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Use of Z-correlation diagrams to help classification of doubly excited states

A. Macias and A. Riera
Departamento de Quimica, Universidad Autonoma de Madrid, Canto Blanco, 28049 M-adrid, Spain

(Received 18 July 1988; revised manuscript received 7 February 1989}

Taking as a benchmark the accurate calculations on ' S, ' P, and ' D resonances under the

N =2 threshold, carried out for two-electron systems, we present an appraisal of the practical as-

pects of, and equivalence between, existing schemes to classify doubly excited states. To relate prop-
erties of resonances for different values of the nuclear charge Z, we have also carried out calcula-
tions of their positions and widths for noninteger Z and have drawn the ensuing correlation dia-

grarns. We show that however good the descriptions are they do not provide a completely general
scheme to classify resonances. Furthermore, the proposed schemes are not equivalent, as is usually

assumed.

I. INTRODUCTION

Doubly excited states of multicharged ions are current-
ly receiving, from both theoretical' and experimen-
tal' ' viewpoints, increased attention, motivated by
measurements on collisions such as

I t++He~(I**)(~ I++He +

where I~+ is a heavy ion with an impact energy of a few
keVamu '. These measurements are stimulated in turn
by the increasing demand of data for nuclear fusion
research and astrophysics.

Electron spectroscopy is one of the best methods for
studying double-capture processes like (1), since the
(I**)'~ ' ion usually decays by electron emission.
This allows the study of a large number of excited ionic
configurations that are otherwise unattainable by other
laboratory methods, and stresses the importance and use-
fulness of reaching an agreement as to their
classification —or at least of establishing the applicability
of, and relationship between, the various labeling
schemes that have been hitherto proposed. We shall see
that, despite the large number of significant contributions
to this subject, classification of doubly excited states is
still a challenging problem, which should be dis-
tinguished from the closely related ones of achieving a
physical description of the states, and of calculating their
energy, or other properties.

The aim of the present work is to present an appraisal
of the practical aspects of existing schemes that classify
doubly excited states, and to see to what an extent they
can be taken as equivalent and can be expected to be gen-
erally useful. For this purpose, a high accuracy of the
resonance parameters is required, and we have refined the
calculations of Ref. 3 for the lowest ' S', ' P', and ' D'
resonances of He and heliumlike ions under the n =2
threshold (the most favorable case for testing any
classification scheme) by including the energy shifts of
our Feshbach calculations and by improving the quality
of the configuration-interaction (CI) basis sets to achieve
experimental accuracy (errors in positions (0.1 eV, see,

e.g. , Refs. 8, 10, and 14). To avoid lengthening our pa-
per, we do not present the energy positions and widths in
tabulated form; these data are available from the authors
upon request.

Apart from simple energy ordering, the three mostly
used notations for doubly excited states follow the sug-
gestions of Cooper et al. ,

' Conneely and Lipsky, ' and
Herrick and Sinanoglu' and Lin. Cooper et al. ' were
the first to show that the usual labeling nln'l' for singly
excited states does not adequately describe the doubly ex-
cited ones and they proposed a + notation,
((N, n + ), (N, n —

) }, that was elaborated upon by Bruch
et al.

Further advances in classification schemes have either
attempted to find "approximate quantum num-
bers"' ' ' to provide physical descriptions of the
states or empirical labels' to achieve appropriate order-
ings. A common feature of the latter studies is that the
analyses have been carried out for a single system at a
time, usually He; as we shall see, this was an unfortunate
choice. However, when one is interested in physically
meaningful rather than merely empirical labels, it is obvi-
ously desirable that the wave-function characteristics be
inferred from those labels —indeed, this is an implicit
aim of all authors. Then one should expect that states of
diA'erent atoms with the same labels share similar charac-
teristics.

Following this line of thought, we have explicitly cal-
culated resonance positions as continuous functions of a
noninteger nuclear charge Z, much in the same way as
studies on the structure of diatomic molecular states are
carried out with the help of R-correlation diagrams rath-
er than at a single internuclear distance R. This entails
no difficulty in our implementation of the Feshbach ap-
proach, and, as we shall see, considerably simplifies the
analysis of the resonance properties. Hence, apart from
improving the accuracy of our calculations with respect
to Ref. 3, in the present work we plot, for the first time,
our results for the resonance positions for (a large num-
ber of) heliumlike ions with noninteger nuclear charges.
In Sec. II we briefly recall the main steps of our pro-
cedure since this allows us to introduce our definitions.
Atomic units are used throughout.
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II. DEFINITIONS

In the Feshbach theory of a two-electron autoioniz-
ing resonance, the wave function is written as a sum of
two components,

4 =P%+Q+ (2)

with Q =1 P. —The usual form for these operators is
employed,

Q =Q&gz (3)

where, for resonances under the n =2 threshold, Q; is the
projector onto the subspace spanned by all excited states,

Q, =l —Ils(i)&& ls(i)l .

