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Resonance profiles for electron-ion photorecombination at an isolated resonance
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A projection-operator formalism is employed in studying photorecombination at energies close to
an autoionizing resonance. A resonance profile is defined, and is presented without approximation
for a model system consisting of one electron contiiiuum, one autoionizing state, and one final radia-
tively stabilized atomic state. Fffective line-profile parameters c and g are defined, and the pho-
torecombination resonance profile is shown to the the same as the photoionization resonance profile
{for the process in which initial and final atomic states are interchanged from the photorecombina-
tion process), provided one-photon spontaneous radiative decay effects are included. The effective
line-profile parameters are examined, and are shown to reduce to the standard autoionization line-

profile parameters in the limit of no spontaneous radiative decay. Effective line-profile parameters
are also defined in the pole approximation f'or two model systems featuring an isolated autoionizing
state. Comparison is made with effective line-profile parameters that have been defined elsewhere in

the context of photoionization into coupled electron-continuum channels. The similarity in

mathematical formalism for systems supportiiig multiple continua, regardless of whether these con-
tinua are electron or photon continua, is discussed.

I. INTRODUCTION

Several recent investigations' have pointed out that
a rigorous quantum-mechanical theory should not treat
radiative and dielectronic recombination as two distinct,
noninterfering processes. Alber, Cooper, and Rau, ' using
methods of Davies and Seaton, presented a unified
description of the processes for a model system featuring
an initially populated electron continuum, one autoioniz-
ing state, and one final atomic state with accompanying
photon continuum. In their analysis, Alber, Cooper, and
Rau made the pole approximation of assuming "flat"
continua, so that certain principal-value integrals could
be neglected. They showed that the energy dependence
of the photorecombination cross section was similar to
the energy dependence of "modified Fano profiles" that
had previously been introduced ' in studies of the
influence of spontaneous radiative decay on weak-field
resonant photoionization processes.

The model studied by Alber, Cooper, and Rau' has
since been generalized by Jacobs, Cooper, and Haan to
allow for degenerate magnetic sublevels of the atomic sys-
tem and for multiple angular-momentum contributions in

the partial-wave expansion of the unperturbed eigenstates
of the electron continuum. By utilizing scattering-theory
techniques that had previously been used ' '' in studies
of the decay of a prepared state into coupled continua,
they presented an exact, closed-form expression for the
photorecombination T matrix for the model system. This
exact expression featured the sum of two terms. The first
term was the matrix element of a vertex operator, and the
second term involved both the vertex operator and the
projection of the resolvent operator onto the subspace of
the autoionizing states. The first term of the sum was in-
terpreted as representing nonresonant or direct pho-

torecombination, and the second term of the sum was in-

terpreted as the resonance contribution to the pho-
torecombination.

Recent papers ' have presented a projection opera-
tor" ' approach to the unified treatment of radiative
and dielectronic recombination. One of these, hereafter
referred to as paper I, considered the transition operator
T which describes the photorecombination process, and
presented an expression for T which generalized to a
model-independent operator form the expression found
earlier by Jacobs, Cooper, and Haan' for their model sys-
tem. A similar expression had previously been derived
and used by other investigators in other contexts, ' as
discussed in paper I.

One feature of the T-operator expression presented in

paper I is that it provides a natural separation of resonant
and nonresonant processes in the formalism. This sepa-
ration allows one to compare theoretically the full pho-
torecombination process, when resonances are present,
with the photorecombination process in the absence of
resonances. In the present work we make such a compar-
ison, and we define and discuss resonance profiles for
photorecombination.

In Sec. II of this paper we summarize the relevant for-
malism of paper I, and in Sec. III we apply the formalism
to a model system that is similar to the one studied by
Alber, Cooper, and Rau. ' We present an exact expres-
sion for the photorecombination T matrix for this model.
In Sec. IV we define a resonance profile for photorecom-
bination in the model system, and we show how effective
line-profile parameters, denoted by c and q, can be
defined so that the resonance profile exhibits the usual
Fano form. ' In Sec. IV B we emphasize that the reso-
nance profile for photorecombination into state

~f ) is the
same as the profile for weak-field photoionization from
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II. SUMMARY OF FORMALISM OF PAPER I

As in paper I, we suppose that the Hamiltonian H for
the many-electron atom and radiation-field system of in-
terest has been decomposed as H=H +V, and we as-
sume that the eigenstates of H are known. We define
two orthogonal projection operators, C and Q, where C
projects onto the space of continuum eigenstates of H,
and Q projects onto the space of discrete (autoionizing)
eigenstates of H . We assume that (Q+C)V
= V(Q +C)= V, i.e., that the interaction V does not mix
the states in the space onto which the sum Q + C projects
with states outside that space. The photorecombination
process can be described by using the T operator, which
is defined as

T(z) = V+ VG (z) V, (2.1)

where

G(z}=(z H V}—— (2.2)

is the resolvent or Green's operator. In paper I it is
shown that

T(z) =A(z)+ A(z)QG (z)QA(z),

where

QG(z)Q=QIQ[z —H' —A(z}]QI 'Q

A(z) = V+ VC@(z)CV,

4(z) =[C(z —H —V)C]

(2.3)

(2.4)

(2.5)

(2.6)

The operator W(z } represents the Cxreen's operator that
would be obtained if the system had no discrete (autoion-
izing) states, and can be thought of as representing the
propagator in the continuum space onto which C pro-

atomic state
~f ) when one-photon spontaneous

radiative-decay effects are included. In the latter context
we also note that one-photon spontaneous radiative-
decay effects slow the rate of photoabsorption, and we
comment that this change of the transition rate from the
initial state is one particular manifestation of the general
conclusion that a coupling between Anal-state continua
can change the rate of "decay" of a discrete state, an
effect which has been discussed by a number of investiga-
tors in many different physical contexts. ' '

