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Superradiance in the high-gain free-electron laser
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In this paper we describe the eftects of slippage on the single-pass high-gain free-electron laser
(FEL) amplifier. We use a one-dimensional computational code to show the existence of two new
dynamical regimes characterized by a dimensionless parameter I(:, which is a measure of the slip-
page in one gain length. We define the long-pulse limit to be when E &(1 or the electron pulse
length L, is much greater than a properly defined "cooperation length" L, (L„&&L,). In this case
we find that only the leading region of the propagating radiation pulse exhibits the usual steady-
state behavior, with peak power proportional to n, ' (where n, is the electron-beam density). The
trailing (slippage) region exhibits a spiking behavior with peak intensities reaching many times the
saturated intensity predicted by steady-state theory. We define the short-pulse regime to be when
K ~ 1 (L, ~ L, ). In this regime the peak power emitted by the electrons does not scale as n, ', as
predicted by steady-state theory, but scales as n, , which is typical of superradiant behavior. Fur-
thermore, energy is extracted from the electrons in a continuous way, with no steady-state synchro-
tron oscillatory-type behavior.

I. INTRODUCTION

In this paper we numerically investigate pulse propaga-
tion in a single-pass high-gain free-electron laser (FEL)
amplifier. ' Most previous theories for the single-pass
amplifier assume an infinitely long uniform density elec-
tron beam, so that one section of the electron beam (and
hence radiation) evolves identically with all other sections
as it passes through the amphfier (see Ref. 2 and refer-
ences therein). Thus one representative section (one pon-
deromotive well or "bucket") of the electron and radia-
tion beams need to be modeled to describe the interaction
of the whole. Hence the relative slippage of the radiation
envelope through the electrons (the radiation velocity be-
ing greater than that of the electrons) is neglected. This
is known as the "steady-state" regime of the FEL
amplifier. In this regime the radiation intensity emitted
by the electron beam scales as n, , where n., is the
electron-beam density. '

When pulse effects are included in a model, the relative
slippage of the radiation envelope (the radiation pulse)
through the electron pulse becomes important as, in gen-
eral, no two sections of the electron and radiation pulses
will evolve identically. Thus many sections throughout
the width of the pulses need to be modeled.

In previous simulations which have included pulse
eff'ects (e.g. , Ref. 7) the criterion used to describe the
length of the electron pulse was the relative slippage dis-
tance between the electron and radiation pulses on pass-
ing through the FEL amplifier. An electron pulse was
described as being "long" or "short" with respect to this
distance. When modeling long pulses in these simula-
tions, the evolution of the electrons and radiation in the
leading and trailing regions of the pulses was ignored by
use of the "wrapped-window approximation. "

Pulse propagation simulation is carried out here by a
computer code which models the electron and radiation

pulses by a one-dimensional (1D) distribution of radiation
and electron-beam parameters. This code enables the
slippage of the radiation through the electron pulse to be
modeled effectively for a wide range of electron pulse
widths.

We redefine the electron pulse to be long or short with
respect to a properly defined "cooperation length, " ' this
nomenclature being equivalent to that used in describing
cooperative processes in atomic systems. '

We also allow the electron and radiation pulses to
evolve over their entire lengths, permitting an examina-
tion of the radiation and electron evolution in the leading
and trailing (slippage) regions of the pulses. These re-
gions of pulse evolution has not been investigated before
(to the authors knowledge).

Our model also enables further investigation of the su-
perradiant regime of the single-pass FEL predicted in
Refs. 8 and 9, where it was suggested that, if electron
pulses were suSciently short, the emitted radiation would
quickly "escape" the electron pulse due to slippage. This
escape of radiation would inhibit any steady-state-type
saturation process. This effect was modeled phenomeno-
logically by the introduction of a loss term in the steady-
state equations governing the radiation evolution, ' and
it was shown that the radiation intensity now scaled as
n, , which is definitory of superradiant-type processes. '

Radiation intensities scaling as n, may also arise from
coherent synchrotron radiation emitted by electrons
which have been prebunched by an external source, e.g. , a
strong laser field. The radiation fields emitted by these
prebunched electrons sum up coherently, to give the n,,
scaling. This is superradiance as defined by Dicke, " i.e. ,
spontaneous emission from a coherently prepared system.
In the atomic case this phenomenon takes place in
photon-echo and free-induction decay experiments.