Insertion of (2) in the Schrodinger equation and formal
solution of the ensuring coupled equations yield the ener-

gy positions in terms of the eigensolutions of the closed-
channel equations,

( QHQ E„)QQ—„=O,
and open-channel equations

(PHP E)PXF =—0,
in the form

I & P. IQHPlx, & I'

E"—E

+P I & y. I gHPlx. & I'
Ed E

e„=E„+b,„—= E„+g

4„=yd,„gq, , x, =pc,,P4, , (9)

built from a set of Slater-type orbitals (STO's). The reso-
nance condition between open- and closed-channel ener-
gies E =E„"is attained by variation of a nonlinear param-
eter in the basics; 6-function normalization of the open-
channel wave function is achieved as explained in Ref.
31. Use of our discretization procedure [Eq. (9)] and of a
quadrature approximation in Eq. (7) yields an expression
for the energy shift,

I &P„IQHPlx, & I'
E"—E-

n j
(10)

As mentioned in Ref. 3, these shifts were always found to
be small.

Solution of Eqs. (5) and (6) and Eqs. (7) and (8) gives
the resonance parameters e„and I „, together with the

where the principal part of the integral is assumed and
we have neglected higher-order terms in QHP. The ener-

gy width is given by the golden-rule expression

I „=2
I &@„IQHPIx

with E =E„. Obviously, this formalism can also be ap-
plied to a fictitious system with noninteger nuclear
charge Z. In our implementation of this standard
theory, we write the closed- and open-channel wave func-
tions as CI expansions over sets of configurations P;, g;,

where S is the overlap matrix in the I y, J representation
and we denote the configuration character by a super-
script [k] (e.g. , [sp], [pd], etc.). These weights add up to
1; they are invariant under linear transformations within
the I

p("l
I manifold (in particular, they are normalization

independent); they also yield the contributions from a
given character [k] to the nth resonance energy, that is,
they indicate the error involved when discarding the
configurations of that character in the closed-channel ex-
pansion (9).

Further information on the resonance characteristics is
provided by the contributions to the width I „of
configurations of a given type, or character k; equivalent-

ly, one can give the contributions y to the square
root of I „,

I =2~y (12)

which are also invariant under linear transformations
within the [y(")I manifold.

III. RESULTS

As mentioned in Sec. I, we take as a benchmark the re-
sults of our calculation on the lowest ' S', ' P', and' D' resonance parameters of the He and heliumlike ions
with integer and noninteger nuclear charge Z. For in-
teger Z, the present results are close, but not identical, to
those of Ref. 3, because experimental accuracy in the res-
onance positions has now been consistently achieved.

Plotting the resonance positions as functions of Z
yields Z-correlation diagrams. In drawing these dia-
grams, we notice an obvious difference with diatomic
molecular diagrams in that, while the hydrogenic Z ~ ~
limit is as well defined as the separated-atom R ~ ~ lim-
it, the united-atom R ~0 limit has no small-Z counter-
part. One must then start with the hydrogenic limit
Z~ ~ and diminish Z.

The main advantages of considering a fictitious, nonre-
lativistic large-Z limit are that the wave functions are ex-
actly written in terms of a few hydrogenic orbitals, and
therefore their characteristics are clearer than for smaller
Z, and that the limit is well approached by most ions.
When Z decreases, because of intrashell correlations, the
configuration mixings change very slowly with Z, except
at small Z, where avoided crossings (as pointed out in
Ref. 19) can appear: in their neighborhood, due to inter-
shell correlations, the closed-channel wave functions in-
terchange their character.