In Sec. V we consider the two particular model systems
that were studied in paper I. The systems both feature
one autoionizing state. In one system, there is only one
electron continuum but there are an arbitrary number of
photon continua, with each photon continuum corre-
sponding to a different possible final (radiatively stabi-
lized) atomic state. In the second system, there are an ar-
bitrary number of electron continua, but only one photon
continuum. We define effective line-profile parameters f
and Q for these systems. We also compare the line-
shape-profile parameters defined in this work with those
that have been used by other investigators ' for systems
featuring an isolated autoionizing resonance and multi-
ple, coupled elec ron continua. Finally, in Sec. VI we
summarize and discuss our results.

jects. The operator A(z) has been frequently referred to
as a "level-shift operator" or "vertex operator, " and has
sometimes been denoted by R (z). ' ' The projected
Green's operator QG(z)Q can be thought of as an
effective propagator through the space of discrete states.

As in paper I, we write the continuum projection
operator C as the sum of projection operators for electron
and photon continua: C =P +R, where of course
PR =RI' =0. Then the photorecombination process, in
which the system evolves from an electron continuum
state (in the subspace onto which P projects) into a pho-
ton continuum state (in the subspace onto which R pro-
jects), is described by

RT(z)P =RA(z}P+RA(z)QG(z)QA(z)P . (2.7)

III. APPLICATION OF FORMALISM
TO A MODEL SYSTEM

A. Description of model

We begin our study of photorecombination near an iso-
lated resonance with a careful examination of a simple
model system which features a single autoionizing state, a
single (initially populated) electron continuum, and a sin-
gle bound atomic state with accompanying photon. This
same system has been studied in the pole approximation
(which is discussed later in this paper) by Alber, Cooper,
and Rau. ' The system has been studied outside the pole
approximation by Jacobs, Cooper, and Haan. The latter
work included explicit expressions for the matrix ele-
ments of the photorecombination T matrix for the system
when degenerate magnetic sublevels were accounted for,
and it showed how the expressions simplified when mag-
netic quantum-number specifications were ignored. In
the present section we use the formalism of paper I to
rederive the T matrix expressions of Ref. 3 for the case
where magnetic sublevels are ignored. Then in Sec. IV
we use the formalism to define and to discuss pho-
torecombination profiles and effective profile parameters
for the system.

We will write the electron continuum eigenstates of H
as ~aE ), where a denotes the relevant quantum numbers
of the state and E denotes its total energy. We will write
the final atomic state as

~f ), and the accompanying pho-
ton continuum eigenstates of H as

~fco ), where co

denotes the total energy. (Throughout this work we take
6=1; any photon quantum numbers will be assumed to
be absorbed into f.) We will assume that the continuum

As discussed in paper I, the first term in the sum,
RA(z)P, represents the transition amplitude that would
be obtained for RT(z)P if there were no autoionizing
states present in the system, and can be said to represent
standard, nonresonant radiative recombination. The
second term in the sum, RA(z)QG(z)QA(z)P, contains
all effects of the autoionizing states.

Paper I also presents a general recipe for constructing
matrix elements of the photorecombination T operator,
based on the equations reproduced above as Eqs.
(2.4}—(2.7). In the following section we apply this recipe
to a simple model system.
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eigenstates of H have a 6-function normalization with
respect to energy, i.e., that ( aE

l

aE' &
=o(E E—'),

(fcolfco'
&
= o(co co—'), and of course (aE

ifco & =0. We
will denote the autoionizing state by l

ct &, with
H ia & =E, ict &, (ala &

= I, (ctiaE & =(ctifco& =(ctif &

=0. We also assume that (aEl VlaE'& =0
=(fcol Vl fco'&. For these states the projection operators
can be written

tors (we have included the aFs explicitly as an expansion
parameter). An exact solution for the matrix elements of
the T operator describing photorecombination can be ob-
tained for this model system by following the recipe
presented in paper I.

B. Construction of matrix element of T(z)

1. Matrix elements of @(z)P= dE aE aE

8 = f d co if co & & fco i,
g=ict &(ai .

(3.1)
The first step in the recipe of paper I is to construct

matrix elements of N(z). For the interaction described
by Eq. (3.2), it is straightforward to show from
C[(z —H')4( z)] C= C [1+CVCC (z)]C that

A schematic diagram of the model is shown in Fig. 1.
We take advantage of the separability of the coupling

between the two continua ' ' of the model in the dipole
approximation, and we write

(aEl Vl fco& =d l(E)gl(co),

( fcoi VlaE & =gg(co)dI (E) .
(3.2)

Here d I(E) is essentially a dipole matrix element be-
tween the electron continuum and the final atomic state
if &, and g(co) includes the familiar (cot, aFs) factor,
where coj, denotes the photon energy and aFs the fine-
structure constant, as well as multiplicative algebraic fac-

(aEle(z)laE'& = 1

z —E
d ~(E) Xsg(z)d~ (E')

+
1((z) z —E'

gf (co )dl (E)
& fQ)le(z)laE &

=
(z z co z E

'(3.3)

and, interchanging electron and photon continuum sym-
bols,

& file(z)lf~'&= 1
5(co —co')

f p
I

I

I

I

I

I

I

I

{I«) }

I

f
1

v
I

Ia) I

Q

I

fg*(co) X (z)g (co')f
Q(z) z —co'

d l(E)g&(co)(aE le(z)l fco &
=

P(z)(z —E)(z —co )

(3.4)

I

I

I &)
I

I

(a)
igl (co) i'

Xss(z)= f dco
z Q)

X~~(z)= JdE fdI.(E)l'

z —E

(3.Sa)

In these expressions we have introduced the self-energies

I

I

I

{laE) }

I
1

I
I

I

l
vI ia) )v

I Q
IL

(b)

[ 1

I

{tf~)}
I I

I I

I

y(z)=1 —X (z)& (z) . (3.5b)

2. Matrix elements of A(z)

(where, as throughout this work, it is understood that the
integrals are over all continuum energies), and

FIG. 1. Schematic diagrams of the model system of Sec. III.
In Kb), the continuum nature of possible photon energies has
been explicitly indicated.

