of the positive P repre-
sentation for a nonlinear absorber have shown that
quasiprobability distribution equations can become ine-
quivalent to master equations at very large nonlinear
damping. This limit is for ~3~/g 1 in our notation.
The quasiprobability equations are derived using partial
integration with the assumption of vanishing boundary
terms. It seems that the boundary terms can be nonvan-
ishing in the limit of large nonlinear absorption. In fact,
the vanishing of boundary terms is a generic requirement
with all stochastic techniques, and it remains to be
verified that these vanish in our case. However, our mas-
ter equation differs substantially from that for the non-
linear absorber, and computer simulations indicate that
correct results are obtainable even in the limit of large
nonlinearity.

Of course, this region is a different physical domain to
the one of present interest, in which we treat the experi-
mentally accessible limit of relatively large photon num-
bers and low quantum noise, with ~3K/g ))1.
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