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We study the interaction of two optical fields in a laser operating on two coupled lines. A semi-

classical model of such a system is developed. We focus our attention on the intensity correlation
between the two fields, referred to as cross correlation. This two-photon correlation aFects popula-
tions of lasing levels as well as the polarization of the medium. A set of field equations derived
within this model describes the behavior of the intensities and their correlation along the laser cavi-

ty. Numerical solutions of these equations show a substantial increase of the degree of intensity
cross correlation in the course of propagation. The cross correlation evolves in a way significantly
diFerent from that of the product of intensities. Theoretical results are in good qualitative agree-
ment with the experiment carried out on a helium-neon laser, which is also reported here.

I. INTRODUCTION

Statistical properties of radiation have been a matter of
investigation since Planck (1901). Before the laser was in-
vented (1960) the only optical fields available were pro-
duced by thermal sources, i.e., they were chaotic in char-
acter. The statistical properties of such fields could be
characterized completely by the second-order field ampli-
tude correlation function. ' In the case of nonthermal
fields, however, the knowledge of the second-order corre-
lation is not sufficient to describe the statistical properties
of a field. Once the first sources of nonthermal optical
fields had been invented, the study of higher-order statist-
ical properties of these fields became a new, rapidly
developed domain of optics. For a brief survey of this de-
velopment, see Refs. 2 and 3 and references therein.

The field-correlation function of the order 2n (or, alter-
natively, the photon correlation function of the order n)
is directly observable in processes where n-photon ab-
sorption (or emission) is involved. The rate of n

photon absorption is proportional to the corresponding
photon correlation, and not to the product of intensities.
The measurements involving photon detection (photon
counting, fiuorescence intensity, and so on) depend inevit-
ably on the statistics of photons.

As far as one-photon absorption is concerned, one can
observe only a first-order photon correlation. In order to
observe higher-order correlations, one must seek phe-
nomena where multiphoton processes are important.

This paper is devoted to the study of the second-order
photon correlation. The first experiment where the
second-order photon correlation was observed, was per-
formed by Hanburry Brown and Twiss in 1958, as yet
before the onset of lasers. Since then a number of experi-
ments have been performed, but the unexplored area still
remains large. This paper deals with one of the problems
recently raised: correlation between photons belonging
to two different (but somewhat coupled) light beams of
two radically different frequencies. We devote our work
to the second-order correlation of photons of different
origin, which is often referred to as cross correlation.

Effects of this kind can be significant when the two fields
interact. This is the case of a laser operating on two cou-
pled transitions. Such a device offers a variety of phe-
nomena arising from the interaction of two generated
lines. An example is the He-Ne laser operating on two
cascading transitions, generating infrared radiation of
two wavelengths: 3.39 and 7.69 pm (Fig. 1). It was
found that in lasing systems of this kind the cross correla-
tion may be significant and plays an important part in the
dynamics of the excitation and populations of the in-
volved atomic levels. ' lt occurs in such phenomena as
population trapping, ' optical double resonance, and op-
tical bistability. " Up to now most of the works on the
cross correlation have studied the problem theoretically;
few ideas were tested and confirmed experimentally.

In this paper we present both theory and experiment.
This is the continuation of our work, which we reported
earlier. ' We study the interaction between two laser
lines generated in cascade, and the role the cross correla-
tion of intensities plays in this interaction. When the
correlation is under consideration, it is usually studied or
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FICx. 1. Scheme of the lasing levels. Two laser beams in-

teracting in cascade.
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measured in the time domain using photon counting
methods. However, there is another way, namely, its
space or position dependence, e.g. , along a laser cavity.
Field correlations obey wave equations analogous to
those for the electric field function E(r, t), ' where both
time and space variables appear. On this analogy we
build our model of the time-position evolution of the
cross correlation. In Sec. II we develop field
equations —for intensities and their cross correlation. In
Sec. III we calculate the polarization of a medium along
the lines of the semiclassical Lamb theory, ' extended to
the three-level atom by Najmabadi et al. ' In Sec. IV we
present and discuss solutions. Section V reports on our
experiment, in which we observed phenomena discussed
in Secs. II—IV. Comparison of theory with experiment
and conclusions follow in Secs. V and VI.