Strictly speaking, we observe a different phenomenon.
Ideally, the electrons enter the wiggler in an unprepared
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state, i.e., unbunched and with no input signal, so that
the intensity of the emitted radiation is initially propor-
tional to n, (spontaneous radiation). The electrons then
begin to bunch on interacting with the spontaneous radi-
ation and wiggler fields and evolve to emit radiation with
an intensity proportional to n, . This behavior is a self-
organizing phenomenon, whose atomic analogy has been
called superAuorescence. '

We will refer to "superradiance" in this latter sense,
i.e., radiation intensities scaling as n, from a self bunch-ed

system.
We note that even in the long-pulse limit there is al-

ways a region at the trailing edge of the electron pulse
which will evolve as a short electron pulse. This region
occurs because there is no radiation entering from behind
and all emitted radiation propagates in the forward direc-
tion. We will show that this trailing region emits super-
radiant radiation which, we hypothesize, is subsequently
amplified on propagating through the slippage region to
produce a spiking behavior with intensities much greater
than the steady-state saturation value. We call this

phenomenon "strong" superradiance to distinguish it
from the superradiance emitted by the short electron
pulses, which we call "weak" superradiance. We use the
terms weak and strong superradiance as the peak intensi-
ties are smaller and greater, respectively, than those of
the steady-state theory.

In Sec. II we give a brief account of the equations and
computational methods used. In Sec. III we use the mod-
el to investigate long-pulse (LP) propagation; short pulses
(SP) and superradiance (SR) are considered in Sec. IV.
Section V gives a discussion of the spiking behavior of the
radiation in the trailing region in the LP limit; a sum-
mary and a general discussion is presented in Sec. VI.

II. COMPUTATIONAL MODEL

The equations used to describe the 1D pulse evolution
of the radiation and electrons are the partial differential
form of the coupled Maxwell-Lorentz equations and can
be written in the form of the Eqs. (1) and (2), where the
usual Compton limit approximations have been made'

a 1 a+ ——a(z, t )=
Bz c Bt

4vre n, (z, t) a()
(

—i t)(z))),
m 2y„ck„

a 1 a'
+ — (9 (z, t)=-

az
VII

at
kok„Qo;g

[a(z, t)e " ' +c.c. ], m =1, . . . , N
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(2)

whei'e g =(k„+k )z —ck„t is the electron-field phase; k0=2vr/Ao is the wave number associated with the undu-
lator periodicity ko, k„=2irlk„=co„/c is the radiation wave number; Ull pl) c the average electron longitudinal velo-
city; a(z, t) is the slowly varying complex amplitude of the dimensionless radiation vector potential
e pL /mc2= —(i /v 2)[ea exp[i(k„z co„t))—c.c—. j; e—=x+iy/&2; n, (z, t) is the electron-beam number density; and
(&)=[I/N(z, t)]g)v(')))X is the average over the N(z, t) electrons in position z at a fixed time t of the general elec-
tron variable X. The index rn is used to distinguish different electrons in a beam composed of N electrons. The undula-
tor parameter ao is given by ao =eB A.o/2~me, where B is the magnetostatic field amplitude. Furthermore, y, is the
resonant electron energy in units of mc given by the relation y„=(1+ao)ko/2)(, „.'

By transforming to the characteristics

z, =z —cp)t,
Z2 =Ct —Z,

Eqs. (1) and (2) reduce to
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Similarly to Refs. 1 —3 we transform to dimensionless
variables. We define
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is the fundamental FEL parameter, ' which scales as
n,', and co is the nonrelativistic plasma frequency,
defined as (4m.e n, /m )'~; n, is the peak electron density.
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Note that z& and zz are normalized to the cooperation
length of Refs. 8 and 9

L, =
4mp

and that L—:Ao/4~p is the "gain length" (the distance
through the undulator such that the gain is equal to 1) in
the steady-state regime. ' The cooperation length may
be interpreted as the slippage distance in one gain length,
i.e.,

L
L, =(c—u )

II

UII 4~P
'

or, alternatively, L, is a measure of the minimum dis-
tance between which electrons may interact cooperatively
via the radiation field. Here, we have assumed the reso-
nant radiation wavelength, given by

hz = A, „along the pulses. Hence the "natural" unit
length in which to discretize both the electron pulse and
the radiation pulse is 4' (i.e. , A,„).

