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The resonance fluorescence spectrum of linear and nonlinear oscillators driven by a mono-
chromatic field of frequency coo, near the resonant frequency co, is calculated both classically and
quantum mechanically. The result for the linear oscillator is the same in both calculations: a 5
function at coo. For the nonlinear oscillator, however, the classical and quantum-mechanical spectra
near resonance are qualitatively different: Classically, a 6 function at coo is obtained; quantum
mechanically, a weak-field calculation leads to a 6 function at coo together with finite-width peaks
nearby. An intuitive explanation for the difference is suggested by the examination of the
quantum-mechanical energy-correlation function for the linear oscillator. This function describes

energy oscillations with frequencies within a band centered at ~0—~. The oscillations can be inter-

preted as the beating of the driven oscillation with those produced by the vacuum fluctuations (the
latter having a frequency spread of the order of the relaxation constant). Because of the nonlineari-

ty, the energy oscillation modulates the effect of the driving field to produce sidebands. Higher-
order processes produce additional peaks. A heuristic picture of vacuum fluctuations is developed.

I. INTRODUCTION

The resonance fiuorescence spectrum (RFS) of a two-
level system (TLS) subject to a monochromatic driving
field has been investigated both theoretically' and ex-
perimentally, ' and is well known. For a weak driving
field, in lowest order of the driving power, the spectrum
is a 6 function at the driving frequency. This is the same
spectrum as that obtained from a harmonic oscillator
(HO) at all driving levels, and is consistent with the com-
monly accepted principle that for sufFiciently low excita-
tion oscillators behave linearly. In the next higher order
of driving power, the TLS spectrum develops two
symmetrical sidebands at ~0+6, where coo is the driving
frequency and 6=coo —cu, cu being the resonant frequen-
cy of the TLS. At the opposite extreme, that of a strong
driving field (sufficiently near resonance), the spectrum
also exhibits a 5 function at co& and two sidebands, but
here the sidebands are located at coo+0, where fL is the
Rabi frequency. The existence of strong-field sidebands
can be explained in simple semiclassical terms. When the
TLS, in the absence of coupling to the free-space radia-
tion field, is driven at resonance, its energy (expectation
value), if initially at the lower level, will oscillate between
the two levels in what is known as Rabi oscillation. Con-
sider, now, the imposition of coupling between the TLS
and the radiation field. For a sufficiently strong driving
field, this coupling may be considered to be a perturba-
tion which will affect the Rabi oscillation only slightly,
since the power radiated is small compared to the power
interchanged with the driving field. Radiation by the
TLS, both spontaneous and induced, is modulated by the
Rabi oscillation, and, thus, sidebands at the Rabi fre-
quency are produced. (A more detailed and quantitative
discussion of the effect of the radiation field —along the
same lines —is given in an earlier paper. '

) The weak

driving-field sidebands, on the other hand, seem to indi-
cate the existence of modulation at the frequency
What is the cause of such modulation, if, indeed, it exists.
Since the TLS behavior must become similar to that of a
HO as the driving power vanishes, we look for an answer
in the differences between the TLS and HO that arise in
the low-power regime. In this regime, there appear to be
two important differences. One is the nonlinearity of the
TLS, and the other is the fact that, for exactness, the TLS
must be described quantum mechanically, while the HO
can be described, formally, either classically or quantum
mechanically. One is thus led to the general problem of
investigating the RFS of linear and nonlinear oscillators
both classically and quantum mechanically.

While there exists only one type of linear oscillator,
there exist many types of nonlinear oscillators, dis-
tinguished by the kind of nonlinearity. We choose for de-
tailed analysis a particular type, but we will show later
that some significant results are applicable to nonlinear
oscillators in general. Since a comparison of classical and
quantum-mechanical results is sought, and since a
motivation for the present problem comes from the TLS
spectrum, we select for consideration a type of nonlinear
oscillator that can be described both classically and quan-
tum mechanically, and contains as a limiting (quantum-
mechanical) case the TLS. Furthermore, we use a nota-
tion that can be read both classically and quantum
mechanically, the dynamical variables being either c
numbers, classically, or (Heisenberg-picture) operators,
quantum mechanically.

II. NONLINEAR OSCILLATOR

The type of nonlinear oscillator to be considered may
be called an angular momentum oscillator (AMO). It is
described by the three (dimensionless) angular momen-
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turn components I, , Iz, and l3 that obey the relationship

[I, , Ik ]=ii„,
where j, k, and n, are the numbers 1, 2, and 3 permuted
cyclically, and the bracket stands for the commutator,
quantum mechanically, or the Poisson bracket multiplied
by i (with respect to dimensionless coordinates), classical-
ly. The AMO Hamiltonian is given by

~AMO

where A is used for purely dimensional reasons. The
equation of motion for any variable V is given by
iAV=[V, H], which leads to

l2 =col, , l3 =0 .

From these, one obtains

and momentum, respectively, of a HO. To complete the
notational relationship between the AMO and the HO,
we consider the raising and lowering operators for the
AMO

I+=L+exp(+ia/t)=2 ' (I, +il2),

for which we have

[I+ I —]=[L+ L-]=I3 .

L+ are the time-reduced variables, and are constant for
the free AMO, as is l3. Setting

we obtain, as expansions in powers of e,

I3=10(—1+ex x+ —'e x x + )

[x,x ]= 1 —ex tx ——'E x x + . (2.2)

It is seen that both I] and l2 oscillate with frequency co.

The AMO description is made unique by the designation
of a total angular momentum

I +I +I =lo(10+A, ), (2. 1)

where

0 classically

1 quantum mechanically .