The second step of the recipe of paper I is to construct
matrix elements of A(z)= V+ VCN(z)CV between the
various states of interest. One obtains
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gf (cd)df (E)
& fcdlA(z)laE &

=
(z)

&alA(z)laE)=&alVlczE)+ [r,' (z)&«(z)1

(z)

where

k,f (z) =d,f +X'f(z),

A f (z) =df, +Xf'(z)
(3.1 1)

& a
I
A(z)

I
a ) = X„';(z)+ X„"„(z)

+X'g(z)]df (E),
(3.6)

+ [X' (z)X (z)X '(z)l

tl (z)

+X' (z)X (z)X '(z)

+X' (z)r '(z)+X' (z)X '(z)],
gf*(cd)

&fcdlA(z)la &
=

& fcdl Vla &+
Q(z)

+Xf'(z) ],

The operator A, represents the level shift operator within
a model system which contains one continuum, { IccE) I,
and two discrete states, If) and Ia), and which has
Hamiltonian H' such that & f IH'la ) =df„&f IH' IczE )
=df (E), and &a{H'IaE) = &a

I VIccE). When multi-
plied by the appropriate photon intensity factor,
represents the level shift operator for the usual Fano ' or
laser-induced autoionization ' system, in the absence of
spontaneous radiative decay.

On inspection of Eq. (3.10) we notice two relations that
will be useful later:

where the X's denote various self-energies:

& a I V
I
ccE ) d f (E)

X'f(z) = dE
z —E

a V m g~*-m
X's(z) = dcd

z cc)

„ l&aIVI~E&I'
z —E

I &a
I Vlf~& I'

df (E)& ccE
I
V

I
a )

Xf'(z) = dE
z —E

gf m co Va
Xg'(z) = dcd

z cc)

(3.7)

Additional simplification occurs if we employ the rela-
tionship

A,f, (z)
&fcdIA(z)la &

= „' & fcdlA(z)lccE &,
df E)

and

& a IA(z) a ) =X;;(z)

&cclA(z)laE &
—&a I VIccE &

df (E)

3. Matrix elements of RT(E +i 0)P

(3.12a)

(3.12b)

&f~l Vla & =gf*(~)df. , (3.8) For our simple one-discrete state system, the projected
Green's operator QG (z)Q of Eq. (2.4) is given by

where gf(cd) is the same function of cd as occurs in Eq.
(3.2) and where df, denotes essentially the dipole matrix
element between atomic states If ) and Ia ). Then QG( )Q

z E.—&a IA(z)l—a )
(3.13)

X'g(z) =d, Xf(«z),
Xs'(z) =df„X«(z),

X „(z)=Id.f I'X s(z),

(3.9) It follows that the matrix element of the T operator cou-
pling the initial state laE) with the final state

{fed�

) can
be written

and one can write

gf (cd)df (E)
&f~lA(z)I~E) =

ll (z)

gf (cd)
&fcdIA(z)la &

= Af, (z),

& fcol T(z)laE &
=

& fcdIA(z)laE )

+ &f IA( )I && IA( )I E &

z —E, —&a IA(z)la )

(3.14)

& a IA(z)la & =X;;(z)+ X«(z)k, ,f(z)kf, (z),1

f(z)

(3.10)

(z)df (E)
&a IA(z)lccE&= &al V{ccE)+X. (z)

Equation (3.14), with the matrix elements of A(z) given in
Eqs. (3.6) and (3.12), is the same as Eq. (87) of Ref. 3.
Setting z =E+i0 in Eq. (3.14) and using Eq. (3.12), we
obtain
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& f~
I
A(E +i 0)

I
aE ) ~f.(E + i 0) & a

I
A(E + i0)

I
aE &

E —E.—& a
I A(E+ i 0) la )

(3.15a)

which is equivalent to Eq. (94) of Ref. 3. In anticipation of defining resonance profile parameters, we use Eq. (3.12b) for
& a

I
A(E +i 0) I

a ) to rewrite Eq. (3.15a) as

& f IT(E+ 0)l E) = &f~lA(E+' )I«
E E, ——Re[A„(E +i 0) ]—i Im[A„(E +i 0)]

X [E E, ——Re[A„(E+io)]I

+ Re[A„(E+io)]—X;;(E+io)+
& a I vlaE &sf.(E+io)

df (E)
(3.15b)

IV. PHOTORECOMBINATION RESONANCE PROFILE

2

& fcol T(E+io)laE)
& fcol A(E +i 0) IaE )

The expression (3.15) can be rewritten in the form

&f~ I
T(E + io) laE &

=
& /col A(E +i 0) laE )

r

(4.2)

A. Definition and derivation

If the autoionizing state
I
a ) were not present, then the

T matrix for photorecombination would be given simply
by

& f~I T(E+io)IaE) =&fcoIA(E+io)IaE & . (4.1)

Thus all effects of the autoionizing state can be described
in terms of the "photorecombination resonance profile, "
which we define as

are straightforward generalizations of the c and q param-
eters introduced by Fano.