The equations are then integrated with step size
Az, =Az2 =4mp =A~ per wiggler period, repeated
through No wiggler periods, so that the total integration
interval is 4mpXo, i.e., the total unsaturated gain. '

Furthermore, after each integration step we let the elec-
tron pulse slip behind the radiation pulse by one wave-
length A.„(4mp), so that at the end the total slippage
length will be L, =XOA, „, as required by the resonance
condition (9).

It is useful to introduce the parameters associated with
pulse propagation eA'ects in the system of dimensionless
units of Refs. 1 —3, 8, and 9. Let L, be the electron pulse
length and 6 =4vrpXO the total unsaturated gain (G ) 1)
in the steady-state limit. We define the slippage parame-
ter Sas

Xo
~0

( I+ao),
2y

NOR„

L,
No

N,
which implies that the slippage in a wiggler period is
equal to A,„.

Using (6), Eqs. (4) and (5) become

A(z, ,z2)=f(z, )(e ' ' ),
z (

(1O)

8 (z„zz)= —[A(z„z2)e ' ' +c.c.],
BZ2

m=1, . . . ,N .

bz =h(z, +z2) = 4vrp 1 4'—1 Az= Az=4mp .

Furthermore, z] and z2 change by steps of 4mp per
wiggler period along the characteristics zz =const and
z, =const, respectively,

4vrphz, = hz for z2 =const, i.e. , hz =cAt,
0

4m.pb z2 = b z for z, =const, i.e. , bz =
cg~~b t .

0

In particular, if Az =ko, we have Az& =Az2 =4~p.
From Eq. (6) we see that, if t =const, then

Az, =Az2 =4' also corresponds to a "static" distance of

Here, f (z& ) is the macroscopic electron density func-
tion normalized to 1 at n„propagating with the average
electron velocity u~~ [i.e., n, (z, t)=f(z, )n, ] and A is the
dimensionless field amplitude' defined so that

~E, ~'/4~ 1

n, y, mc p

where Eo is the electric-field amplitude.
Note that z& +z2 =z, where z = (4'/Ao)z is the dimen-

sionless distance along the wiggler, generally referred to
as the (unsaturated exponential) gain parameter. ' This
quantity increases by 4~p every wiggler period, i.e.,

(where X, =L, /8, „) and the superradiant parameter IC as

L,E:—
e

1

4mpN,
(13)

Note that K 'is a measure of the gain of a photon on
slipping through the unsaturated electron pulse. Also, K
is equal to the slippage S in one gain length Ls (when
G =1 or, equivalently, No= 1 /4vrp) Recall. that our dis-
cussion will be confined to the high-gain situation, so that
S=GK )K (i.e., the slippage parameter is always greater
than the superradiant parameter).

The bunching of the electrons within a potential well
is measured by b = (exp( i 8) ), s—o that for perfect elec-
tron bunching (same 0 for all the electrons, m
=1, . . . , X), /b/=l.

III. THE LONG-PULSE LIMIT: E ((1 (J, &&L, )

K «1—L, »L, .

The opposite case, when

E «1 —-L, ~L. .

(14)

we characterize as the short-pulse (SP) limit.
That is, we define the electron pulse to be long or short

From previous theories for infinitely long electron
pulses (S=0), i.e. , in the steady-state regime, the dimen-
sionless intensity

~ A~ rises exponentially from a noise
source value to a saturated value

~
A ~„,= 1.4 (Refs. 1 —3).

It then oscillates at a frequency determined by the syn-
chrotron period.

In this section we use the computational model, de-
scribed in Sec. II, to reexamine the output from the
single-pass amplifier in the long electron pulse (LP) limit.

Unlike previous theories where this regime was charac-
terized by the slippage parameter S &&1, we will show
that this regime is more correctly characterized by the
more stringent condition
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N,

TABLE I. Long-pulse —short-wiggler parameters.

Az =4~p

100 400 0.02 0.3 30 1/120

with respect to the cooperation length L, (not necessarily
with respect to the slippage distance L, =Nok. „).

Because the redefined long-pulse regime is no longer
dependent on the wiggler length Lo:Npko we define two
long-pulse subcases: The long wiggler (S ~ 1), i.e. ,

No ~ N, and the short wiggler (S & 1), i.e., No & N, .