Classically, lo is arbitrary, while quantum mechanically,
lo, the total-angular-momentum quantum number, may
assume only integral and half-integral values. The TLS
corresponds to lo =

—,'. The range of I 3 is given by
—Io ~ I3 ~ IO. From Eq. (2.1), we have

I3 =+la[1+agIO
'

Io (I +I —)]'
It is reasonable to expect that the similarity between

the classical AMO and the quantum-mechanical AMO
will be greatest for large lo. We, therefore, consider at
first lo))1. We will also consider the driving power
sufficiently low so that the energy of the AMO remains
well below that for saturation (which is indicated by
(13 ) =0), and is thus negative. Introducing the notation

q=l ' I, , p= —lo ' I, e=lo ',
one can write

13 = —ID[ 1 —e(q +p —k)]'

An expansion of the square root in powers of e leads to

E =I3+Io= —,'(q +p —
A, )+ —,'e(q +p2 —A, )2+ .

where E is the excitation energy, that is, the energy above
the ground state, in units of Rcu. For the commutation re-
lationship of q and p, one obtains

[q,p]=i[1—
—,'e(q +p —k)+ . ] .

Since, for a HO of (dimensionless) coordinates q and p,
we have E= —,'(q +p —k) and [q,p]=i, it is seen that
for e~o, q and p become the (dimensionless) coordinate

E—x x+ —Ex x +''
2

It is clear that as e vanishes, x exp( i cut )—and
x exp(icgt) become the annihilation and creation opera-
tors for the HO, and x and x are the corresponding
time-reduced operators. The parameter e may therefore
be regarded as a measure of the nonlinearity of the AMO.
As e vanishes, the AMO becomes an HO. In the present
analysis, we wi11 consider only the case in which either e
or E is sufficiently small so that the expansion of I3/Io
can be terminated with the e term.

III. INTERACTION WITH THE FIELD

The AMO will be considered coupled to the elec-
tromagnetic field through an electric dipole moment
d =pl ] =ppq, where pa= lo p. For purposes of studying
the RFS, we consider the electromagnetic field to consist
of both the free-space radiation field and a prescribed (c-
number) driving field near resonance. The free-space field
can be described by an infinite set of standing-wave
modes inside a large cube of dimension L, made denu-
merable by the requirement of periodic boundary condi-
tions, with the Hamiltonian of the kth mode given by

where ~k is the mode frequency, and ak and ak are the
photon annihilation and creation operators, respectively
(or classically, complex variables), obeying the relation-
ship [ak, ak]=1. The electric field of the kth mode is
specified by

E/, =i (27rRco/, )' u/, (r)(ak —
a/, ),

where uk(r) describes the spatial dependence of the mode
and is normalized over the volume L . The free-space
field is given by E„d=gk Ek. With the notation

a =dek k

the interaction between the AMO and the free-space field
is described by the interaction Hamiltonian
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H,',d
= —E„d-d of approximations that take note of the special character

of the free-space field, and include part, but not all, of the
rotating-wave approximation. In the present notation,
these equations are

where

7k =PP uk(r. )(4~~k /&)'"

(3.1) x =(l 3/l p)[Ae ' '+F+(/3 iP—~)x] i f3—3xl~/lp,

and the corresponding H.c. equation. Here, we have

(4.1)

r, being the position of the AMO. Strictly speaking, the
definition of H„dand of the coupling constant yk is good
only for coupling to modes of wavelength long compared
to the dimensions of the AMO. For coupling to modes of
shorter wavelength, the AMO cannot be considered to be
a localized dipole, and the coupling becomes weaker.
Without going into a discussion of the spatial properties
of the AMO, we will assume that for cok &&co, yk be-
comes suSciently small so that integrals over cok, which
will occur later (when summations over k are converted
to integrals over cpk}, converge. The driving field can be
specified by

Ed =2Epsin( tempt +8 )

which yields an interaction Hamiltonian

where

0=2 '~ (Ep pp/fi)exp( i 8) . —

(Ep)M, /A' is known as the Rabi frequency. ) The total
Hamiltonian is given by

H=HAMo+QHk+H„d+Hd .
k

Since the present analysis will be based on differential
and integral equations, initial conditions need to be
prescribed. The coupling between the AMO and the free
space field will be assumed to have begun sometime in the
distant past, say, at t= —tp, when the field was in its
ground state. The field ground state will be denoted by
the bra and ket vectors ( ~

and
~ ), respectively. The cou-

pling to the driving field may be assumed to begin at an
arbitrary time. However, since our interest, for purposes
of obtaining the RFS, lies in steady states only, and not in
transient phenomena, we assume that coupling to the
driving field also begins at —tp. In the following, it will
be necessary to refer to Ak( —tp). For notational simpli-
city, we set Ak( —tp)= Ak ', and let tp become infinite. It
should be noted that in the absence of coupling to the
AMO, Ak(t) = Ak '. The zero-point oscillation of the kth
mode is described by Ak 'exp( i cok t ), and t—he superposi-
tion of the zero-point oscillations of all the modes consti-
tutes what are known as vacuum fluctuations. Quantum
mechanically, (

~ Ak
' = Ak '~ ) =0, and classically,

w'"=o.
k

IV. EQUATIONS OF MOTION

Based on essentially the above Hamiltonian, equations
of motion in which the unknowns are AMO variables
only have been derived previously, ' with the utilization

P= —,'ttp(~p)y (co),

F i ~ (p) 1 (tk)l, Cd )l
p~yk k

k

le ~ f dt's p(~ )l' (co )
0 CO

/33= 4 I dc@'p(co')y (~')
0 CO +CO

where y (cp') is the value of } k averaged over a small fre-
quency range about cp', and p(co') is the density of modes
at co'. There exists, also an equation for 13, but it will not
be needed in the present analysis, because l3 will be ex-
pressed in terms of x and x . These equations of motion
can be read classically by considering x and I, to be c
numbers, and setting F=O. So far, they are valid for all
excitation energies, above saturation as well as be1ow sat-
uration.

