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We present a linear stability analysis for coupled nonlinear solitonlike pulses propagating in opti-
cal guiding structures supporting two linearly and/or nonlinearly coupled modes. The analytical
predictions are well confirmed by numerical experiments.

I. INTRODUCTION

Optical soliton propagation in fiber waveguides sup-
porting two distinct modes has been theoretically investi-
gated by several authors in the past few years.!”!* The
relevance of this research effort for applications is two-
fold: In the context of fiber optics, optical pulses propa-
gating as solitons were initially proposed for the
transmission of information over long distances.!> From
the point of view of designing such soliton-based optical
communication systems, it is of interest to evaluate what
is the effect of changes in the polarization state, which
unavoidably occur in standard non-polarization-
preserving telecommunications fibers.’

On the other hand, it has recently been realized that
the fast-responding nonlinearity of fibers could also pro-
vide a means of processing optical signals before detec-
tion, thus eliminating the concern that electronic
bottlenecks will limit the maximum information
transmission speed.'®” 22 Broadly speaking, fiber-based
all-optical switching elements are two-mode devices,
e.g., nonlinear interferometers'®2>2? or nonlinear cou-
plers.!”71%2! It has been proposed®?* and recently
demonstrated?* that, if the pulsed signal is coded in the
form of solitons, significant improvements in the
efficiency (for a given switching power) of these all-
optical switches may result.

In single-mode fibers, solitons are well described by
solutions of the nonlinear Schrodinger equation!®?
(NLSE). Robustness and stability against perturbations
are the characteristic of these solutions. Conversely, ear-
lier numerical®!® and analytical'?> work has revealed that
instabilities may occur in the propagation of solitonlike
pulses in waveguides supporting two linearly coupled
modes. In fact, systems of coupled NLSE’s are, in gen-
eral, not completely integrable by means of the inverse
scattering transform,?® so that localized solitary wave
solutions do not necessarily correspond to stable bound
states of an associated scattering potential. In view of the
optical communication systems applications, these insta-
bilities would clearly be detrimental. On the other hand,
one might think of usefully exploiting such instabilities in
soliton lasers or in soliton-based switches. For example,
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high-gain switches could be obtained by seeding the in-
stability of a strong beam with a weak probe.

In earlier studies, special choices of the input condi-
tions and of the form of the coupler were selected.*!%13
To be more specific, a variety of soliton instabilities (in-
stabilities that occur using solitonlike input pulses) have
been pointed out for the case of two linearly coupled
NLSE’s both with (birefringent fiber*!®) and without
(nonlinear directional coupler!?) cross-phase modulation.
However, a global portrait of the different types of insta-
bility is still missing in the literature at this time. We
shall present here both analytical and numerical investi-
gations of the stability of solitary wave solutions of two
coupled NLSE’s which may represent a general class of
two-mode fiber-optic waveguides. Our treatment will elu-
cidate connections between earlier partial results, and,
through a global analysis of the instabilities, will reveal
that the picture is somewhat more complex than was pre-
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FIG. 1. Stability diagram for the solitary-wave solutions in
the parameter space (y,n«). The hatched (dotted) region shows
the domain of instability for the solution Eq. (11) (asymmetric
instability), and the dotted region shows the domain of instabili-
ty for the solution of Eq. (14) (asymmetric instability).
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viously appreciated. In particular, we shall identify two
types of instabilities leading to either the decay of solitary
waves into nonstationary solutions or to symmetry break-
ing.

II. COUPLED NLSE’S

We consider the situation in which, even in the pres-
ence of the nonlinearity, the field propagating in the fiber
can be adequately described in terms of two linear modes
of the waveguide. We therefore write the transverse elec-
tric field 6(X,Y,Z,T) as the superposition

6(X,Y,Z,T)=[6(X,Y)e (Z,T)