%'e define

E E, —Re—[&a IA(E+io)la )]
E(E)= —Im[& a IA(E+io)la ) ]

(4.5)

If one thinks of ReA„as an energy shift of state Ia ) due
to interactions with the continua and of —ImA„as the
half-width of state Ia ), then, to the extent to which we
can neglect the E dependence of the matrix elements of
A(E +i 0), s can be thought of as representing a dimen-
sionless continuum energy parameter, giving the energy
relative to the energy of the autoionizing state in units of
the half-width of the state. It is clearly equivalent to the
c defined by Fano ' and other investigators.

For the case in which &a I VlaE) and the matrix ele-
ments of d are real, we define the effective lineshape pa-
rameter q by

e(E)+Q(E)
f(E)+i

(4.3)
Re[A,~(E+i0)Af, (E +io)]

q(E) = —Im[A, ~ (E +i 0)kf, (E +i 0) ]
(4.6)

by defining E and Q as appropriate functions of E. Then
the resonance profile of Eq. (4.2) can be written

)
Is+pl'

fa (4.4}

(where we have suppressed the argument E in e and g ),
which has the same form as the familiar line-profile intro-
duced by Fano, ' except for the substitutions of c for c.

and Q for q. We show below that the quantities E and q'

Im

(4.7)

[where the last equality follows from Eq. (4.21) below], so

that, in Eq. (3.15),

That this definition gives the result (4.3) can easily be
demonstrated by noting that

&a I vlaE &sf.(E+io) = Im —2;~'(E +i 0)
fa

&a I VlaE )Af, (E+io) &a I VlaE )Af, (E+io)
Re[A„(E+io)] X;;(E +—io)+ =Re A„(E+io)—X;;(E+io)+

df (E)

A,F (E +i 0)Af, (E + io)
=Re

df (E)

(4.8)

(4.9)
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and by also noting from Eqs. (4.7) and (3.12b) that
T

A,F(E +i 0)Af, (E+i0)
1m[&a IA(E+iO)Ia &]=Im

fa

(4.10)

(laE) }
I a&

The parameter Q(E) will be studied in Sec. IV C.

B. Equivalence of photorecombination
and photoionization profiles

In this section we show that the photorecombination
profile of Eq. (4.4) is the same as the weak-field reso-
nance profile for photoionization from

If &, provided that
single-photon spontaneous radiative decay to the contin-
uum [I

fee�&

) is included in the analysis. We also show
that the generalized line-shape parameters f and q apply
to both situations.

To establish the equivalence of the photorecombination
and weak-field photoionization profiles, we begin by gen-
eralizing Eqs. (3.2) and (3.8) to

( I tx E+ ) } (I f~+ ))

& fcoI V=gf*(cu)& f Id, (4. 1 1)

and writing

& fcoI T(E+i0)IaE &
=

& fcoI V[1+G(E+i0) V]IaE &

where

(4.12)

=gf (~)&f Id [1+ G(E +iO) V]IaE )

=gj*-(cu)&f IdIaE+ ) (4.13)

Lf (E)=
g*( )& fldl E+ &

gf*(cu)& f Id IaE & IQ(E +iO)

,.0) &f Id IaE+ &

&f IdlaE &

(4.15)

We now will show that this same profile is obtained when
one considers photoabsorption from If & while allowing
for single photon spontaneous radiative decay back to

A schematic diagram of the system of interest for dis-
cussing photoabsorption from

If &, when
If ) is the ini-

tially populated state, is shown in Fig. 2. The interaction

I
aE+ &—:II+ IaE &

= [1+G (E +i 0) V] IaE & (4.14)

(with, as in paper I, 0+ denoting the Manlier operator of
scattering theory). The ket IaE+ & is a continuum
eigenstate of H + V with eigenvalue E, and it corre-
sponds to a scattering eigenstate when the interaction V,
representing both configuration interaction and spontane-
ous radiative decay, is included in the Hamiltonian. It
corresponds asymptotically to a free-electron continuum,
but in the vicinity of the atom is a linear combination of
the continua [IaE & ] and [If'& I as well as the discrete
state Ici &.

The photorecombination profile (4.2) can be written us-
ing Eq. (4.14) as

FIG. 2. Schematic of system for studying photoabsorption
from If ), when spontaneous radiative decay to the one photon
continuum [ I fee) I is included. In (b), the [ IaE ) I

—Ia )
—

I Ifco ) I system has been diagonalized, using the Manlier

operator 0+, into the two orthogonal, uncoupled continua

[ IaE+ ) I and [ Ifco+ ) I. The quantity r+ represents the tran-
sition rate from If ) to [ IaE+ ) I.

r =2~I
I & f IdC [1+[C(z H—

—V)C] 'CVC
I IaE ) I

=2rrII &f ld+dC@(E+iO)CVClaE & I
(4.16)

responsible for photoabsorption from
If & can be written

in the dipole approximation as &Id, where I is a photon
intensity parameter and d is the same dipole operator
that appears above. The rate of photoabsorption from

If & into the asymptotic electron continuum [ IaE+ & I

for weak fields is, by Fermi's golden rule,
r+ =2vrI

I &f Id IaE+ & I (evaluated at the continuum en-
ergy E which is one photon in energy above state

If & ).
Previous discussions of the eff'ects of spontaneous radia-
tive decay on Fano profiles ' have compared the rate r+
with the photoabsorption rate in the absence of both the
autoionizing state and spontaneous radiative decay. The
latter rate is simply 2mII &f Id IaE & I . .However, in con-
sidering the eFects of the autoionizing state on the photo-
absorption rate, one would want to compare the rate r+
with the rate r that would be obtained in the absence of
the autoionizing state, but still including spontaneous ra-
diative decay from the electron continuum to the photon
continuum