It is instructive to examine the physical meaning of F.
We note that Qe ' ' and F occur as a sum in the equa-
tions of motion. Since Qe ' ' describes the effect of the
driving field on the AMO, one can regard F as the
description of the effect of the vacuum fluctuations (VF)
on the AMO. These are both Auctuations at a given time
with respect to a quantum-mechanical ensemble of identi-
cal systems (quantum fluctuations}, and fluctuations in
time in any one system (since they are a superposition of
all the zero-point oscillations). However, one must ap-
proach the concept of Auctuations in time with caution,
since the VF (or zero-point oscillations) cannot do work.
Quantum mechanically, ( ~F =F ) =0, and classically,
F=O. Neither F

~
) nor ( ~F vanishes, and there will be

need to consider expectation values of products of the
form

(F( /t) (Fpt), . . . , (F„t))F(t„)),
where F stands for either F or F . Calculation of these
quantities, has been shown to be given, for present pur-
poses, as follows

(F(t, )F (t, ))=2AP5(t, t, ), —
(4.2)

(F(t&) F(t„))=0, n odd

a —f
X (F(t, )F'(t, ) )

X (,F(t, )F (tI)), n even (4.3)

where the summation is taken over all possible combina-
tions of different pairs of the indices 1, . . . , n, with the first
index of each pair less than the second index, that is, with
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the order in each pair the same as in the original product.
It can also be shown that [F(ti ),F (t2)]=2p5(t, —t2)
holds as an operator relationship.

We return to the equations of motion for the AMO
[Eqs. (4.1)] and limit our consideration to energies well
below saturation. We can now substitute for l3 its expan-
sion in terms of x and x (up to order e ) from Eq. (2.2).
Writing

13 = /o( —1+ eE ),

where xp satisfies the algebraic equation

(e~xo~ + —,'e ~xo~ )[fl+xo[P —i(P2+/3, )]I

=(/3 i—5)xo+0 .

The solution of this algebraic equation can be expanded
as a power series in e. The zeroth order solution, that for
the classical HO, is

(pj
0 p

where, it is recalled, E =x x + —,
' ex x, we obtain

x = —Qe ' ' F [P—i (—P—2+P3)]x

+eIE[Qe ' '+F+(f3 i/32)—x] i/33x—EI (4.4)

and higher-order solutions will involve nonlinear terms in
Q. It is interesting to note that for A=p2+p3 (which
brings the driving field into resonance with the uncoupled
AMO), an exact solution is given by

+(f3—ip2)x(t, ))

ip3x(—t, )E(t, ) I . (4.5)

and the corresponding H.c equation. The constants f32
and P3 account for a radiative frequency shift which has
both an energy-independent part and energy-dependent
part. The energy-independent part can be absorbed into
co by setting co'=co —(P2+P3) and dropping the prime.
The differential equation can then be cast into the follow-
ing integral equation (recalling that the initial time is tak-
en at —~)

—i At
x= n ——f dt, e ' F(t, )

p —iA

+e dt~e ' E t& Qe '+F t&

P i (P2—+P3 )

It is not of present interest to find higher-order solutions
of the algebraic equation for general A. What is of in-
terest (in view of the quantum-mechanical results to be
derived later) is the fact that the RFS of both the linear
and nonlinear oscillators, derived classically, is a 6 func-
tion at the driving frequency, given, according to Eq.
(5.1), by

P(cu') =2'~ lx o l

2&(~' —~o)

B. Quantum-mechanical analysis: Linear oscillator

In the quantum-mechanical treatment, we consider
first the HO, that is, the case e=0. From Eq. (4.5), we
have

V. RESONANCE FLUORESCENCE SPECTRUM

The RFS can be described by the time average of the
expectation value of the power radiated into the free-
space field per unit frequency range. An expression for
this quantity has been derived previously' and is given,
for the range ~co' —co~ &&co, which is the only range we
consider, by

—id, t

oo

Since ( ~F =F
~
) =0, this yields

(x)=x„,
in''e' '

(x (t)x(t ~) ) = — =x„(t)x„(t—~),

(5.2)

P(o)')= —A'co f di (x (t)x(t —~) ),„e ' ' "'+c.c. ,
7T 0

(5.1)

where the subscript "av" indicates a time average. This
expression is valid both classically and quantum mechani-
cally.

A. Classical derivation

The classical derivation of the RFS will be considered
first. A solution of the integral equation, read classically,
is given by

x =xecl 0

(E)=E,j
——~II~ (P +g ) (5.3)

as expected from the correlation function for x. Howev-
er, for the (symmetrized) correlation function of E, we
obtain

PHo(co') =2Pfico 5(co' —co),
/ni'

p2+ +2

where the subscript "cl" stands for "classical. " The RFS
of the HO is, thus, the same quantum mechanically, as it
is classically. However, this is not the end of the story.
Let us examine the excitation energy of the HO, given by
E =x x (in units of fico). We have, of course,

0 Q
—,'(E(t)E(t —~))+c.c. = + — f dt, f dt2e ' ' (F(t, )F (t2))+c.c.

(p2+ +2)2 2 p2+ +2

) +k e 'cosA~,
Q2

p2+ Q2
(5.4)
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where use has been made of Eq. (4.2). Classically, the re-
sult is just what would be expected for a precisely defined
constant energy. Quantum mechanically, however, the
correlation function resembles that for an ensemble of en-
ergies, each one of which has not only the classical con-
stant component, but also a superposition of oscillatory
components of random phase, with frequencies distribut-
ed about b, with a spread of 2p. It is natural to inquire
how quantum theory produces such an oscillation of the
energy. The mathematics indicates that the VF are re-
sponsible for this oscillation. The VF are, indeed, a ran-
dom superposition of zero-point oscillations, but these
are not ordinary oscillations, since, as mentioned earlier,
they cannot do work, and energy cannot be extracted
from them.

In order to obtain an insight into the oscillation of the
HO energy, we look at the excitation-energy operator,

—,
'n'

(p2+ g2)1/2

A[0] '~~
Pk Ak

[p2+ ( )2]1/2

where yk is the phase angle of (p+ib )[p i(ter,——o1)].
The expectation value of these terms vanishes, of course,
since ( Ak ') =0, but we see here, in any one member of
the ensemble over which the expectation value is an aver-
age, exactly what was conjectured on the basis of the
correlation function: a superposition of oscillatory corn-
ponents with frequencies distributed about 6 according
to a distribution of width 2p.