—iwgT

+62(X, Y)ez(z, T)]e y
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FIG. 2. (a) |u(z,t)|?> and (b) |v(z,1)|? as a function of time ¢
(with respect to a characteristic moving at the common group
velocity) and scaled propagation distance z for A4,=1,
A,=1.01, A=0, and nx=0.5. The initial perturbation is asym-
metric. As in all such figures, the intensity scales in (a) and (b)
are in arbitrary units and are different for the two components,
being normalized with respect to the peak intensity in each
component.
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where o, is the average frequency of the pulses, and
&,=¢§, are the transverse profiles of the linear guided
modes of the unperturbed structure, i.e., where e,
would not depend on (Z,T). In other words, we are deal-
ing with a perturbation analysis with respect to the near-
ly degenerate modes (&,,6,) by introducing an explicit
space and time dependence in the expansion coefficients.
Two distinct perturbation mechanisms contribute in
determining the evolution of the field envelopes e, ,.
Firstly, a linear coupling originates either from anisotro-
pies of the linear dielectric tensor, or from the close prox-
imity of two parallel guiding channels. Specific examples
of interest include the coupling between circular polariza-
tion modes in a birefringent fiber,*'>!® between linear
polarizations in a periodically twisted fiber,?! and finally,
between individual waveguide modes in a directional
coupler.>®1217.1% In addition, coupling and phase shift-
ing between the modes may occur due to presence of a
third-order nonlinear polarizability. Since we want to
maintain the treatment here on a general level, we shall
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FIG. 3. Asin Fig. 2, for nk=0.1.
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omit a derivation of the coupled-mode equations which
govern the evolution of e; and e,, and refer rather to the
wide literature on the subject discussed above. For the
most general case we shall consider the field envelopes
are taken to obey the following coupled-wave equations:

de; 1 9e; o 9%,

i — o +

oz Vv ar T2 a2 ke
+(R,le,|>*+R,|e,|?)e; =0, (la)

Oe; 1 0e; g 82e2

IBZ +i VT 2 372 + ke,

+(R1|92|2+R1|91|2)6‘2=0. (1b)

where V' =(38/0w)| ,:01 is the common group velocity of
the copropagating modes, SB(w) being the frequency-
dependent propagation constant, and oz'-=(623/amz)|;01
being the group velocity dispersion. Furthermore, R, ,
are nonlinear coefficients which have the form
R, ,=c ,09n,/c A, where n, is the nonlinear index
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FIG. 4. As in Fig. 3, with a symmetric initial perturbation to
the even solitary wave; 4, = A4,=1, A=0.5.
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coefficient, A is the (common) effective area of the
modes, and ¢, , are numerical factors which depend on
the specific form of the tensorial third-order susceptibility
in each physical situation. It is convenient to rewrite
Egs. (1) in dimensionless form as

.au 1 82u 2 2

iS5, 7> o2 +wv+ul?>+y[v[P)u=0, (2a)
. dv 1 azv 2 28

’_az+§'_a¢2 +ru+ (v +ylul?v=0, (2b)

where we have specifically chosen the case of anomalous
group velocity dispersion (i.e., @ <0), and we introduced
the following scaled variables (soliton units):

t=(T—Z/V)/T,, z=Z/Z.=|alZ/T},
u=(R,T*/|a|)"?,, v=(R,T?/|a|)'%, .

Here T is the pulse width of the soliton solution of the
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FIG. 5. Evolution of the odd solitary wave with 4,= 4,=1,
nk=—0.1, and A=0.01.
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NLSE (Ref. 1) k=kT?/|al, and ¥ =c, /c, is the ratio be- (a) 30
tween the self-phase modulation (SPM) and cross-phase

modulation (CPM) contributions.

III. STABILITY ANALYSIS

®
Q
In this section we shall discuss the stability of the soli- §
tary wave solutions to Egs. (2), which can be written in 8
the form
ul(z,t)=e*%g(1), (3a)
v(z,t)=me*g (1), (3b)

where n=x=1, and g(¢) is taken as real without loss of
generality. Since the solitary wave solutions given by
Egs. (3) correspond, in the continuous-wave limit, to the
even and odd modes of the generalized nonlinear coupler
described by Egs. (2), we shall label the two solutions (3)

as even (9= +1) and odd (n=—1) solitary waves. By o
substituting Egs. (3) in (2) we find that the function g (z) S
obeys R
1 °
A— +—-—=+(1+y)g’*=0, 4
(A—nK)g 2 32 (1+y)g 4)
the solution of which can be written as
A=L+nc, (5)
20
Time
@) FIG. 7. As Fig. 6, with nk=—0.2 and A=0.5.
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FIG. 6. Contour plot of the intensity components (a) |u(z,t)|?
and (b) |v(z,1)|? for the same conditions as in Fig. 5. FIG. 8. As Fig. 7, with nx=—0.3.
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1/2