II. FIELD EQUATIONS

BE, BE,

BZ2 Bz

We consider only the longitudinal variation of the am-
plitudes (along the z axis, parallel to the resonator),
neglecting their transverse variation. Under these ap-
proximations one obtains the following equations (for de-
tails, see, e.g. Ref. 14):

BE,— BE,— i v,+c = —vE;—+ P;—,
Bt Bt ' ' 2e

(2)

where P,— is the Fourier component of the polarization
corresponding to the frequency v; and the wave vector
k, , and e is the permitivity of medium. The damping pa-
rameters ~, account for electromagnetic energy dissipa-
tion. In the Lamb theory'" all losses are modeled by a
finite conductivity of the medium, so ~ is related to it:

Our treatment is based on the classical representation
of the radiation field by c-number amplitudes 6"

&
and N2

for two modes with frequencies v, and vz, respectively:

6'; =E;+(r, t)exp[i (v, t —k, z)]

+E; (r, t)exp[i(v;t +k, z)] +c.c. , i =1,2 .

We distinguish forward- and backward-running wave am-
plitudes E,+, E, . Unlike in Lamb' or Najmabadi'
theory, E; and E;+ are generally random functions of
time and position. They are subject to random Auctua-
tions arising from thermal motion, mechanical vibrations,
and many other e6'ects. Our objective is to derive equa-
tions of motion for stochastically averaged intensities
(I, ), (Iz), as well as for their cross correlation. Al-
though we consider random variables, we shall not delve
into the probability density P(I„I2,t) to know details of
photon correlations. Instead, we assume their existence
and we want to study their evolution. Correlations (the
cross correlation ( I, Iz ), too) obey wave equations analo-
gous to those for the amplitudes. ' We derive our basic
equations along the lines of Lamb's theory (see, e.g. , Ref.
14), assuming a slowly varying envelope approximation
(SVEA), i.e.,

P, =O.,bDb, +c.c. ,

P2 =o.b, D,b+c.c. ,

(3a)

(3b)

where o.,b is the slowly varying part of the density-matrix
element p, & (which rotates with the frequency v&), and
likewise o.b, is the slowly varying part of pb, , Db„D,„are
the electric dipole matrix elements. It is convenient to
work with quantities V, =E~D b/&A V2=E2Db /lA,
which we will use from now on. Starting with Eq. (2) one
obtains evolution equations for products which are subse-
quently formally averaged. In this way from double
products one obtains observable intensities:

—+ «-, ( V-, )*)
Bt Bz

= —2~, ( V —, ( V —, )*)—G, [((V—, )'o,—b)+c.c.],
(4a)

—+ (V;(V;)*)
Bt Bz

= —2xz( Vz
—

( Vz )* ) —
G2[ ( ( V2 )*ob, ) +c.c.],

(4b)

G& =
v& ~D, & ~

l(2@A), Gz = v~ ~Db, ~
l(2eA), while from

fourfold products the cross correlation

Bt Bz

= —2(t~, +a~)(I , I2 )—
—G, [( V2 ( Vz )*(V( )*o,b ) +c.c. ]

—G2[( V —, ( V —, )*(V~ )*o.„—,) +c.c. ] . (4c)

Here cr denotes —the Fourier component of o (decompo-
sition with respect to wave vectors) having the wave vec-
tor +k, in the case of o.,b and +kz in the case of o.b, .
Such components appear explicitly in most treatments in
a natural way without any extra effort.