Let us replace the operator Ak ' by a complex c num-

ber Ak, of random phase Ok, that yields the same energy
for each mode as the quantum-mechanical zero-point en-

ergy, and has the same expectation value as Ak '. This
constitutes a replacement of the quantum-mechanical
zero-point field of each mode by a classical random field,
which will be referred to as the "c field", with

A c 2
—1/2 ' k

k

where Ok has a Oat probability distribution. Denoting by
the subscript c the expression for any operator in which

Ak
' is replaced by Ak, we have

(F, ) =( A„')=0,

as compared to

(A' 'At' ')=I, (A ' 'A' ')=0,k k & k k

and

—ib, t

+J' dt J'' dte

Substituting for F, from Eq. (4.1), its definition in terms
of the vacuum field, the cross terms can be written as

as compared to

(F (t1)F(t 2)) =0, (F(t2)F (t))) =2P5(t) —t2) .

t E,(t)E, (t —r) ) = (E, ) + e 'cos(hr)

—2P~ (5.5)

The damped oscillatory term in this (classical) correlation
function is identical to that in the quantum-mechanical
correlation function. As seen more explicitly in the
operator expression, the energy oscillation is the result of
the beating of the driven oscillation at coo with the oscilla-
tion produced by the c field (or, formally, by the VF) that
is centered around o1 with a width of 2p. The existence of
additional terms in Eq. (5.5), in comparison with the
quantum-mechanical results of Eqs. (5.3) and (5.4), is ac-
counted for by the fact that the c field can do work while
the VF cannot. Thus the c field imparts an average ener-
gy of —,Ace to the HO, indicated by the additional term in
the expression for (E, ), with a dispersion indicated by
the last term in the expression for (E,(t)E, (t r)). —
(This energy is just the quantum-mechanical zero-point
energy of the HO. Although this fact may, perhaps, ap-
pear coincidental at first glance, it is explained by the ob-
servation that the c field causes the HO to come into
"thermal" equilibrium with the free-space field. ) These
results indicate that, as an intuitive tool, one may think
of the VF as real (c-field-type) iluctuations, but only with
respect to those effects that do not involve, directly or in-
directly, work by the VF. Thus the VF can produce a
modulation of the HO energy, but no increase in the
average energy. More particularly, the VF can produce
amplitude oscillations in the HO [represented by the
second term in Eq. (5.2)], with the same frequency distri-
bution as that produced by the c field, which can mix
with other frequencies to produce beats, but cannot do
work on their own, or increase the expectation value of
the energy. These amplitude oscillations may be regard-
ed as the zero-point oscillations of the damped HO.

C. Quantum-mechanical analysis: Nonlinear oscillator

We proceed to the quantum-mechanical treatment
of the nonlinear oscillator, that is, the case e&0. Since
the RFS is derived from the correlation function
(x (t)x(t —r) ), we will utilize expressions for the vec-
tors ( ~xt and x

~ ), for which the equations are simpler
than those for the corresponding operators. An integral
equation for x

~
) is obtained immediately from the opera-

tor equation (4.5) by dropping the terms containing F ex-
plicitly, since F

~ ) =0. Now, the effect of the constants p~
and p3 in Eq. (4.5) is the introduction of an energy-
dependent shift in the resonant frequency. Since it is not

The scheme of Eq. (4.3), which is characteristic of a
Gaussian random process, remains unaltered (except that
the ordering in each pair is of no consequence). A calcu-
lation then yields

i@i'
p+6,
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unreasonable to assume that this shift is small, and will
not affect significantly the main features of the RFS, we
will ignore the shift, for the sake of simplicity, and ap-
proximate by dropping the constants pz and p3. The
equation for x

l ) now reads

—p(t —t j' F(t, ),
—iht

(1,0)

p ib,—
x'"' '=x '"' '=0 for n ) l,

(5.7)

—ihtxl)=- —id

+e dgie

the last equation being a statement of the fact that for a
linear oscillator, x must be linear in the driving field. We
also obtain easily

(l ' ' '= ' ' 'l)=0 fo 11

X[x (t, )x(t) )+ ,'ex—(t,)x2(t, )]

X[Qe '+px(t, )]l ) . (5.6)

( Ix '""=x'"'"l) =0 for n )3,
'l)=0 for m)0.

(5.8)

Formally, this is the same equation as the classical equa-
tion for x. One sees immediately that, for 6 =0, the solu-
tion is

xl&= —(~Imp)l& .

This result —and therefore the spectrum —is the same as
that for the classical AMO (with p) =p2=0), and that for
the HO. Inspection of Eq. (5.6) shows that for b, =0 the
nonlinear effect of the driving field is cancelled by the
nonlinear eff'ect of the dissipation, so that x

l ) (and the
spectrum) become independent of the nonlinearity. Such
independence does not exist for nonvanishing 5, in which
case the solution is much more complicated.

It is apparent from either Eq. (4.4) or (4.5) that for
sufticiently small excitation energy the nonlinear term be-
comes negligible, and the AMO behaves like an HO, in
accordance with the previously mentioned principle that
nonlinear oscillators behave linearly for suKciently small
excitation. In order to investigate the effect of the non-
linearity on the spectrum (for general b, ), we investigate
the transformation of the spectrum as the driving power
increases from that in the linear regime. We will use per-
turbation theory with not only e, but also with the quan-
tity lQl(p +b, ) ', which is the value of l(x)l in
the linear regime, as perturbation parameters. The
perturbation-theory order will be indicated by a
parenthetical superscript with two indices, the first refer-
ring to the power of lQl(p +b, )

' and the second to
the power of e. Thus x'"' ' will indicate a quantity pro-
portional to 0"Q"e, where r+s=n. The various or-
ders of the RFS will be given by the expression