Note that with high-gain (G ) 1) the SP limit neces-
sarily implies S & 1, i.e., the long-wiggler limit.

We now model a typical long-pulse —short-wig gler
(LPSW) case.

For the purpose of investigating LPSW effects here we
inject an electron pulse (say) 400 radiation wavelengths
long. (This corresponds to 400 electron-pulse "strips" in
the computational simulation, one strip corresponding to
a discretized element of width X„.) The wiggler has 100
periods, so that the slippage parameter is S=—,', with
G=30 and K= „', .

We have assumed a monoenergetic square electron-
density distribution on entering the wiggler, so that the
function f(z, ) = 1 throughout the electron pulse. We
also assume resonance and so set 00/Bz2 =0 for all elec-
trons. In Table I we list the parameters used in this simu-
lation.

Computational output of the electron and radiation
pulses has the following format: the radiation output in-
tensity! 2 is plotted in a "window" traveling at velocity
c at various positions through the wiggler (after Np
wiggler periods). The position within this window is
given in units of k, from its trailing edge. The width of
the window is then given by the width of the electron
pulse plus the distance by which the electron pulse slips
with respect to the radiation in the wiggler, i.e., N, , +N~.

The average of the electron-energy detuning parameter
(0)—:(t)0/t)z2 ) =(1/p)((y —y„)/y„), corresponding to
the "energy loss per strip, " is plotted in a similar type
window of width N, above the radiation pulse. Since the
electrons travel at velocity f3 c & c, the electron pulse win-
dow is seen to slip behind the radiation pulse window.
This slippage is determined by the resonance condition
and is then equal to "one strip per wiggler period. " In
this way both electron and radiation pulse parameters
(here (0) and ! A! ) may be plotted at various points
through the wiggler. In Fig. 1 we show this series of
plots as the radiation-electron pulses pass through the
wiggler.

The windows of the electron-radiation pulses have
their leading-edge synchronous at the start of the wiggler,
not shown in the figure. The radiation window is
"seeded" with a small uniform field —Ao! =2 X 10
«!2!;.„—and the electrons are uniformly distributed
in pendulum phase 0 with energy detuning parameter
0=0. This allows the computational time to be de-
creased from that where the system starts from noise and
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FIG. 1. Long-pulse —short-wiggler case: Radiation and elec-
tron pulses after Np wiggler periods are shown in (aI —(d) for
Np =20, 40, 60, and 100, respectively. N„=100, N, , =400, and
6 =30, giving 5= —' and K = „'„.

merely shortens the time taken for the system to leave the
linear regime.

Evolution in the leading regions of the electron-
radiation pulses follows a steady-state behavior with the
Hat region of the radiation intensity oscillating at the syn-
chrotron frequency; indeed the steady-state evolution of
the radiation can be followed as it escapes the leading
edge of the electron pulse to propagate in vacuum.

At the trailing edge of the electron pulse there is a re-
gion in which the parameters of each electron strip do
not evolve identically. This condition occurs because
there are no electrons behind and so there is less radia-
tion propagating into this region. The electrons are then
radiating practically in vacuum, i.e., spontaneously. This
trailing region of the electron pulse can then be con-
sidered an intrinsically large slippage region and one in
which superradiant behavior may be observable.

The width of this region in the electron pulse after Nz
wiggler periods is N~ radiation wavelengths (stripsj from
the trailing edge, so that the fraction of the electron pulse
which has not evolved as the steady state is given by the
instantaneous slippage parameter S; =Np /N, .

It is seen that radiation emitted from this portion of
the electron pulse is quite different in nature from the
steady-state evolution. Spikes of high peak intensity are
seen to evolve, with peaks many times higher than the
steady-state intensity of ! 2 „,= 1.4. '
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FIG. 7. Short-pulse case:
~
A

~
(solid line), ~b~ (dashed line),

and (8) (dotted line) as a function of position in the wiggler
(z ~ Np) in the leading electron strip (position in pulse =4).

FIG. 9. Ip as a function of p for N, =6.

trons in the leading electron strip at various wiggler posi-
tions N~. We include the radiation phase P [so that we
are plotting (8 +$,8J), j=1,. . . ,N].