From Eq. (4) one can see the influence of atoms on the
radiation fields. To see how the radiation aA'ects the
atoms, we solve the density-matrix equations of evolu-
tion. Apart from the coherencies o.,b, o.h, we will need
the populations pb, p„which contain information about
field quantities: intensities and intensity correlation, as
we explain in Sec. IV.

z =o. I(2e).
Equation (2) is the basis from which one can develop

equations for any product of E,—,their complex conju-
gate, and then for their averages (for example, see Ref.
13, p. 51). The radiation fields interact resonantly with
atoms: 8, with the lower transition, and 62 with the
upper transition (see Fig. 1). They induce atomic dipole
moments, which in turn act on the fields, because the po-
larizations P, of Eq. (2) are the mean atomic dipole mo-
ments in a unit volume of the proper frequency. P, 's are
expressed in terms of atomic density matrix elements:
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III. ATOMIC DENSITY MATRIX

dp~
Aa 1'a pa ( Vl Crab

dt
(sa)

d Pb —Ab ybpb (Vz ob, +c.c. )+(V, o,b+c.c. ),
dt

(5b)

dPc

dt
=A, —y,p, + ( V2 cr b, +c.c. ),

d (Jab
z.b~.—b (pb

—p. ) V—
1

—V2~-
dt

dO bc
zb, o b,

——(p, pb ) Vz —+ V1 o „,dt

do ac

dt
= —z„cr„+V2o.,b

—V,

crab,

,

(5c)

(5cl)

(5e)

plus relations

cr „=o„', p, b =o,bexp(iv, t),
pb, =o.„,exp(i v2t), p„=o „exp[i (v, +v2)t];

V] 2 stands for V, z + V,+2; A's represent incoherent
pumping of the lasing levels, i.e., excitation via He-Ne
collisions; and z's combine damping and detuning:

z „—y „+i5, 6 b
—e)b co vi

hb, =~, —~b —
V2, A„=A,b+hb, .

In the case of gaseous media the movement of atoms
must be taken into account. It amounts to the replace-
ment of kz by kz+vt, where v is the z component of the

We describe the atomic medium by a density matrix

p „, I,n =a, b, c. Under the rotating wave approxima-
tion its elements obey the equations

atomic velocity. It means that Eqs. (5) are to be solved
for each velocity interval (u, u +du) and the final matrix is
velocity averaged.

We apply a perturbative approach up to fourth order,
i.e., to the lowest order the product of two fields appears
in populations. Validity of the perturbation approach de-
pends on the ratio (Rabi frequency)/(damping rate of the
system), which should be smaller than 1. The Rabi fre-
quency D „E/A is determined and may be controlled by
the intensity (which can be handled by the pumping rate).
The damping rate is determined for the most part by
three phenomena: (i) spontaneous emission, (ii) collisions;
and (iii) laser fiuctuations. If the laser line is broad (e.g. ,
on account of Doppler broadening), the correlation time
is short and the damping rate is dominated by a large
linewidth. In this case the light fluctuations affect strong-
ly the light-atom interaction and improve conditions for
the validity of the perturbation approach. Keeping in
mind this role of light fluctuations, we assume the condi-
tion we have discussed above to be satisfied, permitting us
to use the perturbation approach. Note that our field
quantities are random variables; therefore we cannot as-
sume that they vary little during a typical lifetime, the as-
sumption being widely used. ' '

We have used the slowly varying envelope approxima-
tion to the random-field amplitudes. However, inasmuch
as we work with average quantities quadratic in ampli-
tude, we actually assume only these quantities to be slow-
ly varying. We could start with a wave equation directly
for correlations, arriving at Eq. (4), leaving out Eq. (2).
Besides, the assumption that E is slowly varying involves
that it varies little over a lapse of time of the order 10
s, which is much shorter than a typical atomic relaxation
time (10 —10 s). The random character of a field
does not determine the time scale of its random changes.
It is a question of further assumptions, and there are two
different approaches to this problem (Ref. 16, p. 194).