P("' )(co') = fico f dr—(x (t)x(t —r) ),'"„
0

Xe '"' "'+c c

It is obvious that n must be even, since the power emitted
into the field cannot depend on the phase of Q. [It
can also be shown that the time average of
(x (t)x(t —r) )'"' ' vanished for n odd. ]

In the calculation of the function (x (t)x(t —r) )'"'
there will be need of both the operators x and the vectors
lx ) of various orders. By inspection, we have, from Eq.
(4.5),

The lowest-order spectrum is P' ' ', which is, of
course, the same as the HO spectrum:

P( ' '(co')=P (co')= ' 6(co' —co ) .
2P)chico I II

HO pP+ g2
(5.9)

ib, eQlQl e

(p +)5 )(p—ib, )

2e
l
0

l

'6'e '
(x (t)x(t —7-) &" "=—

(p2 +Q2 )3

(x (t)x(t r))—(„)
(p2+ Q2 )2

x(3, ))l ) (5.10)

which yields

2 2
p(4 ))( I) 2elQl )5 p(2 ())( s)

(p2+ Q2 )2

This is a higher-order correction to the lowest-order 6-
function spectrum at the driving frequency, and is due to
the nonlinearity. This result is the same both classically
and quantum mechanically.

We consider, next, P' ' . The (4,2) correlation func-
tion is given by

4 2

(xt(t)x(t —r))' '= g g (n, m) (4—n, 2 —m) .
n=Om =0

Of the 15 terms on the right side, only three do not van-
ish, and we obtain

The next higher-order spectrum in e is P' '', which is
determined by the correlation function ( x ( t )x ( t —r )

Introducing the shorthand notation (n, m ) (r, s) for
(x " '(t)x'"'(t —r)), we have

2 1

(x (t)x(t —r))( '''= g g (n, m) (2 —n, l —m) .
n =Om =0

It follows from Eqs. (5.7) and (5.8) that this function van-
ishes. In fact, inspection shows that (x (t)x(t —r))' '"'
vanishes for all m )0. This result is, again, an illustra-
tion of the fact that in lowest order of the driving power
the AMO behaves like an HO. It also follows that P'"' '

vanishes for n )2, which is a statement that the HO spec-
trum is linear in the driving power. Proceeding further,
and noting that the only nonvanishing terms in
(x (t)x(t —r))' "are (3,1) (1,0) and (1,0) (3, 1), we ob-
tain
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(x (t)x(t r—)) '=(3,2) (1,0)+(2, 1) (2, 1)

+(1,0) (3,2) .

For ( ix ' '', a simple calculation yields

@42

2(/3+i 6 )

)((e2it. t()
)

2i ht

and for ( ix ' ' ', a lengthy calculation yields

(5.1 1)

Q4 3~2(ixt"2)=, f dt, f dt, F(t, )F(t, )
(p+ib, )

t3(2—t —t( —t2) Pe '
)

it(.(t+2t() 1 ih(t+2t2)'+ —e
P—ib, ' 2

—t3(t —t2) P+liI), i (t)2t +t )(it),(t)+2t2)+ —,'e e ' —e

In the derivation of the last term of ( ix ' ' ', utilization was made of the equality

(iF(t, )F (t, )=2AP6(t) t, )(i—,

(5.12)

which follows from Eqs. (4.2) and (4.3). Only this last term contributes to (3,2) (1,0) and (1,0) (3,2); the results ob-
tained are

1+ ~+ 1
(t3 ~ +

(p2+ g2)3 4 g g (@2+g2)
(5.13)

($2+&2)2 [p2+(co' —co) ][P +(co' —co —2b, ) ] (P +& )

It is seen that P ' (co') is due entirely to both the VF (2nd

the nonlinearity of the oscillator. The second term in the
curly brackets is merely a higher-order correction to the
5 function at coo, but the first term exhibits new spectral
elements, two symmetrical sidebands at coo+5, of width

2P. How can the presence of these new elements be un-

derstood intuitively? Any such understanding must be
based, of course, on the combined eA'ect of the VF and
the nonlinearity. Here, the energy oscillation produced
by the VF in the linear regime becomes significant. Due
to the nonlinearity, the forced oscillation produced by the
driving field is energy dependent. As was shown previ-
ously, the energy oscillates, due to the VF, with a range
of frequencies centered at b, and having a width 2P. This
energy oscillation modulates the radiation of the oscilla-
tor, producing (as modulation does classically) symmetri-
cal sidebands of width 2)(3 at coo+6, . In fact, these side-
bands may be regarded as observable evidence of the
modulation, and thus, of the energy oscillation.

As was done in the case of the energy oscillation, we
investigate mathematically the above intuitive explana-
tion by replacing the VF with the c field. We can expect,
of course, extraneous terms associated with work done by
the c field, and these should be discarded. In order to
have a somewhat formal principle for discarding terms,
we derive an expression for the average rate of work
d8'/dt done by the c field. Considering the c field as
prescribed, one obtains [from Eq. (3.1)],

dW
(

.
)

dt

k

X (x "e'"'+x e ' '))
d

C

Neglecting the time variation of x, compared to that of
exp(i cot ), and using the rotating-wave approximation, we
obtain [noting the defintion of F in Eq. (4.1)],

d8' = —Ace(F, (t)x,*(t)+F,*(t)x,(t) ) .
dt

In lowest order we have

= —Ace(F, (t)x*' (t) )+c.c.
dt

=A'co f dt, e ' (F,(t)F,*(t, ))+cc.
If x(n™has a term x,'"' ' of the form

x,'" '(t)= f dt, f(t, t, )F,(t, ),
where f(t, t, ) is a function that does not contain either
I', or I',*, then the rate of work done by the c field due to
this term is
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d~{n,ml

dt

x*{2"=e dt ec

—fico f dt, [{F,(t)F;(t, ) )f '(t, t, )+ (F,'(t)F, (t, ) )f(t, t, )]

A—cop f dt, 6( t t,—)[f ( t, t, ) +f '( t, t, )]= —,' fice—ip[f ( t, t ) +f '( t, t ) ] .