Ity sech(t) . (6)

1
gl)= ‘—
We consider perturbations of the solitary wave solutions
of the form
ulz,t)=[g(t)+e(z,1)]e, (7a)
viz,)=n[g(t)+T(z1)]e™*, (7b)

where we assume |e€| << 1 and |T'| << 1. By substituting
Egs. (7) in (2) and using Egs. (2)—(7) we obtain the fol-
lowing linearized equations for the perturbations:

de 1 9%

—:)\‘ —_ 1"_______ 2 *

rw €— MK 2 a2 (e+€*)
—yg T+I*)—(1+y)g%, (8a)

ar 1 9°r

"————-:)\' —_ —_ a2 *

5, ' —nke 232 giur+r*)
—ygie+e*)—(1+y)g*l . (8b)

To proceed, we assume that both € and T" vary as
exp(iuz) where p is the eigenvalue. It can be shown that
for eigensolutions of Egs. (8) the eigenvalues p are either
pure imaginary or pure real. The resulting eigenvalue
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FIG. 13. Asin Fig. 11, with nk=—1.
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problem is, in general, very complicated, but some special
solutions can easily be found as we shall show below. In
particular, here we shall consider the stability edges for
which =0, and we set de/9z=0T /9z=0 in Egs. (8).
The problem is now to find nontrivial solutions for e(t)
and I'(¢) under these conditions. If we can find such
solutions for a given set of parameters (e.g., v, 7, k, etc.),
this indicates that the underlying nonlinear wave may be
unstable.

First we consider solutions of Egs. (8) for which
€(t)=T(t), and write e =€y +i€;, to obtain

1 1 azeR 2 .

2R TS o —3(1+y)gtleg =0, (9a)
1 1 9% 2 _

DR AT a7 —(1+y)g«t)e;=0 . (9b)

From Egs. (4) and (5) we see that solutions to Egs. (9) are
€g < 0g /0t, €, < g(t), for any combination of parameters.
This solution corresponds to a neutrally stable solution
which is always present.?’

Next we consider solutions such that e(¢#)=—T(2),
which leads to the following equations:

—

a) 200

150

100

DISTANCE

50
lul?

0
b) 200

—_

160

100

DISTANCE

50
vl?

-20 o] 20

FIG. 14. Contour plot of the intensity components (a) |u|?
and (b) |v|?, for nk=—0.25, y=0.25, A=0.01, and
A, =A,=(1+y)" 2
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Lt amme — L 2 2t)eg =
2 ERTINKER T ar? —(3—y)g*(t)eg =0, (10a)
R wa— e, 2t)e, =
5 €1 2mKe == or —(1+y)g“(t)e; =0 . (10b)

For k=0, and except for the case ¥ =0, a simple solution
of Egs. (10) is €4 =0, €;<g(t), which indicates that
nxk=0 is a stability edge. [It follows from Egs. (10) that
the stability properties depend on the parameter 74x,
which can be positive or negative.] For «70, Eq. (10b)
has the solution €;=0, and (10a) has a solution of the
form
1

_— 11
cosh’(¢) (1

ER(t)=

The parameter s can be determined by substituting Eqs.
(6) and (11) in (10a), which yields

s24s— 872 o (122)
1+y

1 s 3—

1 s s 3—v

y o3 — k=0, (12b)

from which we obtain

FIG. 15. Modal intensities (a) |« |? and (b) |v|?, for the same
conditions as in Fig. 14.
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o= —1+V14+83—7)/(1+y)

) (13a)
=1|3—r_1
"= 15y 2(1+s)l. (13b)

In Eq. (13a) we have chosen the positive root since we re-
quire s >0 for a bounded solution [see Eq. (11)]. Equa-
tion (13a) determines the consistent value of s as a func-
tion of ¥ and clearly we require y <3. Having deter-
mined s from y using Eq. (13a), the stability edges for this
solution can be determined using (13b). The stability
edges for this solution are plotted in Fig. 1 in the parame-
ter space (y,7k), and includes the line nx =0 as a bound-
ary. The hatched region was found to be unstable from
numerical simulations as discussed in Sec. IV.