Now let us write formal solutions for the third-order
polarizations:

V*(t)o +c.c. = Nb, —

+gb,

—iVcb

+Xb,

—1Vcb

dt'g, t, t
0

dt'g, t, t' dt" e +e ' dt"'g& t",t"'
0 0 0

f dt'g1(t, t') f dt"e f dt"'g2(t", t"')
0

f t t
h h h h

Z b ( f f ) +Z ( t t ) +Zg b ( l f )
dt' dt" dt g(t, t', t', t ')e '

0 0 0

f f t Z t (t t)+Z (t t )+Zb (t t )dt' Ck" Ch"'g(t, t', t"', t")e ' " " +c.c. ,
0 0 0

(6a)

V2 (t)o b, +c.c. = N, b dt'g2(t, t')—
0

+N, b f dt'g2(t, t') f dt "(e ' ' +e '
) f dt"'gz(t", t"')

0 0 0

—N,.f dt'g, (t, t') f dt "e ' f dt'"g, (t",t"')
0

t' „ t" „, , „„,zb, (t' —t)+z„(t"—t')+z& (f"'—t")
+N,„dt' dt" dt"'g(t', t, t",t'")e '

0 0 0
If t t hhhhhhhhZb( f t )+Z( f t )+Zb( t t )

Nb, dt' dt" —dt"'g (t', t, t"', t")e ' " '" +c.c. ,
0 0 0

(6b)



INTENSITY CORRELATION IN THE CASCADE LASER

with the notation
I

g, (t, t') =
—,'[ V; (t) V, (t')e '" +c.c.],

I

g, (t, t')= —,'[V2 (t)V, (t')e ' +c.c.];
g (t, t', t",t"')= V', (t) V,*(t')V, (t")V, (t"');
Ã, =A, /y, - —A /y

The expressions (6a) and (6b) will serve for evaluation of
the right-hand sides of Eqs. (4a) —(4c). For brevity we
have not written out explicitly the V and V ampli-
tudes. To obtain the definite form of a particular equa-
tion (for the + or —wave) one must put (V+)*(t) or
(V )*(t) instead of V*(t) [which stands for the sum
( V+)*+(V )*] and pull out of Eq. (6a) or (6b) the part
in which the exponentials e ' cancel themselves. The po-
larizations (6a) and (6b) must be averaged. With a view
to performing it, we note that fourth-order correlations
will appear only in the last two integrals. They represent
coherent transitions. ' They come from the double quan-
tum coherence o.„. The remaining fourfold products
(second and third terms) come from population
diff'erences; they are due to stepwise transitions involving
the intermediate level. The amplitudes V, and V2 ap-
pearing there cannot be significantly correlated because
they are separated by the time interval (t ' —t "), which is
of the order of b-state lifetime. In these terms there will
be just a product of iiitensities, i.e., only one-photon
correlations.

All in all, the polarizations consist of four parts [listed
in the order in which they appear in the formulas (6a) and
(6b)]: (i) linear gain, dependent on the second-order auto-
correlation (i.e. , intensity); (ii) nonlinear saturation,
dependent on the square of intensity; (iii) nonlinear gain,
dependent on the both intensities; and (iv) coherent
terms, dependent on the cross-correlation. We shall re-
turn to the physical discussion of these terms in subse-
quent sections.

Now we face the problem of evaluating the integrals in
(6). The strict evaluation is beyond the scope of this pa-
per, but as we argue below, it is not necessary to our pur-
pose. Nevertheless, we must know something about the
time behavior of the integrands in (6). The first assump-
tion is the steady state of the stochastic quantities that
will appear while averaging Eq. (6). This assumption is
very often encountered in the literature" and physically
signifies that the results of an observation are indepen-
dent of the moment the observation starts. Under further
assumptions determining the nature of a random process,
one obtains the time dependence of a correlation func-
tion. For example, in the case of the second-order corre-
lation of a Gaussian process, one obtains exponential de-
cay of the type exp[ —y ~ t, —t~ ~ ].' If we put