Thus, if f(t, t) has a real part, then terms in the correlation function in which x,'"' ' or x,*'"' ' appear are due to
higher-order corrections to work done by the c field, and should be discarded.

The correlation function responsible for the sidebands in P' ' is (x ' "(t)x' "(t r—) ); the corresponding c func-
tion should therefore be examined. From Eq. (4.5) (with p2=p3=0) we have

"
I [x,'(t, )x, (t, )]""[Q*e'"+px,"' "(t, )]+[x,'(t, )x, (t, )]""[F,*(t, )+px,*""(t,)]j .

In accordance with the above "discarding principle, " the
only term that should not be discarded in x,' "is

ef dt e l x d i 1,0)(t )x(0,0)(t )1 C 1 c 1

X[n'e' "+px""'(t,)],
which displays explicitly the e6'ect of the oscillation of
the energy, and yields

@42
x," '"(t)= f dt, e ' F, (t, )

2(P+ib )

2iat (
)

This is, formally, exactly the same expression as that of
( ~x

' ''(t) of Eq. (5.11), with F, substituted for F. Thus
the correlation function (x,*' "(t)x,' "(t ~) ) wi—ll lead
to two symmetrical sidebands similar to those derived
quantum mechanically, except that their magnitude will
be half as large, since (F,(ti )F,*(t2))=

—,'(F(t) )F (tz) ).
(It should be borne in mind that the c field picture is not
offered for purposes of exact calculation, but rather as a
qualitative intuitive tool. )

The results obtained so far lead to the question wheth-
er higher orders of the spectrum will exhibit new spectral
features —that is, additional peaks —or merely higher-
order corrections to the spectral features already found.
In order to obtain an idea of what may be expected in
higher order, we look at Eq. (4.5) (with P2=P3=0) in
terms of the c-field picture. We consider, again, the

modulation of the driven oscillation by the excitation en-
ergy, and —now, that we are dealing with higher
orders —also the modulation of the sideband oscillations.
The x x term in E will mix the sideband oscillations with
those due to the c field to produce bands of energy oscil-
lation, of width 4p, centered at 0 and at 2b, . The x x
term will square the lowest-order energy oseillations to
produce bands of width 4p also centered at 0 and 2b, .
These higher-order energy oscillations will modulate the
driven oscillation of the AMO to produce spectral bands
at coo and coo+2b, of width 4p. Furthermore, the lowest-
order energy oscillations will modulate the sideband os-
cillations and also produce spectral bands at coo and
coo+2', of width 4p. All of these processes will interfere
constructively or destructively, and some of the above re-
sults may be extraneous, involving work on the part of
the c field. It is reasonable to expect, however, that
higher-order spectra will display at least some of these
new spectral features. %'e proceed to the investigation of
orders up to (6,4). [The three processes described above
are of order (6,4).]

A calculation shows that spectra of order (4,3), (4,4),
(6,2), and (6,3) exhibit only higher-order corrections to
P' ' ' and P' ' '. In the following discussion, we will ig-
nore such corrections and concentrate only on new
features, for which we look in P' ' '. The only nonvan-
ishing terms in the correlation function of order (6,4) are
given by

(x (t)x(t —i))i ' '=(5,4) (1,0)+(4,3) (2, 1)+(4,2) (2, 2)+(3,3)t(3, 1)+(3,2) (3,2)

+(3, 1) (3,3)+(2,2) (4,2)+(2, 1) (4, 3)+(1,0) (5,4) .

Since the time variation of x" '(t)
~ ) [EcI. (5.7)] is given

by e ' ', the terms (5,4)t(1,0) and (1,0) (5,4) will yield
only higher-order corrections to the 5 function, and are
of no present interest. The same argument applies to
x' "(t)

~ ) [Eq. (5.10)], and eliminates the terms
(3,3) (3, 1) and (3, 1) (3,3) from consideration While.
terms that produce a correction to the 6 function are easy
to identify, identification of those that produce a correc-
tion to P' ' ' requires some explanation.

The location of peaks in the spectrum is determined by
the factor e ' ' in the terms of the correlation function
(x (t)x(t r)); a term —containing this factor will pro-
duce a peak centered at ~+m A. This factor, in turn, is

determined by the factors e'"~', e ', e ', etc. occur-
ring in the expressions for ( ~x (t) and x(t)~ ), where t, ,
tz, etc. , are variables of integration. The terms in ( ~x (t)
that will be under investigation have —or can be reduced
to —the form

or

(lX =( f dt, f dttF(tt)F(tt)f(ttt, tt),
ib{mt+ml tl+m2t2}Xe
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where f does not contain oscillatory functions, and the
tilde here indicates an individual term in ( Ix (t). In or-
der that

(x '""(t)x""(t—~) )

not vanish, ( IX
"' and (Ix '~'~' must have the same

number of F factors. We consider first the case of one F
factor. This yields

(x '""(t)x' ' '(t r—) ) =2p f dt, f dtz5(t, tz)—f, (t, t, )fz(t ~, tz)—exp[ib[mt+m, ti n(—t —r) —nztz][

=2Pf dtzf, (t, tz)fz(t rt—z)exP[ib[( m n—)t+(m, n—z)tz+nr) J,
=y(t, ~)exp[id[(m —n+m i nz)t —(—m i

—nz n—)~]],

where y does not contain oscillatory functions. Since the
spectral distribution depends on the time average of the
correlation function, we must have

771 lt +m ) Pl2 —0

if the term under consideration is to make a contribution.
The oscillation with respect to r then becomes that ofe', and the term wi11 contribute to the peak centered at
co+m A. A similar argument applies to the case of two F
factors. Thus, merely by noting the exponent of e' ' in
the terms of ( Ix '""(t),we can determine the location of
the spectral ~eaks due to (x "'(t}x(~'q)(t —r) ). For ex-
ample, (Ix "(t) [Eq. (5.11)] has one term with m =2
and another with m =0. The function
(xt( "(t)x' "(t r)) —therefore yields one peak at
co+23 and another at co. This result enables one to
select, by inspection, only those terms in ( Ix '""which
yield new spectral features.