Ifcu &, as shown in Fig. 3. This rate can be ob-
tained from the matrix element of d between the initial
atomic state

If & and the diagonalized electron continu-
um in the two-continuum space onto which C projects:
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In (4. 16), we have used the projection operator C to ex-
clude the autoionizing state. The rate r can be rewritten
using Eqs. (4.11) and (2.5) as

, I&f~I~(E+io)IaE&I'
Ig(~) I'

, 1&f ld IaE & I' .
g(E+iO)I

(4.17)

II &fldl«+ & I'

II&fldl«&I'/lq(E+iO)I' ' (4.18)

which is equal to the profile of Eq. (4.15). This estab-
lishes the equivalence of the profiles for photorecombina-
tion and for photoionization, when one-photon spontane-
ous radiative-decay processes are taken into account ~

The result (4.17) for r is worthy of brief discussion. It
indicates that the coupling between the final-state con-
tinua I I

aE ) I and [ If ru ) I changes the transition rate
from

If ) to the asymptotic electron continuum. The to-
tal rate of depopulation of the initial state for this system

The photoabsorption profile when single-photon spon-
taneous decay effects are considered is then the ratio of
the two rates, and is given by

is 2nII I (fldlaE+ ) I
+

I (f Id If'+ ) I I, and can be
shown to be 2n.II(fldlaE)l /P. This is one particular
manifestation of the general conclusion that a separable
coupling between final-state continua can change the rate
of "decay" of a discrete state. This result has been dis-
cussed previously in the context of the decay of autoion-
izing states by Armstrong, Theodosiou, and Wall and
others. ' The result has been discussed in the context of
intense field multiphoton ionization by Deng and Eber-
ly, who also indicated that similar conclusions had been
drawn in the study of decay processes and multiphoton
excitation in polyatomic molecules by Lefebvre and
Beswick and others. In addition, the result has been
discussed in the context of photodecomposition of mole-
cules by Druger, and in a general context by Robin-
son. Even though the contexts of these discussions have
been very different, the mathematics and the conclusions
are nonetheless similar. "

C. Discussion of the e8'ective line-shape parameter q

We begin our examination of the effective line-shape
parameter Q defined in Eq. (4.6) by writing out A,F using
Eq. (3.10):

Q(E)=
Re

—Im

Xss(E +i 0)df (E)
V,~+ A,,f(E+iO) Af, (E+iO)(E+iO)

Xss(E+iO)df (E)
V,~+ A,,f(E+i0) Af, (E+i0)

P(E +i 0)

(4. 19)

Re[elf, (E+iO)]
q(E)~ —Im[kf, (E +i 0) ]

dI, +P dE'

dIE VE

(4.20)

{ltxE&}
CVC

In the limit of vanishingly sma11 spontaneously radiative
decay, i.e., limg(cu)~0, we have Xss~O and (assuming
V,z real)

which is the usual Fano line-shape parameter. ' In writ-
ing Eq. (4.20) we have used the well-known relationship

1 1
, =PE+i0—E' E —E' i n.5(E E—' ), —(4.21)

where P represents the principal part.
Because Xgs(E +i 0), P(E+i 0), and Af, (E +iO) are all

complex, explicit forms for the real and imaginary parts
of the quantity in square brackets in Eq. (4. 19) are alge-
braically messy. However, if one makes the approxima-
tion of neglecting all principal-value integrals that arise
when Eq. (4.21) is applied to various quantities in Eq.
(4.19) (we will refer to this approximation throughout this
work as the pole approximation), a simple expression for
q is obtained. In this approximation, and assuming V, ,

d~„and d~ real and constant in energy {hence the sub-
script a rather than E in V, = (a

I VlaE) ), q can be
written

FIG. 3. In the absence of a discrete (autoionizing) state, the
initial state

If ) "decays" through photoabsorption into the cou-
pled continua [IaE) I and [If') I. The quantity r represents
the transition rate from If ) to the asymptotic electron continu-
um that is obtained when the [ IaE) —

[ If') I system has been
diagonalized into two orthogonal, uncoupled continua.

q= V, df, (1 —~ Igf I df )

rrdf ( I gf I d,f + V, )

1 n'I gf Idf. — '

[1+lgfl d f/V.'.

{4.22a)

{4.22b)
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In this approximation Q is independent of energy. We
note that the first term in parentheses in Eq. (4.22b) is the
usual pole approximation q parameter. If we define

I =2m. V,

y =2m V,~=2m'Ig I'd f (4.23)

where I and y represent the lowest-order unperturbed
autoionization and radiative decay rates (or widths), re-
spectively, and q is the usual Fano line-profile parame-
ter ' in the pole approximation, then

1 —y/(I q )

1+x« (4.24)

We note from this expression that I/I ~ lq I, and that lql
decreases monotonically with increasing y. Since the
peak value of the resonance profile is Q +1, it follows
that spontaneous radiative decay decreases the maximum
height of the resonance profile. For q &)y/r, as is
often the case in systems for which photorecombination
is an important process, ' we have

1

=ql+y/r ' (4.25)

rA„=—(b., —&i)), (4.26a)

which is the generalized q value given by Bell and
Seaton.