( V"(t) V(t') ) = ( V*(t)V(t) )exp[y(t' —t)]

we see that the time decay of the field correlation results
in augmenting an atomic relaxation rate. In the case of
Gaussian processes, higher-order even correlations can be
expressed as products of the second-order correlation. '

We do not assume our process to be Gaussian because it

=(I;)f;(t', t"),
( V,*(t)V,*(t')V (t")V, (t'") )

(7a)

( V,*(t)V,*(t)Vk*(t') V (t) V, (t" ) V, (t'") )

(7b)

(7c)

This is the case in all typical models met in the litera-
ture. ' In this way we can pull the fields out of integrals
and represent an integral by a coefficient dependent on
atomic constants and on the functions f, , f, , and f, k", "
but independent of the field amplitudes. As we men-
tioned above, we do not need exact values of these
coefficients. The only thing we can say, and which is
essential, is that the functions f, , f, , and f; k in"troduce
an additional damping, which is the greater, the greater
the order of the correlation. As a result, the coefficients
of Eq. (4c) will be smaller than they would be in the equa-
tion for the product (I, ) (I2 ).

In Eq. (6) we have also three-photon correlations. As
we do not go beyond two-photon phenomena, we are
forced to factorize them (with a change of the coefficient
appearing there), in order that Eq. (6) form a closed set.
Finally, we arrive at the following equations:

a,J]+
=a, 2, b(J )

—c—, 2,+J, +d 2 J +e+F
z

az;
az

+d, J, J~+e,

(8a)

(8b)

—e, P —e, P+, (8c)

=(a —p J'+ —p / —5+,l, )p++e 2, J
Z

(8d)

BP =(a +y+2,++y J, —5 2~)P +e J, J~,
Bz

(8e)

where the J's are the averaged intensities and the P's are
the cross correlations. The superscripts + with 2z are
missing because we will consider only one wave of this
frequency, i.e., it will be a traveling wave.

Time derivatives have been omitted, because we study
a steady-state regime. All the parameters are positive ex-
cept for the e —, z's, which have the form aN&, PN, &.

—

is not the case of the system we describe. We assume
only that a multi-time-correlation can be expressed by an
analogous one-time-correlation multiplied by a function
of time independent of the fields:

( V;*(t)V;(t)) =( V;*(t)V;(t))f;(t', t")
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The sign is difficult to determine if all three levels are ex-
cited incoherently. If one wants to keep track of a
definite transition path, one must start with a definite
zero-field population, putting zero for the two remaining
ones. In this case the signs of the two terms representing
two-photon transitions are the same, as it should be. An-
ticipating solutions, we note that general features do not
depend on the sign of this term, since this term is the
smallest of all.

IV. BEHAVIOR OF THE FIELD QUANTITIES

Equations (8) describe the position dependence of the
field quantities: intensities and cross correlations. The
parameters come from and correspond to the respective
terms of the polarizations (6): a refers to the linear build-
up; b and c are the self-saturation and competition terms,
respectively; d is the interaction between beams 1 and 2
via two-step two-photon transitions; and e is the interac-
tion between beams 1 and 2 via coherent two-photon
transitions.

&e have to solve a set of ordinary differential equa-
tions. Exact solution seems to be impossible in the gen-
eral case. Even if we could obtain general formulas, they
would be vague and difficult to discuss because of a num-
ber of parameters. Even rough approximations lead to
complex formulas, and their numerical analysis is neces-
sary. For this reason we prefer to present results of nu-
merical simulation. We solved Eq. (8) numerically, im-
posing mathematical conditions that expressed specific
physical situations: (i) free propagation of both beams;
and (ii) beam 1 is a closed resonator, whereas beam 2 is a
running wave.

Before the numerical computation, it is worthwhile to
examine the order of magnitude of the entering parame-
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0.00 1.00 2.00
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ters. It is convenient to work with dimensionless quanti-
ties: V*, V, divided by (y, yb/y, „) and V~ Vz by

(@by, /y~, ) . If the y's are measured in megahertz, then
the dimensionless intensities should be less than 1, and
the linear gain can take on values of 1 —10. The range of
values of the nonlinear coefficients depends on the actual
scaling of the intensities within the range 0—1. Roughly
speaking, the greater the intensities, the smaller the
coefficients.

