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Spectrum of three-wave mixing for multimode fields
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Analytic solutions are developed for the time-dependent intensity that results from the three-
wave mixing of multimode fields. These differ dramatically from the solutions for single-mode
(time-independent) fields. New frequencies in the output spectrum are created as input intensities
increase. Under conditions of strong nonlinear coupling the output spectrum broadens, ultimately
reaching the phase-rnatch bandwidth limit, and the dynamics can become chaotic. A new technique
for enhancing mixing eKciencies is presented.

Three-wave mixing (3WM) processes, second-harmonic
generation (SHG), sum-frequency generation (SFG),
difference-frequency generation (DFG), and optical para-
metric oscillation are routinely employed to generate new
frequencies from fixed-frequency and tunable-laser
sources. The basic physics of 3WM processes has been
well understood for over 25 years and analytic solutions
have been derived for the mixing of plane-wave, single-
mode fields. ' In this article we consider the dynamics
of 3WM processes involving multitemporal mode time-
dependent fields appropriate to the description of 3WM
of typical laser beams. While previous studies have dealt
with the spectral consequences of 3WM in the weak-field
limit, " here we show that analytic expressions are easy to
derive for the 3WM of fields of arbitrary strength.
Specifically, we show that the spectrum of the output
fields generated using SFG, DFG, and SHG changes in a
nontrivial manner under conditions of strong coupling.
The output spectrum for SFG and DFG can be dense and
broad, even for input beams containing only two modes.
For large nonlinear coupling the output spectrum
broadens, becoming quasicontinuous and exhibiting a
bandwidth that approaches the phase-match bandwidth
of the nonlinear medium. In contrast, the SHG spectrum

remains discrete for an input beam containing only two
modes, but its spectral bandwidth can still broaden to the
phase-match limit. We present a new technique for
enhancing mixing efficiencies based upon the concepts
developed here.

The dynamical equations governing SFG of phase-
matched plane waves (the DFG equations are similar) are
given in the slowly varying envelope approximation by

aE, (z, r) = —
r cu]yE3E2
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l c03+E i E2
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where E, , E2, and E3 are the complex interacting electric
field envelopes, co„co2, and co3=~, +cu2 are their frequen-
cies, r is the local pulse time, r= t —x /c, z is the distance
in the medium, z =x, and y is the nonlinear polarization
coefficient for the three-wave mixing. Analytic solutions
for the intensity (normalized to the absolute square of the
electric field) of these fields for real y are

I3(z, r) =
~min

C03 co;„I,„(0,r) ]/2

I;„(0,r )sn QI,„(0,r )co,~z,
~max min

67] C02

I, (z, r)=I, (0,r) — I, (z, r), I, (z, r)=I2(0, ~) — I3(z, r) .

Here sn(. , ~ ) is the doubly periodic Jacobi elliptic func-
tion, I,„(0,r) [I,„(0,r)] is the smaller [larger] of the
input fields, I, (0, ~) and I2(0, &), incident upon the sam-
ple at time ~. These solutions are appropriate even when
fields 1 and 2 are multifrequency beams. We consider the
case where each field (1 and 2) originates from a laser
emitting light at several cavity mode frequencies. The
temporal dependence of the input fields can then be writ-
ten as

E, (0,7 ) = g E, sin(co, .r+P; ) for i = 1,2,
j=0

(3)

where cu; =co;+6;j, 6; is the mode-frequency spacing of
cavity i (=2mc/L;, where L; is . the round trip optical
length of the ith cavity), and P," are arbitrary phase shifts
for the different modes. The 3WM solution, Eq. (2), is
valid provided the spectrum of the fields 1 and 2 remains
within the phase-matching bandwidth throughout the
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FIG. 1. Time dependence of the output I&(~), I2(~), and
l3{~) for incommensurate frequencies 6& and 6, and for low
coupling strength. Intensities Il, I„and I3 are in the same
units.

propagation in the crystal and the input envelopes,
Et(O, r) and Ez(O, r) are real. As we shall see, the output
spectrum can be much wider than the set of frequencies
c03 jj co ] j p j ] co2 La~sk fj+h2J, where j and j
are positive or negative integers. We explicitly consider
the case of SFG when the input beams contain two axial
modes, i.e., n =1 in Eq. 3, and 6, and 62 are commensu-
rate and incommensurate (5, /b, z is irrational).