In the pole approximation, the quantity A„can be
written

rl

q+b, , (4.27)

where c denotes the usual continuum energy parameter in
the pole approximation,

E —E,
r/2 (4.28)

The profile can then be written in either of the two forms

L (s+q)
fa

(s+q)
(s —b, ) +i)

(4.29)

The latter form is the "modified Fano profile" presented
in earlier works, ' except for a factor of g which arose
because those works defined the profile dift'erently, as dis-
cussed above Eq. (4.16).

An alternative to neglecting all the principal value in-
tegrals in Eq. (4.19) is to neglect only the principal value
integral appearing in X s(E+iO), i.e. , to make the pole
approximation only on the photon continuum. In this
"partial pole approximation, "

state induced by the interaction with the coupled con-
tinua, and gr can be thought of as the total width or de-
cay rate of the state. [We note again the factor of g,
which arises from the continuum-continuum coupling,
and which acts ' ' to decrease the rate of decay of state
Ia ) from I +y to (1/g)(I +y).] In terms of the param-
eters of Eq. (4.26), we can write

c—6,F=

where

2 ~f
I q/

1 'Yf1+ r (4.26b)

Q(E+iO)=1+ir Ig/I Id/ (E)l

+i~lg/I'P f, dE',

which we write as

g(E +i0)=$0+i g,

(4.30)

@=1+~'Ig,l'd' =1+ '
rq

As discussed elsewhere, the quantity (I /2)b, , can be
thought of as an energy shift of the discrete autoionizing

where $0 is the value of P when the pole approximation is
made on both continua [as given in Eq. (4.26b)], and
where $0 and y are real. It is then straightforward to
show

V Ed,'/(E)[1+& m lg I 1/ (E—) ]+nplg I d/ (E)[Vz, ir d f(E) +d f(E) )

nd /(E)[ V,'~(@0+y')+ lg I'd,'/(E)@0 2grrlg I'd/ (E)d.'/(—E) VgF. ]
(4.31)

d,'/(E)
m.d /(E) V,~

1+y m lg I d/ (E) +my—lg I d/ (E)[VE,m. d /(E)/d, '/(E)+d, '/(E)/V, F]
@0+y + lg l~d,'/(E)@0/V E 2yvrlg I d/ (E)d—,'/(E)/V, E

(4.32)
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where

d„'&(E)= Re[A.,&
(E +i 0)]= V& +Re[2' (E +iO)],

(4.33)

and where we have again assumed V,z and all matrix ele-
ments of d real. The first term in parentheses in Eq.
(4.32) represents the usual Fano q parameter.

V. EFFECTIVE LINK-PROFILE PARAMETERS
FOR MODEL SYSTEMS OF PAPER I

in paper I photorecombination processes within two
particular model systems were studied in the pole approx-
imation, and expressions for the T matrix were written in
terms of the usual line-profile parameters q and c. The
systems studied both featured one autoionizing state. In
one system, there was only one electron continuum but
an arbitrary number of photon continua, with each pho-
ton continuum corresponding to a different possible final
(radiatively stabilized) atomic state. In the other system,
there were an arbitrary number of electron continua, but
only one photon continuum.

Effective line-profile parameters for isolated autoioniz-
ing states in photoionizing systems which feature multi-
ple electron continua but no photon continua have been
defined by other investigators. Fano and Cooper have
shown how the line-shape parameters originally defined
by Fano ' can be extended to such systems, and Starace
has studied the behavior of partial cross sections and
branching ratios for such systems. The generalized
lineshape parameters used by these investigators for mul-
tiple electron continuum systems can be written very sim-
ply in terms of the operator A used in the present paper.
Their electron energy parameter c is equivalent to our c
for such systems, and can be written as in Eq. (4.5)
[where A(z) is as defined in Eq. (2.5), with 4(z) given in
Eq. (2.6) and with C representing the projection operator
onto the set of continua]. The line-shape profile parame-
ter q(E) which these investigators define in describing
photoionization can be written (for initial state If ), in
the absence of spontaneous radiative decay, and assuming
all matrix elements of the Hamiltonian to be real)

& f~
I
T( E +i 0)

I
aE ) = (fco

I
A( E +i 0)

I
aE )

C+qf
c. +i

(5.2)

where

2

/, Iq/

(5.3)

1 Pf I

I+gg I

and where

1 'Y/

f, qf I

2

I =2~V,

yf =2nV,f,
Vf,

~Vf V,

(5.4)

/=1++
f Iqf

These expressions for b... i), and g are generalizations of
those presented in Eq. (4.26b) for systems featuring a sin-
gle electron continuum and a single photon continua.

Using Eqs. (4.5) and (5.2), one obtains

(5.5)

and

where e is given in Eq. (4.5) and is real, but where g/ may
be complex.

For a system featuring only one electron continuum

I IaE ) I
but an arbitrary number of photon continua

I If 'co)
) [such that ( fcuI f'cu') =o/& 5(co c—o') and

(f~I VIf 'co' ) =0], paper I gave the results

rA„= (b,, ——iq),

Re[(f IA(E+iO)Ia )]
—Im[&f IA(E+iO) l~ &]

(5.1)
q/+ A. + ig(1 —q//q/. )(y/. /I )

f'
(5.6)

In the present work we wish to allow for the possibility
of one or more spontaneous radiative decay continua, and
we emphasize that there is a mathematical as well as a
physical distinction between photon and electron con-
tinua. In particular, the coupling responsible for radia-
tive decay satisfies the relationships (3.2) and (3.8), while
the couplings that may arise between electron continua in
general will not. In such situations the parameter q(E) of
Eq. (4.6) may be more useful than the q (E) of Eq. (5.1).