The coefficients b and d arise from the second and the
third term of (6), respectively. One can see the main
difference between them: The former has the sum
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this coupling its value at the right boundary is fairly
higher than at the left end of the resonator, where 2i sets
off. The right-hand mirror level of 2& can be handled by
the e parameter as it was in the prior case, but now it is
even more evident. Note that the overall power of beam
1, divided into two parts is approximately equal to the in-
tensity of the single, "one-way" wave of the prior case.

The cross correlation 5'+ starts with a value greater
than J',+(0)22(0), grows fast along the resonator, faster
than the product J,+2z, then at the right-hand mirror it
becomes P —its counterpropagating counterpart which
relaxes throughout the cavity to the initial value of P+.
The main result of this computation is shown in Fig. 11.
This is the degree of correlation & J,J2&/&2, &&2&& (2,
stands for the sum J,++2, ). This quantity varies along
the cavity. It forms a fairly high peak roughly half-way
from the left-hand mirror to the right-hand one. The
reason for this is that the light fluctuations modify cou-
pling strengths; although, on account of these
modifications, the linear gain is less than the sum of the
corresponding coefficients for J, and Sz, but the non-
linear terms become diminished too. These modifications
result in a retardation of the saturation. It manifests it-
self most distinctly if one of the beams is a traveling
wave. The peak does not result from the superposition of
P+ and P; although we have depicted the combined
normalized correlation, the effect remains in the quantity
P+ /(2,+Jz). The other correlation P is less
significant, again because of the asymmetry introduced by
the unidirectional beam 2. In the case of
P(0) ( J&(0)22(0) the patterns are only slightly modified;
in fact, from the mathematical standpoint this change is a
matter of rescaling. On the other hand, from the physi-
cal point of view it can be a different case.

The computational results presented here were ob-
served experimentally in a He-Ne laser operating on the
lines 3.39 pm and 7.69 pm. As we stated earlier, the
ranges of possible values of parameters is fairly large but
they are not independent of each other if we seek nonex-
ploding solutions. Once the linear coefficients have been
fixed, the others are confined to quite a narrow range.
We present the results for two sets of coefficients, but one
can reproduce (qualitatively) the results for other,
significantly different sets. It is important, for we cannot
specify their values corresponding to a particular experi-
ment. The parameters we chose do not necessarily match
those of our experiment.

V. EXPERIMENT

A. Principles of measurement

The polarizations calculated in Sec. EI, put into the
density-matrix equation, yield fourth-order populations.
Following the procedure discussed in Sec. II, the aver-
aged populations are

p. =p."'+ & & I, &
—&, & I, &

—C, & I, & & I &

+D, &I,I, &,

p, =p', ' —&, &I, &+&,&I, &' —C &I, &&I, &

D,—&I,I, &. (9b)

The letters A, B,C,D denote constants that are indepen-
dent of the average field quantities. They are positive.
The terms with both intensities represent two photon
transitions: absorption or emission of one photon from
either beam. The net rate of the transitions is not zero
because of relaxation processes. There are two types of
two-photon absorption: stepwise and coherent. The
former, involving an intermediate atomic-level popula-
tion, depends on the product of intensities; the latter is
due to two-photon coherence and depends on the cross
correlation.

The populations can be observed by means of fluores-
cence measurements. Fluorescence from a given level is
proportional to the population of this level, which is
affected by radiation-field quantities: intensities and
correlations (auto-correlations and cross correlations).
Thus fluorescence measurement contains information
about these quantities.