For (Ix ' ' ' and (Ix ' ' ' we obtain, from Eq. (5.6),
42 2(Ix"'"=— ' p f dt r(t )e

4 (p+ib, )

X ( e zi tat

and

t(4, z) 0"'I &
I

z&z

(p +5 )(p+iA)

X dt&F E& e

x [-,'+id(t —t, )]( 'e~' —e ') .

According to the preceding argument, one sees that
(2,2) (4, 2) and (4,2) (2, 2) will contribute only higher-

order correction for P' ' '. Thus, the only terms in
(x (t)x(t r) )'—' ' that may yield new spectral elements
are (4, 3) (2, 1) and (3,2) (3,2). We express this state-
ment symbolically as

(x (t}x(t—r))(6'4) .(4, 3) (2, 1)+(3,2) (3,2),
where the symbol -- -= indicates terms that may yield new
spectral elements.

Equation (5.12) shows that the term (3,2) (3,2) will
contribute toward peaks of finite width at ~+35, ~+6,
~, and toward the 5 function at co. Although the c-field
picture indicated the possibility of a peak at
co —b ( =coo—2h },a comparison of the details of the cal-
culation leading to Eq. (5.12) with those of the c-field cal-
culation (neither of which is given here for the sake of
brevity} shows that the absence of this peak is due, for-
mally, to the fact that ( Ix ' ' '=0, which is related to the
principle that the VF cannot do work. The calculation of
P' ' can be simplified considerably by considering only
the condition 5 ))p . Since the width of the lower-
order peaks is 2p and that of the higher-order peaks is ex-
pected to be 4p, this condition is useful also from an ex-
perimental point of view, as it allows a clear separation
between peaks. In the following calculation of P' ' ',
only the lowest powers of p/6 necessary for the descrip-
tion of each peak will be retained.

If we ignore the monochromatic term in (Ix ' ' for
purposes of the following argument, we can write

y(g 2) 0(Ixt(3z)=, f dt, f dtzF(t, )F(tz)
(p+it)), )

xf(t, t, , t, ),
where f is given by the term in large square brackets in
Eq. (5.12). Using Eq. (4.3), we obtain

4Q e A, C
—r(xt(3 z)(t)x(3 z)(t —~))=. .. f dt, f dt, f dt, f dt4[5(t, t )53(t zt4)+—5(t, —t4}5(tz —t, )]

(p +Q ) —oo —ao —aa —ao

xf(t, ti, tz)f*(t —r, t3 t4)

The second term in the square brackets makes no contribution to the integral, and the erst term yields

(x (t)x ' (t Q))= dt, dtzf(t, ti, tz)f (t —& ti tz} .T(3 2) (& 2) 4I 0 I'e4APz

(pz+ Qz)3
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Carrying out the integration indicated here, we obtain, to
the lowest significant powers in P/b„
(x"""(t)x '"(t —r) )

IQI e i(, 1 2p
g6 4

+ 2p+3—t 2 & l3 +'4P
a4 (5.14)

We consider, next, the term (x ' '(t)x' ' "(t r)—),„,
where, from Eq. (5.1 1), x ' "(t —r ) I ) is given by

x""(t—r)I) = Qe
2(P—ib, )

X dt, e
—p(r —~—t, )' F (ti )

it must be of the form

f dt, f(t, t, )e ' 'F(t, ),
where f ( t, t, ) contains no oscillatory functions and
n + n, =2. (The condition on the exponents is required to

X(e 2ih(t ——r) e
' i

)I )

The calculation of (Ix ' ' is quite complicated and its
explicit expression contains many terms. However, only
a few of these need be retained for present purposes. In
order that a particular term in (Ix ' ' contribute to-
ward

(x ti'"(t)x""(t—r) &

prevent the vanishing of the time average. ) Terms with
either n =2 or n& =2 will yield higher-order corrections
to P' ' ' and can be ignored. A number of terms will con-
tain both F's and F~'s as factors in the integral. If the
number of F 's exceeds the number of F 's in the entire
product by 1, and if the number of F 's on the 1eft of any
factor does not exceed the number of F 's, then the prod-
uct can be reduced to one or more terms which are multi-
ples of single F 's. For example, in accordance with Eqs.
(4.2) and (4.3)

( IF(t, )Ft(t, )F(t, }=2P6(t, t, )( IF—(t, ),
(IF(ti)F(t2)F (t3)=2p[5(ti t3)(IF(tp)

+5(t, +t, )(IF(t, )] .

Terms with n =n, = 1 can also be ignored, although they
contribute to a peak at ~p. These contributions are of
higher order in P/b, than the lowest-order contributions
from (x ' ' '(t)x' ' '(t —r) ) to the same peak, as follows
from the fact that there exist more oscillatory factors in
the integrands of the n =n, = 1 terms of (4,3) (2, 1) than
in the integrands of certain terms of (3,2) (3,2), where
oscillatory factors cancel. We can therefore ignore all
terms in ( Ix ' ' ' contributing to peaks at coo+a, and coo.