In this work we shall define the effective line-shape pa-
rameters qf for multiple-continuum systems so that the T
matrix for photorecombination from electron continuum

I
aE ) into atomic state

I

f' ) can be written as

We note that the imaginary part of Q/, which arose due
to the additional possible final states, in general prevents
the profile from exhibiting any zeroes. We also note that
it does not provide a simple, flat "background, "but rath-
er (Imp ) /(1+ a ), when considered as a function of the
dimensionless continuum energy parameter c, is
Lorentzian, with width 1 and height (Imq) . A "total
photorecombination profile" can be obtained by summing
over final states: L ( s ) =gIL/ (s ).

Some graphs of Lf versus energy for various atomic
parameters are drawn in Figs. 4 and 5. In order to main-
tain a consistent energy scale while varying the atomic
parameters, the horizontal axes give energy, relative to
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FIG. 4. Resonance profile for photorecombination to the
photon continuum [ ~

f'co) j for a system featuring one electron
continuum and one autoionizing state. The uppermost curve
gives the profile when only the one photon continuum is avail-
able, while the other curves give the profile for photorecombina-
tion to the same state when a second photon continuum
[~f'co) ) is accessible. In all cases yf/I =0. 1 and qf =3. For
the lower curves, qf =3 and, in order of decreasing profile
height, yf /I =0.1, 0.3, and 0.5. All the curves are drawn as
functions of c, not f, so that the energy units are consistent for
all curves.

E„ in units of 1 /2 [i.e. , Lf is actually graphed as a
function of the E of Eq. (4.28) rather than as a function of
E]. Figure 4 shows the smoothing of the resonance profile
that can occur when a second final atomic (radiatively
stabilized) state is available. The topmost curve in the di-
agram shows a profile when only one state

~f ) is avail-
able, while each of the lower curves gives the resonance

profile for photorecombination to [f ) when a second
state f') is accessible. For the values of the atomic pa-
rameters of Fig. 4, the height of the resonance profile de-
creases as yf. increases. A simple physical interpretation
of this smoothing is that some of the population which
goes from ~aE) to ~a ) nows decays to ~f') rather than
to ~f ). In Fig. 4, qf =qf, so that Imp=0, and the
minimum is retained. The curves thus all show the usual
Fano line shape (although they are graphed versus s rath-
er than c).

Figure 5 shows one type of behavior the profiles can
exhibit when qf.Wqf. Here we have chosen qf small and
of opposite sign from qf. For this case the zero is lost,
and increasing yf increases the height of the resonance
profile. Mathematically the increased height of the
profile comes about because Req ) q (for qf & 0 and
~yf /I qf. ~

) ~yf/I qf ~, b,, is positive). A more physical
picture can be obtained if one thinks in terms of pertur-
bation series, such as were discussed in Sec. 5.B of paper
I. Now the second photon continuum provides addition-
al pathways leading from the initial state to the final
atomic state (such as ~aE) ~~f'ru')~~a ) ~~fry) ). The
strong coupling to the second photon continuum which is
implied by large yf and small q acts for the present pa-
rameters to enhance the sum of the amplitudes for the
pathways that lead through the autoionizing state rela-
tive to the sum of the amplitude for the pathways that
bypass the autoionizing state.

The second system studied in paper I featured an arbi-
trary number of electron continua for which
(aE~ V~a'E') =0, but only one photon continuum
[ ~

fee�)

[. For this system, it was indicated that

where

16

12

2 7f
1q

1+, (1—1/q )
Vf

(5.7)

8

4

with

yf =2~V,f,
Vf,

qfa

I =2nV, (5.8)

-2. 5 2. 5

FIG. 5. Resonance profile for photorecornbination to the
photon continuum [ ~

~fee) j as a function of E. as in Fig. 4, again
with yf/I =0.1, qf =3, but now with qf = —1. The top three
curves correspond, in order of decreasing height, to yf =0.5,
0.3, and 0.1, respectively. The lowest curve shows the profile
when only one photon continuum is present, and reproduces
part of Fig. 4. As yf ~ ~, the peak height increases without
bound (as yf ).

g'=1++
qf I

The q parameter defined in Eq. (5.8) is the generalized q
parameter used by other investigators ' and given in
Eq. (5.1), evaluated in the pole approximation. This
equivalence follows directly from the pole approximation
expression for Af, given in Eq. (5.37c) of I:
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A/, =,Qy//2ir 1 —— (5.9)
12

The line-profile for this system can be written down using
Eq. (5.41) of paper I:

(E'+q& I /I ) +[1—
(q& /q)(I /I )]

L (e') =
(e' —b,

'
) +il'

(5.10)

where

E —E, I
I /2 I

(5.1 1)
-2. 5 2. 5

Effective line-profile parameters for photorecombination
from the electron continuum ~aE ) to the photon contin-
uum

~fco ) can be defined by

(5.12a)

FICx. 7. Photorecombination profile vs c for a system featur-
ing one or two distinct electron continua. In this figure, the
second tallest curve shows the profile when only one electron
continuum is present, again for y&/I =0. 1 and q& =3. The
others have r../r. =1, and from highest to lowest, q& =0.5,
0.7, and 100.

q& I /I +b, ,'+i[1—
(q& /q)(I /I )]

fa (5.12b)

10

7.5-

5

2. 5

0
-5 -2. 5 2. 5

FIG. 6. Photorecombination profiles for a system featuring
one or two distinct electron continua. The curve with the
highest peak shows the profile when only one electron continu-
um is present, for y&/I =0. 1 and qI =3. The other curves in-
clude the second electron continuum; all have q& =3. In order
of decreasing profile height, I /I =0.1, 0.3, 0.5, and 1.0. To
maintain a consistent energy scale, the profiles are drawn as
functions of c, rather than c' or c.