The dominant terms in (9) are of course the linear ones.
If the whole population is observed, i.e., if the linear term
is not cut out by an appropriate observation technique,
one can regard the population as proportional to the in-
tensity, leaving out of account the nonlinear part. In or-
der to select "two-photon" terms, the "one-photon" ones
must be eliminated (along with the field-independent p' ').
This is feasible by a measurement of the fluorescence
from a given level by a lock-in detector with a proper
light beam chopped. For example, if beam 1 is chopped,
the lock-in detector being tuned to the chopping frequen-
cy and a monochromator tuned to a fluorescence line
from level c, then only the part of p, dependent on beam
1 will be detected, whereas the first three terms of (9.2)
will be cut out of detection. It was actually one of the
signals we measured. We denote it S~. In the lowest or-
der of approximation it is proportional to the bilinear
terms of (9.2). If in turn the whole fluorescence is mea-
sured, then, as we argued earlier, the signal can be
thought of as proportional to the intensity & Iz & (but one
must remember the constant p, '). This was our second
signal Sz. Similarly, the fluorescence intensity from level
a gives a signal S3 proportional to & I, &. Let us write out
our three signals:

S, C, &I, &&I, &+D, &I,I, &,

S, &I, &, —

S, +&I, &,

(10a)

(lob)

(10c)

where A and 8 are constants independent of intensities.
This is a function of position in a laser discharge tube, z
coordinate.

If the character of the z dependence of the cross corre-

where ~ stands for "proportional to."
Once the three signals have been detected, one can

construct a degree of cross correlation:

W=S, /(S S )= & +&&I,I, &/(&I, &&I, &), (11)
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FIG. 12. Experimental setup.

lation is different from that of the product of the intensi-
ties, it will be rejected in the degree of cross correlation

This is the principle of our detection and measure-
ment of the degree of cross correlation. We measured the
signals S, , Sz, and S3 as functions of z and constructed

z).

0.00
0.00

I I

1 0.00 20.00
z (m x1 0')

FIG. 14. Signal S2 of (10.2) vs z coordinate.

30.00

B. Experimental setup

Our arrangement is shown in Fig. 12. A homemade
He-Ne laser was used, with a discharge tube 2.77 m long,
operating on two coupled lines: 7.69 pm (b, ), lower tran-
sition; and 3.39 pm (b2), upper transition. The latter is
much stronger and plays the part of a pump for the form-
er. The beams were split spatially inside the resonator
with a prism (sodium Iluoride). The splitting of the
beams served two aims: (i) to make b2 a traveling wave
without any perturbation of b 1, and (ii) to chop the beam
b, only. To make b2 a traveling wave, it suSced to let it
become rejected only on the mirror Mo, the second one

missing, because the generation of b2 is very strong and a
double passage propagation (towards —and from —the
mirror Mo) is sufficient for its buildup.

We observed the Auorescence emitted perpendicularly
to the laser tube on two lines: 543.4 nm from level c, and
794.3 nm from level a, as a function of position. Mea-
surements were made at 25 points, each 10 cm, moving
the monochromator mounted on a special carrier. The
direct light detector —photomultiplier EMI 9558QA—
remained the same for all the measurements.

C. Results and discussion

We carried out the measurements in the situation de-
scribed above: b, , standing wave; and b2 running wave.
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FIG. 13. Cross correlation: the signal S, of (10.1) vs z coor-
dinate (along laser). FIG. 15. Signal S3 of (10.3) vs z coordinate.
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FIG. 16. d(z) of (11), i.e., the signal proportional to the nor-
malized cross correlation; a remarkable growth is seen, al-

though the absolute value is not measured.

Thus the propagation of beam b2 results not only in its
buildup and an increase of the power of the second
(pumped) beam, but also in the buildup of the correlation
between the two laser fields. This result also proves that
the interaction between the two laser beams cannot be de-
scribed merely in terms of beam power, but that statisti-
cal quantities must be taken into consideration.