As the intensity of the radiation is smaller than
~

A ~„,
the separatrix height (2&2A) never becomes greater
than the maximum steady-state value of 2+2A„,. This
is seen from Fig. 6(a), the position Np =30 (z =7.2), at
which the first peak of the intensity escapes the leading
edge of the electron pulse. This position also corresponds
approximately to the maximum bunching of the electrons
in the leading edge, as is seen from Fig. 7. It was derived
in Refs. g and 9 that for K))1 (SR regime) the field
would evolve as

~
A

~

=
~b~ /K . For the parameters here

K =1.01 and the condition K &&1 does not hold, so that
a definite proportionality between

~ A~ and Ib~ is not evi-
dent.

Because the radiation is continuously escaping due
to the slippage, the steady-state conservation law

~
A~

+ (8) =const no longer holds locally within the electron
pulse. This feature is seen in the electron phase-space
graphs as the electrons escape the separatrix and contin-
ue to drop in energy (8) (in the steady state, as electrons
lose energy the field increases accordingly, increasing the
height of the separatrix, so that the electrons are
effectively trapped within the separatrix and eventually
reabsorb radiation to perform synchrotron oscillations).

In order to test for superradiance as defined in Refs. 8
and 9 we plot the peak intensity Ip —in units of

~
A

~

—of

the erst pulse of radiation emitted by the electron pulse
for various values of p . [For example, the first pulse of
radiation emitted by the electron pulse in Fig. 3 is at posi-
tion = 170, and in Fig. 5 at position =70. This requires a
separate run of the computer simulation for each value of
p (p is the only parameter that was changed in the
separate runs). Any superradiant emission will then ex-
hibit a linear dependence of Ip on p ( ~E~o is then propor-
tional to the square of the electron density n, ).]

In Fig. 8 we preformed six computer runs for six values
of p, with N, =3. These values of p correspond to
values of E in the range 1.7—5.6. A clear linear depen-
dence is seen, indicating superradiant emission of radia-
tion. We note, however, that the linearity is not perfect
with increasing p (K '): as p increases the SR behavior
diminishes and tends to the LPLW behavior, where I~
has no p dependence.

This is seen more clearly in Fig. 9 (where N, =6 and
for larger values of p —corresponding to values of K be-
tween 0.20 and 2.4) with Ip tending to "fiatten out" to
the

~ A~„, value of about 1.4, completing the transition
from the SR to the LP regime. Perhaps the most notice-
able difference between the SR and LP regimes is ob-
served when comparing the plots of EL as a function of
the position in the wiggler z.
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I I I I I I I I I
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I I

+ 2.0
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0.0 I I I I I . I I I I I I I
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z=4npH

100.0

0.0 0.000& 0.0002
2

FIG. 8. Ip as a function of p for N, =3.

FIG. 10. EL as a function of z in the superradiant regime
showing continuous energy extraction from the electron pulse.
The same parameters are used as those of Fig. 5, except
No = 500.
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FIG. 11. As in Fig. 10, but doubling the p (4~p=0. 48) and
for No =250 wiggler periods, giving the same total gain of 120,
but a K of 0.55. The EI no longer exhibits a linear growth, but
tends to a saturation value.

2. 0

Whereas in the LPSW limit the value of El never be-
comes significantly greater than the

~ A~„,=1.4, in the
SR regime it is seen (see Fig. 10) that energy is extracted
from the electrons at an almost constant rate. This
concurs with the phase-space evolution for the electrons.
Choosing an adequate undulator length the energy ex-
traction may reach values many times greater than

This is in full agreement with the theory present-
ed in Refs. 8 and 9.

A suitable combination of short-pulse evolution in a
waveguide (where slippage may be suppressed' ) and of
tapering of the undulator may overcome this problem
and is now under investigation. In the transition region
between SR and LPLW, energy extraction can be greater
than the steady-state saturation value of 1.4 (see Fig. 11).
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FIG. 12. Amplification of the superradiant pulse emitted by
the trailing edge of the electron pulse. The position of the first
spike in the slippage region of a long pulse (b) closely corre-
sponds to the position of the first weak superradiant peak emit-
ted by the trailing edge of the same electron pulse (a).
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It was seen in Sec. III, describing LP evolution, that a

previously unreported spiking mode occurs in the slip-
page region of the radiation pulse. In this section we de-
scribe the radiation and the electron evolution in this
spiked region.