A lengthy calculation leads to the result, in the lowest
powers of /3/5,

( t(4, 3i(t)x(2, 1)(t r) )

e IQI A 2iP 20 8 —2p +3 a
9b, b. 3 b,

From Eqs. (5.14}and (5.15), we have,

(x'(t)x(t —r) &"" 1, 2p.+it. 1 -.l3' gg P', —zp.+3ia.
g6 4 9 g3 3 g4

and from Eq. (5.1), we obtain

p(64)(p)2P~ I QI EA, YiI 4 15P(P /b )+[co'—(co+36, )](P /b )

4P +[co'—(co+6, )] 9 4P +[co' —(co+36)]
(5.16)

where —", has been approximated by 15 in the last expres-
sion. In sum, as illustrated schematically in Fig. 1, the
total spectrum, up to the (6,4) order, consists of the fol-
lowing: a 6 function at cop, the lowest order of which is
P' ' ' [Eq. (5.9)]; two sidebands at coo+6„with lowest or-
der given by P' ' ' [Eq. (5.13)], which are symmetrical in
this order; and peaks at ~p and cup+2h, which appear in
order (6,4) [Eq. (5.16)]. For IP/b I «1, the peak at
cop+2A is much smaller than that at cup.

simplified in the prsent case by the well known angular
momentum relationships for lo =

—,
' (noting that

x =2'"L, },

l,x ——xl, —
—,'x,

l x~ ———x~l3= —,'x~,
3

j = ——+XX3

and become

VI. TWO-LEVEL SYSTEM x = —Px+i(P, —P, )x —(1—2x'x)(ne '"+F), -
(6.1)

So far, we have considered an AMO with lp)&1, or
e &&1. It is instructive to compare the present results to
those for a two-level system (TLS), that is, one with
lp= —,', or @=2. The general equations of motion for the
AMO, Eqs. (4.1), which hold for arbitrary lo, can be

together with the corresponding H.c. equation. (It
should be noted that the notation for the TLS is quantum
mechanical only; the dynamical variables refer to opera-
tors and the formalism is no longer valid classically. )

The radiative frequency shift is now given by



E OF LINEAR AND NONLINERESONANCE FLUORESCENCE OF LI gAA5
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p —ib,

'x (t, ) x(t ))I),+20I dt)e

w ic y', ' '

1 x' )I)=O, andwhich yields, immediate y, x

~e —
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(b)

(c}

(b)
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1

)dt)F (t, )e
b, (/3 —ib, )

and yields

x( 2 E(E
—2!kt

(

1 — e
tP 2iar+ 1 +

—t)(x "2)(t)x(2)(t —r) )=. . .e-

cd' (and dropping theCd —Cd ( P2cd'= — —P ). Replacing cd by cd (a
prime), we obtain

X= Xx —(1 —2x x )(Ae ' '+F) .

( t' '(t)x'"(t —7.)) andThe correlation functions x t x
rd the spectrum onlyt r) ) co—ntribute towar

hi her-order corrections to t e
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/I )+ dt]e
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cases become identical. This indicates that for
)) ~Q~ +P, only the first two levels of any AMO par-

ticipate significantly.
Lastly, we consider P' '. According to previous

reasoning,

(x "(r)x(r —r) &'"= (x "(r)x"'(r —r) &

+ (x ""(t)x"'(t —7.) & .

A somewhat lengthy calculation yields only one new
spectral element, a peak of finite width at coo. For
P «b, , which we considered also in deriving P' ' ', only
(x ' '(t)x' '(t —r) & is significant, and the result is

(x t"'(t)x"'(t —r) &
=- e

4/nf'
g6

1 6P flea
i
0 i

4p +(co' —co —6)
It is seen that this is the same result as that for the peak
at coo in P' ' ' with @=2, which again indicates the parti-
cipation of only the lowest two levels of an AMO for~'» l~l'+f1'

VII. GENERAL DISCUSSION

In the preceding analysis, the linear oscillator and only

one class of nonlinear oscillators have been considered.
However, a number of conclusions drawn from this

analysis can be generalized to all types of nonlinear oscil-
lators. We consider the classical results first. It was seen

that the RFS is a 6 function at the driving frequency for
both the HO and the AMO (when the latter is driven

below saturation). Now, it is entirely reasonable to ex-

pect that any nonlinear oscillator which can achieve an

amplitude suSciently large so that it radiates as much

power (averaged over a cycle) as it absorbs from the driv-

ing field will oscillate with periodic motion; in other
words, that it will achieve a steady state. The fundamen-

tal component of this forced oscillation accounts for the 6
function in the RFS. The type of spectrum (in the neigh-

borhood of resonance) is therefore the same, classically,
for any oscillator, linear or nonlinear (provided the condi-

tion concerning saturation is satisfied by the latter).
We consider, next, the quantum-mechanical results.

Here, the RFS of the linear oscillation is also a 6 function
at the driving frequency. There exists an essential
difference between the quantum-mechanical and classical
results, however, with respect to the excitation energy.
While it is a well-defined constant classically, the energy
is described, quantum mechanically, by a probability dis-
tribution with a rms deviation equal to its square root.
Furthermore, the energy correlation function indicates
the existence of an oscillation of part of the energy at
what may be regarded as the beat frequency produced by
the mixing of the driving field and the VF. Since the
effect of the VF on the oscillator is centered around co

within a spread of 2P, the beat frequency is centered at
b, (=coo—co) and has a spread of 2P; the phase is ran-
dom, of course. Now, all nonlinear oscillators behave
like linear oscillators in the lowest order of the driving-
field power. In the next higher order the behavior of a
nonlinear oscillator depends on its energy. Since part of
the energy oscillates with frequencies centered at 6 and
having a spread of 2P, it will modulate the radiated field
and produce two symmetrical sidebands at coo+6 of
width 2P in the RFS. These sidebands should therefore
be a phenomenon associated with all nonlinear oscilla-
tors.

Carrying the above argument to further higher order,
one may expect the lowest-order energy oscillation to
modulate the higher-order radiation, and the higher-
order energy oscillation to modulate the lowest-order ra-
diation. Possible locations for peaks resulting from these
processes are coo and coo+2b, and the width may be ex-
pected to be 4P. There will be interference between the
several processes, and, of course, those that are related
to—or involve —work done by the VF cannot occur. In
the case of the AMO with lo ))1, next-higher-order
peaks appear at coo and coo+2h. In the case of the TLS, a
next-higher-order peak appears at mo only. If one may
generalize from these two examples, a higher-order peak
will appear at least at ~o. Further details depend on the
type of nonlinearity of the oscillator.
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