The effect we have described is sensitive to the cavity
quality Q. For example, moving the common mirror Mo
a few centimeters causes a change in the sharpness of the
peak. By comparison of the experimental data and the
plots obtained from theory, one can see that they are in
good (at least qualitatively) agreement. The quantitative
comparison cannot be carried out because of a number of
unknown, uncontrollable parameters. The simplicity of
our experiment does not allow us to determine and con-
trol them. The most important feature of this experiment
is the ability to make out the coherent part of the two-
photon transitions and to detect the cross correlation of
the two photons by a relatively simple spectroscopic tech-
nique. Further refinements of the experiment should let
us change and control some parameters. Combination of
two laser beams should offer a variety of possibilities.

As mentioned earlier, the mirror Mo sufficed for b2 build-
up. The signal Sz in Fig. 14 shows its intensity along the
tube. As a matter of fact, we measured p', ' —

A 2(I2 );
that is why the signal S2 drops with the departure from
the mirror Mo. The constant p', ' is unknown but the re-
sults turned out to be almost identical for various values
of it within a wide range. In Figs. 13—15 our three sig-
nals are plotted and the degree of cross correlation (11) is
depicted in Fig. 16. It follows from the discussion of Sec.
V A that it is to be interpreted as

(I,Iz ) +const.

As was mentioned in Sec. II, the sign of the coherent
term is difficult to determine if all three levels are
pumped. The signal S& rises from a low background; it
means that the constant of (12) is small compared to
(I,I ) (if positive at all).

One can see the influence of b2 on b, : b, also grows
towards the propagation direction of b2. The effect is
quite distinct and shows that the role of this kind of
pumping b, by b2 is comparable to that of the incoherent
one.

If there was not significant correlation between the
beams, the signal S, would be proportional to the prod-
uct of the intensities and the plot of Fig. 16 would be flat.
Yet, our experimental data form a sharp peak. Hence
(I,I2 ) I( (I, ) (I2 ) ) is not just a constant along the cavi-

ty, but on the contrary, it varies quite distinctly. It
proves that the mutual correlation between the two laser
fields does exist and evolves in the course of propagation
in the active medium, being able to increase remarkably
merely by the propagation. The effect is relatively
significant, for it manifests itself in the z dependence of
simple fluorescence intensity measurements over a dis-
tance of typical laser-tube length.

VI. CONCLUSIONS

The treatment of the two-photon laser that we have
presented in this paper describes the interaction of two
laser beams in an active medium. The laser fields were
described by stochastic quantities: average intensities
and cross-correlation intensity. We argued the impor-
tance of the cross correlation in the phenomena that
occur in the laser system. The cross correlation was
found to evolve in the course of propagation: the beams
can become correlated. The theoretical results were in
good qualitative agreement with the experimental results
obtained on the He-Ne laser. Both theory and experi-
ment point out that the interaction between laser beams
is effectuated not only by their powers but by their mutu-
al correlation matters as well. The phenomena described
by the theory are detectable by means of fluorescence
measurements. The statistical properties of light change
by propagation, which is reflected in fluorescence intensi-
ty. Our theory is a phenomenological one and can be
considered as a first approximation. Also, the experiment
is likely to be the first of a series, because the results seem
to be promising.
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APPENDIX

Here we give the values of the coefficients of Eqs. (8)
that we used to generate the plots of Figs. 2 —11. The
second set, given in parentheses, concerns Fig. 10.
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First beam: a, =2.65 (2.80), b& =20.0 (20.50), c, =24
(22.90), d i

=0.45 (0.77), d, =d,+, e,+ =0.15 (0.17),
e ) =0.9e,+.

Second beam: a& =2.95 (3.0), b2 =3.70 (3.90), d2 =0.4
(0.55), dz =dz+, e2+ =0.10 (0.12), e2 =ez+.

The cross correlation: a+ =5.20 (5.40), a =0.23 (0.18),
/3+ =3.25 (3.15), f3 =3.75 (3.75), 6+ = 7.60 (7.65),
5 =4.90 (4.8), y =23 (21), y = 21 (17.5), e+ =3.0
(3.0), e =e+.
Integration intervals were 0—3.12 m (0—3.30 m).
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