Since there is no radiation propagating into the trailing
edge of an electron pulse, the region one cooperation
length L, from this edge evolves as an independent SR
pulse.

We suggest that the electrons entering the slippage re-
gion amplify the superradiant pulse emitted by the trail-
ing region of the electron pulse to produce the observed
spiking behavior. We call this spiking "strong superradi-
ance" to distinguish this case from "weak superradiance, "
which refers to the short-pulse regime.

In order to test this hypothesis we compare the spiking
produced by a long electron pulse system with the SR ra-
diation emitted from the trailing region of the same elec-
tron pulse (up to one cooperation length L, from the
trailing edge). From Fig. 12 we see that the position of
the spike closely corresponds to the position of the first
SR pulse —this correspondence is good for all of a wide
range of parameters tested. The peak intensity of the
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FIG. 13. Long-pulse —short-wiggler case: Electrons phase-
space evolution in the leading edge of the pulse at different
wiggler positions Np =30, 40, 50, 80, 90, and 100. The horizon-
tal solid line represents the average electron energy detuning
(«) ).
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FICx. 14. Long-pulse —short-wiggler case:
~
A ~' (solid line),

~

bi'- (dashed line), and ( 8) (dotted line) as a function of the posi-
tion in the wiggler (z ~Np) in a fixed position within the elec-
tron pulse (in the 60th strip from the trailing edge).

VI. DISCUSSION

We use the "superradiant parameter, " K=L, /L„ to
define the long- and short-pulse regimes in the high-gain

spike (in units of
~

A~ ) has a p scaling, which, as seen
from the previous sections, indicates a definite SR type
process. We now investigate the evolution of the elec-
trons in phase space as they pass through the spike.

The same phase-space representation is used as for the
short-pulse evolution of Sec. IV. The evolution of the
electrons at position 60 in the electron pulse is shown in
Fig. 13 for different wiggler positions Nt, . Initially [Figs.
13(a)—(13(c)] the electrons evolve like the steady state, be-
ing trapped within the separatrix of maximum

height 2+22„, and performing synchrotron oscillations
after saturation, so obeying the conservation law

~
Ai +(9)=const. On entering the slippage region the

electrons now interact with the amplified superradiant
pulse (i.e., the spike). Because the spike intensity is
greater than the steady-state value, the separatrix height
increases and the electrons drop in energy ((8) ) but still
remain within the separatrix. This energy drop is seen
more clearly in Fig. 14.

Once the electrons have slipped through the spike,
however, the separatrix height decreases rapidly and the
electrons are no longer trapped. The bunching of the
electron has also decreased as seen in Fig. 14.

single-pass FEL. When L, ))L, (I(. ((I), the system
operates in the long-pulse regime, and for I., ~ L,
(K ) 1), in the short-pulse regime. We further divide the
long-pulse regime into the long-pulse —short-wiggler
(S ( 1) and the long-pulse —long-wiggler (S) 1) litnits.

In the short-pulse regime, by computational modeling
of the electron-radiation pulses, we have shown the su-
perradiant effect, where the radiation intensity scales as
n, and there are no steady-state-type saturation effects,
i.e., energy is continuously extractable from the electrons.
We call such radiation in the short-pulse regime weak su-
perradiance.

We observe that previous theories for long electron
pulses (steady-state theories) do not fully describe the ra-
diation output from the FEL: there is always a trailing
region of the electron pulse in which slippage effects give
rise to the previously unreported spiking behavior. We
have suggested that a likely mechanism for this spiking
could be the amplification of the weak superradiant peak,
emitted by the trailing region of the electron pulse, by the
electrons entering the slippage region from the steady
state. To distinguish this effect from pure superradiance
we call this behavior strong superradiance. Although we
have not given a fully comprehensive description of the
spiking mechanism, work is currently progressing rapidly
in this direction.

Throughout the computational results presented here
we have always assumed a 1D monoenergetic electron
pulse with zero initial detuning (t)8/Bzz=0 =y=y„),
and a square electron-density profile. No detailed studies
of the effects of parameters such as the electron-pulse
profile, detuning, energy spread, etc., have been per-
formed. We conclude, however, after a preliminary
study, that they do not affect the basic underlying mecha-
nism of either the weak or the strong superradiant re-
gimes.
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