First we consider the more general case of incommens-
urate frequencies, and we take b. , =b,o, b,2=(8/3n. )b,o,
( b,o = 1 X 10' rad/s) and equal field strengths E,
and equal phases P; 1 for all field components. We define
the (dimensionless) coupling strength parameter u asu:—[supremum, [I,„(0,r)]J' co,~I., where L is the
crystal length (u is the supremum of the first argument of
the sn function). In what follows we designate very low,
low, medium, and high coupling strengths as follows:
u =8.8X10, 8.8X10, 0.88, and 8.8, respectively.
Figure 1 shows the temporal dependence of the output at
frequencies co„co&, and co3=co, +~2 after propagation
through a nonlinear mixing crystal at low coupling
strength. The input and output intensities at co& and co2
are indistinguishable since the conversion is low. The
temporal dependence of the intensity at co3 reAects the
fact that both I, (r) and Iz(r) must be large for I3(r) to
be large. Figure 2 is similar to Fig. 1, but for intermedi-
ate coupling strength. Here, depletion of the input is
clear. Figure 3 is for high coupling strength. Sharp tem-
poral features originate from reconversion of I3(~) back
into I, (r) and I2(r), and vice versa. When the weaker of
I, (~) and I2(r) is fully depleted, I3(r) and the remaining
intensity of the stronger of the input fields mix and re-
form the weaker input field [the output intensity I3(z, r)
of Eq. (2) is periodic in the first argument of the sn func-
tion provided the second argument is less than unity].
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FIG. 2. Same as Fig. 1 but for medium coupling strength.
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FIG. 3. Same as Fig. 1 but for high coupling strength.

Thus, when the first argument of sn, proportional to the
larger of the input fields, is large and varies with time, the
spiky features in Fig. 3 result.

Figure 4 shows the Fourier transform of the output in-
tensity near frequency co3 (i.e., the power spectrum of the
output intensity) at different coupling strengths. Zero
frequency in Fig. 4 corresponds to output at frequency
co, +co&, and frequency co corresponds to output at fre-
quencies ~&+co2+co. At very low and low coupling
strengths the spectrum consists of frequencies 0, 6, —62,
6& 52, and 6, +A&. The largest components are at fre-
quencies 0, 6&, and 62, with the magnitude of the com-
ponents at 5& —Az, and 6, +62 much weaker. At inter-
mediate and strong coupling strengths additional fre-
quency components become significant. The spectrum
fills in completely, i.e., there is no smallest nonzero fre-
quency in the power spectrum. Despite the chaotic-
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beams (even if the two input beams overlap well spatial-
ly). %'hen one of the fields has large amplitude and the
other has small amplitude, the photons in the large am-
plitude field are not converted (in SHG fields 1 and 2 are
identical and therefore they are both simultaneously ei-
ther large or small). Greatly improved SFG or DFG
conversion efficiency with multifrequency laser beams
can be achieved using an arrangement with two nonlinear
mixing crystals, separated by a delay line for only one of
the laser beams. This permits beam i to be delayed by a
time L;/c relative to the other beam. The time delay
provides a relative shift of the modulated intensities of
the beams, assuring an increased value of the second-
order correlation function of the beams in the second
crystal, thereby increasing the SFG conversion efficiency.
The beams are then recombined by means of dichroic

mirror and sent into the second mixing crystal. The out-
put from both crystals can be combined by means of a
polarization coupler. Studies demonstrating efficiency
improvement will be presented elsewhere.

Summarizing, we find that 3WM of multifrequency in-
put beams produces output with spectral bandwidth
much larger than previously believed. In the high cou-
pling strength limit, the output spectrum is limited only
by the crystal phase-matching bandwidth. A new experi-
mental technique for improving SFG and DFG conver-
sion efficiencies was presented. Similar features occur
whenever multifrequency beams propagate through non-
linear media, and therefore the concepts presented here
are of relevance to nonlinear coupled systems in other
fields of physics.
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