In addition to the above solution there is also another
of the form

_ _sinh(z)

, 14
cosh®(¢) (14

GR(t)

where s is again given by Eq. (13a). In this case the sta-
bility edges are determined from

13—y 3
nK 2 |15y > (15)
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FIG. 16. Asin Fig. 14, with y=0.35.
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For this solution [Eq. (14)] to be normalizable we require
s > 1, which using Eq. (13a) becomes y < 1. The stability
edge for this solution is shown in Fig. 1, the dotted region
and below being unstable. As y approaches 1 the growth
rate of the instability vanishes leading to stability with
respect to this type of perturbation.

To understand the nature of the predicted instabilities
we first recall that we set e(¢)= —TI'(¢), so that the per-
turbed waves are like u(z,t)<g(t)+e(t), v(z,t)<g(t)
—e(t). Therefore, for €(t) given by Eq. (11), u and v be-
come different as the instability grows, leading to the ex-
change of energy between the modes. This is a classic
case of symmetry breaking since the direction in which
the exchange occurs is unpredictable, and is determined
by either initial seeding or fluctuations. We term this in-
stability asymmetric since energy is exchanged between
the two modes. In contrast, for e(¢) given by Eq. (14), the
perturbed waves u and v as given above are mirror im-
ages of each other around ¢t =0. Since g (¢) is symmetric
with respect to ¢, the two combinations g (¢)*e(t) corre-
spond to two pulses whose centers are displaced symme-
trically around ¢ =0: On the basis of this argument we
expect that the solitary waves will break apart temporally
as the instability develops. This we call the symmetric in-
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FIG. 17. Contour plot of intensities (a) |u|* and (b) |v|?, for

an antisymmetric perturbation to the even solitary-wave with
cross-phase modulation; k=0.2, y =0.2, A=0, 4, =(1+y) "2
=A4,/1.01,and n=1.

stability since no energy exchange occurs. Again this is a
type of symmetry breaking, but as we shall see in Sec. IV
both types of instability can also lead to nonstationary
solutions.

Finally, we remark that there probably exist other
types of instability for the solitary waves of Egs. (2).
Here we have found the simplest solutions and these have
been verified and investigated numerically. Indeed,
higher-order solutions (more field nodes) of the type dis-
cussed here are possible, but these require ¥ <0, which
we do not consider here. At the end of Sec. IV we
present results that suggest further instabilities that are
beyond the scope of the present analysis, in particular,
for y =3.

IV. NUMERICAL RESULTS

In this section we describe numerical experiments that
both support the predictions of the stability analysis sum-
marized in Fig. 1, and reveal the nature of the instabili-
ties. We have numerically integrated Eqs. (2) with initial
conditions close to the even or odd solitary waves given

)

Intensity €
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D/S{ance B

ntensity <
n

30 ST
O 7
T”he 30

FIG. 18. Evolution of solitary-wave component intensities (a)
|u|? and (b) |v]?, for an antisymmetric perturbation to the odd
mode. Here k=0.125, =2, A=0, 4,=(1+vy) '?=4,/1.01,
and n= —1.
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by Egs. (3). A modified version of the standard beam
propagation method (BPM) was employed that was
adapted to include the presence of the linear coupling. In
all of the following simulations, the initial data were of
the form

u (0,1)= A, sech(t —A),
(16)
v(0,t)=mnA,sech(t+4A),

where =1 as before, and 4, , >0 are the initial ampli-
tudes of the two waves. For the exact solitary wave solu-
tions we have A=0, and 4,,=A4,=V'1/(1+y). To
produce a perturbation to the solitary waves (3), we set
either A#0 and 4, ,= A4, or A=0,and 4,7 4,. In the
first case, the initial perturbation is clearly symmetric in
the manner discussed above, whereas the second case cor-
responds to an asymmetric perturbation of the solitary
waves.