Once again the effective q parameter, q&, is complex,
preventing the profile from exhibiting zeros.

Photorecombination profiles given by Eq. (5.10) are
presented in Figs. 6 and 7. Figure 6 shows the smoothing
of the profile that can occur when a second electron con-
tinuum channel is present. As for the situation of Fig. 4,
this smoothing can be thought of as occurring because
population in the autoionizing state can decay into the
other electron continuum rather than to state ~f ). Fig-
ure 7 shows the enhancement of the profile that can

occur when the second electron continuum is present.
The enhancement occurs in the figure when the line-
shape parameter q& ~ is small. In this case, the parameter
q of Eq. (5.8) is smaller than q&, thus the ratio q& /q ap-
pearing in (5.12b) is greater than 1.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have used the projection operator for-
malism and recipe that was presented in an earlier paper
to construct matrix elements of the T operator for
electron-ion photorecombination for a model system con-
taining a single electron continuum, one autoionizing
state, and a single photon continuum. The result is
presented in Eqs. (3.14) and (3.15). The natural separa-
tion between the direct and resonant processes that is
provided by the formalism has led us to define in Eq. (4.2)
a "resonance profile" for photorecombination. This reso-
nance profile is characterized by the parameters E(E) and
q(E), defined in Eqs. (4.5) and (4.6) respectively, which
are generalizations of the familiar weak-field photoioniza-
tion profile parameters e(E) and q(E) that were intro-
duced by Fano. ' We have shown that the resonance
profile, when written in terms of f and q, has the same
form as the usual Fano profile has in terms of c and q:
L& =(E+q) /(1+E) .

In Sec. IV B we have shown that the photorecombina-
tion profile is the same as the profile for photoionization,
if one-photon spontaneous radiative-decay processes are
allowed for in the latter process. In this context we have
also noted that the radiative coupling between the final-
state continua slows the rate of photoabsorption, and we
have commented that this slowing is one particular mani-
festation of a more general effect which has been dis-
cussed in a number of different contexts. ' ' In Sec.
IVC, we have discussed the effective line-shape parame-
ter q. We have shown that it reduces to the usual Fano q
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q& ~q& I /I +i[1—(qf /q)(I /I )] . (6.1)

We conclude this paper with some additional com-
ments concerning similarities in formalisms for systems
supporting multiple continua. We have already indicated
that the system shown in Fig. 3 for photoionization is
mathematically distinct from a system featuring two elec-
tron continua. However, we wish to emphasize that in
many cases there is considerable similarity between for-
malisms dealing with systems supporting spontaneous ra-
diative decay and formalisms dealing with systems sup-
porting several electron channels. Physically, the photon

parameter in the limit of no spontaneous radiative decay.
We also have shown that in the pole approximation ~g ~

is
always less than ~q ~, and that in the appropriate limiting
case our Q parameter reduces to that introduced by Bell
and Seaton.

In Sec. V we have defined effective line-shape parame-
ters and studied resonance profiles for the model systems
studied in paper I. For both cases it was noted that the
presence of additional channels can wash out the Fano
minimum. We have also discussed how the effective
line-shape parameters of the present work relate to those
that have been used by other investigators in the context
of multiple electron continua. We have emphasized that
the spontaneous radiative decay situation of interest in
this paper and indicated in Fig. 3 is mathematically
different from a two-electron continuum situation be-
cause the coupling responsible for radiative decay
satisfies the relationships (3.2) and (3.8).

We have indicated in Sec. IV C that the g parameter
defined in Eq. (4.6) simplifies to the usual q parameter in

the limit of ~g&~ going to zero, i.e., in the limit of no

spontaneous radiative decay. It is also natural to ask
about the limiting behavior of the effective q parameters
defined in Sec. V, where we considered multiple continua
in the pole approximation. For the first system studied,
which featured multiple-photon continua, Eq. (5.6) gives

q&~q& in the limit of y& ~0, just as one would expect
for a system in which the additional continua arose only
through spontaneous radiative decay. For the second
system, featuring multiple electron continua, Eq. (5.12b)
gives, in the limit yf ~0,

and electron continua are very different, but in the for-
malisms the couplings are often written only in terms of
matrix elements between discrete states and continua. In
such a situation, the mathematical formalisms are
equivalent, regardless of whether one is dealing with elec-
tron or photon continua. For example, in the context of
laser-induced autoionization, ' there have been several
studies in which the autoionization state could "decay"
into a continuum other than the autoionization continu-
um which was coupled to the initial state. "Decay"
mechanisms have included spontaneous radiative decay,
autoionization into a second electron continuum, and
photoabsorption into a different electron continuum.
The first two are formally equivalent for the case where
spontaneous radiative decay from the electron continuum
is ignored, except that in the second case one can define a
"total electron spectrum. " (This spectrum is just the sum
of the electron and photon spectra of the spontaneous
radiative-decay case, once thresholds are properly taken
into account. ) The third case is also formally equivalent,
except that the coupling strength between the autoioniz-
ing state and the additional decay continuum would in
this case be proportional to laser intensity.

Of course, the similarity of formalisms for describing
physically different phenomena is well documented in the
literature. To cite just a few examples, Armstrong, Beers,
and Feneuille stressed the equivalence of the formalisms
for autoionization and for multiphoton ionization.
Agarwal et aI. have discussed the isomorphism be-
tween studies of laser-induced effects in autoionization
of dc-field-induced interferences in autoionization.
Knight ' has also pointed out the parallels between stud-
ies of population trapping phenomena in laser-induced
autoionization and the theory of K-meson decay. There
are likely many other examples that could be referenced.
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