A. Linear coupling and SPM

Consider first Eqgs. (2) without cross-phase modulation,
i.e., set ¥y =0, which corresponds to the nonlinear direc-
tional coupler (NLDC). Figure 2 shows the evolution of
the intensity profiles of both pulse u [Fig. 2(a)] and v [Fig.
2(b)] with propagation distance z. Here a small asym-
metric input perturbation is superimposed to the even
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FIG. 19. Contour plot for same conditions as in Fig. 18.
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solitary wave pair with nk=0.5, which should be unsta-
ble according to Fig. 1. Figure 2 shows that, following a
relatively short distance, an abrupt exchange of power be-
tween the two waves occurs, which results from the ex-
ponential amplification of the initial small asymmetry.
However, after a brief transient the evolution settles
down into a limit cycle or quasiperiodic power-exchange
regime. The amount of radiation which is emitted during
the process was found to be negligible.

In contrast, Fig. 3 shows that when n«k=0.1, the sym-
metry breaking leads to almost complete and permanent
energy transfer between the modes u# and v. Further-
more, a relatively large amount of energy is dispersed
during the collapse. Note that, in the two cases
(nk=0.5, 0.1), the distance over which the instability
first develops remains approximately the same, in spite of
the fact that for nk=0.1, the edge of the stability region
(nk=0) is closer. We therefore observe that, when the
instability is driven by an even perturbation, approaching
the stability edge does not significantly affect the length,
which is necessary for observing the collapse, but rather
leads to qualitatively different extents in symmetry break-
up.

It is also interesting to compare the evolution in Fig. 3
with that in Fig. 4, where all parameters are equal but the
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FIG. 20. As in Fig. 18, for nk= —0.1, y =2, and a symmetric
perturbation to the odd solitary-wave solution with A=0.5.
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initial perturbations are asymmetric and symmetric, re-
spectively. In each case the unstable asymmetric mode is
eventually excited, but the instability takes a longer dis-
tance to develop in the second case. Clearly this is be-
cause the initial perturbation has a smaller overlap with
the unstable solution. More important, however, is the
observation that the evolution exhibits the same type of
symmetry breaking as before, in spite of the fact that the
initial perturbation is symmetric.

Figures 5—-13 display the behavior of the odd-mode in-
stability,'> which occurs for mk <0 (see Fig. 1), for
different values of the coupling strength x. As is shown
in Fig. 5, given an initial slight displacement A=0.01, for
small values of nk the two solitary waves (3) repulse each
other, much in agreement with the perturbative predic-
tions of Ref. 12. However, for larger values of «, the sim-
ple potential model'? is inadequate for describing the be-
havior of the symmetric instability. By comparing Figs.
5-10, one notices the occurrence of several structural
transitions in the pulse-splitting phenomenon. (In Figs.
6—13 the pulse evolution is displayed using contour plots
of the pulse profiles.) Figure 5 shows that, for |ng«| <<1, a
relatively small portion of the energy of each solitary
wave is actually dragged along by the other pulse as they
split apart, and that both pairs of waves (one strong, one
weak) move at the same group velocity: One pair is ad-
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FIG. 21. Same as Fig. 18, for nk=—0.1 and y =3.
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vanced, the other retarded with respect to the linear
group velocity. However, for nk < —0.145, there is a
sudden growth of this secondary component, and the ini-
tial energy of each solitary wave is split evenly between
the two opposite directions (see Fig. 7). Moreover, each
pair of pulses moving with the same group velocity is
seen to periodically exchange energy in a manner very
similar to a linear directional coupler.

Figure 8 shows that when k= —0.3, the group veloci-
ty difference between the splitting pulse pairs is reduced.
Indeed, for nk=—0.4 (Fig. 9), the two waves lock to-
gether and merge into a single breatherlike waveform,
which is approximately time stationary (in the retarded-
time reference frame). This situation is maintained when
the coupling is increased even further (Fig. 10), although
the waveform evolutions may become rather asymmetri-
cal and an irregular power exchange occurs with propa-
gation distance. Figure 11 shows the decay and the oscil-
latory instability which appears under the same condi-
tions as in Fig. 10, but with a much smaller initial dis-
placement (A=0.01 against A=0.5). By comparing
Figs. 11-13, one observes that the solitary-wave decay
route is essentially the same for larger values although
the growth rate of the unstable mode is considerably re-
duced by increasing the strength of the linear coupling.

B. Linear coupling, SPM, and CPM

Up to this point we have examined soliton instabilities
on the line y =0, that is, in the absence of cross-phase

FIG. 22. Evolution of soliton component intensities (a) |u|?
and (b) |v|?, for the same conditions as in Fig. 21.
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modulation. We shall now relax this restriction and
check the predictions of the linear stability analysis for
v#0 (see Fig. 1). Figures 14—17 illustrate the effect of
progressively increasing the CPM (y) with k= —0.25,
which corresponds to the odd solitary wave, for the case
of a symmetric perturbation (A=0.01). For y=0.25
(Figs. 14 and 15), the solitary-wave solution splits into
two pairs of pulses, in a manner very reminiscent of the
zero CPM case (see Fig. 8). However, at a later stage of
the evolution, these localized wave packets end up decay-
ing into a broad dispersive background. This collapse
phenomena occurs at shorter propagation distances as y
is increased. This is illustrated in Fig. 16 (y=0.35)
where the collapse is seen to occur right at the onset of
instability.

Let us now consider the effect of CPM on the even-
mode instabilities leading to asymmetric breakup or
power exchange between the solitary-wave pairs given in
Egs. (3). When ¥ <1, as occurs for example in the case of
a high-birefringence rocking rotator filter?! where y=3,
the qualitative features of the instability are similar to the
Y =0 case (compare Figs. 2 and 17). Again, Fig. 17
shows that a small initial asymmetry is amplified by the
growth of the even-mode instability, leading to an ex-
change of energy between the waves u and v. This tran-
sient is followed by a periodic regime of interaction be-
tween the propagating pulses.

The situation appears to be rather different for y > 1:
Figs. 18-20 display symmetry breaking of the perturbed
odd solitary-wave solution of Eqs. (2) with y=2. This
corresponds to the birefringent silica fiber case, where u
and v represent the circular polarization components and
the unstable 7= —1 solitary-wave pair represents a pulse
traveling along the fast axis of the fiber.#®7 %13 Figures
18 and 19 show that, unlike the ¥ =0 case, the instability
does not lead to a permanent energy imbalance or sym-
metry breaking between the circular polarization modes;
rather, complete power transfer between u and v modes
periodically occurs along the fiber. This periodic regime,
which follows the breakup, is accompanied by some ener-
gy loss into radiation.

Figure 20 shows that this type of asymptotic evolution
of the instability is quite independent of the choice of a
specific form for the initial perturbation. Here we have
imposed a relatively strong symmetric temporal displace-
ment A=0.5. The nonlinear stage of the evolution of the
instability is very similar to the former case (Figs. 18 and
19).

Using numerical calculations we checked the stability
edges shown in Fig. 1 and found excellent agreement with
the analytical predictions. However, in our numerical
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study we found evidence of instabilities which are not in-
cluded in our linear stability analysis. In particular, we
found instabilities for ¥ =3, which coincides with the re-
sults previously reported by Blow, Doran, and Wood.*
The above results for the case ¥ =2, which corresponds
to the coupling of circular polarizations in silica
birefringent fiber, should be compared with the findings
in Ref. 4. In that work symmetry breaking involving per-
manent energy transfer from the fast to the slow linear
polarization mode was reported. Figures 21 and 22
display solitary wave evolutions for y =3, with an initial
asymmetrical perturbation superimposed on the odd un-
stable mode (fast axis mode). Some radiation is emitted
during an initial transient which accompanies the decay
of the coupled soliton, however, for larger propagation
distances the power exchange between the circular polar-
ization modes exhibit a quasiperodic behavior and ap-
parently no permanent relaxation into a stable state is ob-
served.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the stability of cou-
pled solitary waves in optical guiding structures support-
ing two linearly and/or nonlinearly coupled modes. The
linear stability analysis was found to accurately predict
the stability properties of the nonlinear problem, and also
gave some insight into the nature of the types of instabili-
ty. Numerical simulations of the nonlinear evolution
equations revealed a range of phenomena including sym-
metry breaking and generation of nonstationary solu-
tions.

The analysis given in this paper should provide a glo-
bal understanding of the dynamics of solitons in
coupled-mode problems as appear in nonlinear fiber op-
tics. Our treatment encompasses the work of Menyuk’
on the birefringent fiber, and that of Trillo et al.'"!3 and
Abdullaev, Abrarov, and Darmanyan12 on the nonlinear
directional coupler. We anticipate that an extension of
the present work shall incorporate the results of Blow,
Doran, and Wood* for the birefringent fiber.
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