In practice, to achieve clear correlation graphs, it is
more useful to draw

corresponding closed- and open-channel wave functions.
To analyze the structure of these wave functions, several
procedures have been employed i9, 20, 23, 24, z7, 3z, 33

purposes, we find that quantitative, easily tabulated infor-
mation on the characteristics of the atomic wave func-
tions P„ is provided by the weight ' ' of configurations
with a given character in the expansion of Eq. (9),

~(k) =y & d(klan(k)Iy & =y d(k)g d!k)
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'S' (b) P1FIG. 1. (a) Plot of —1/2(n* ) [see Eq. (13) in text) vs 1/Z for fractional Z. , 'S' states; ———,S states. (b) Plot of

—1/2(n* ) [see Eq. (13) in text] vs 1/Z for fractional Z and for 'P' states. (c) Plot of —1/2(n* ) [see Eq. (13) in text] vs 1/Z for
fractional Z and for P' states. (d) Plot of —1/2(n* ) [see Eq. (13) in text] vs 1/Z for fractional Z. ,

'D' states. ———,'D'
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TABLE I. Weights w, defined according to Eq. (10) of text, corresponding to configurations of the type, or character k, and
making up the closed-channel wave functions. (a) "S' states. (b) "P' states. [Notice that (2, na)'P and (2, nb)'P are not energy or-
dered (see Refs. 3 and 26)]. (c) ' D' states.

(a) "S' states

He

O6+

(N, na}

(2,2a )

(2,2b)
(2,3a)
(2,3b)
(2,4a)
(2,4b)
(2,5a)
(2,5b)
(2,6a)
(2,6b)
(2,7a)
(2,7b)

(2,2a)
(2,2b)
(2,3a)
(2,3b)
(2,4a)
(2,4b)
(2.5a )

(2,5b)
(2,6a)
(2,6b)
{2,7a)
(2,7b)

K

1

—1

1

—1

1
—1

1
—1

1
—1

1

—1

1
—1

1

—1

1
—1

1

—1

lSe
[ss']

0.721
0.329
0.613
0.506
0.483
0.614
0.381
0.638
0.360
0.501

0.760
0.240
0.721
0.280
0.700
0.300
0.690
0.310
0.684
0.316

w [pp']

0.279
0.635
0.385
0.490
0.516
0.384
0.618
0.362
0.639
0.497

0.239
0.757
0.279
0.718
0.300
0.699
0.310
0.689
0.316
0.684

(b) 1, 3po

[dd']

0.000
0.036
0.001
0.004
0.001
0.015
0.000
0.000
0.000
0.002

0.000
0.003
0.000
0.001
0.000
0.001
0.000
0.000
0.000
0.000

states

[ss']

0.647
0.382
0.599
0.419
0.573
0.437
0.561
0.435
0.575
0.410

0.672
0.329
0.654
0.347
0.644
0.356
0.639
0.361
0.637
0.363

w [pp']

0.353
0.615
0.401
0.580
0.427
0.563
0.439
0.565
0.425
0.589

0.328
0.671
0.346
0.653
0.356
0.644
0.361
0.639
0.363
0.637

3Se
[dd']

0.000
0.003
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

0 —1

(N, n 0. )

1pO

[sp] [pd] w [df] W [sp] w [pdl

3pO

w [df]

He

O6+

(2,2a)
(2,3b)
(2,3a)
(2,3c)
(2,4b)
(2,4a)
(2,4c)
(2,5b)
(2,5a)
{2,5c)

(2,2a)
(2,3b)
(2,3a)
(2,3c)
(2,4b)
(2,4a)
(2,4c)
(2,5b)
(2,5a)
(2,5c)

0
1

0
—1

1

0
—1

1

0
—1

0
1

0
—1

1

0
—1

1

0
—1

1 1

0 —1

0 —1

1 1

0 0
0 —1

1 1

1 1

0 —1

1 1

0 0
0 —1

0 —1

1 1

0 0

0.909
0.933
0.822
0.712
0.466
0.808
0.746
0.444
0.803
0.517

0.992
0.952
0.905
0.144
0.937
0.879
0.185
0.930
0.866
0.204

0.090
0.067
0.178
0.286
0.533
0.192
0.253
0.555
0.197
0.482

0.008
0.048
0.095
0.855
0.063
0.121
0.815
0.070
0.134
0.796

0.000
0.000
0.000
0.002
0.001
0.000
0.001
0.001
0.000
0.001

0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000

0.986
0.766
0.948
0.334
0.696
0.935
0.382
9.675
0.927
0.398

0.999
0.800
0.964
0.236
0.767
0.948
0.285
0.754
0.940
0.306

0.014
0.234
0.052
0.663
0.304
0.065
0.617
0.325
0.073
0.601

0.001
0.200
0.036
0,764
0.233
0.052
0.715
0.246
0.060
0.694

0.000
0.000
0.000
0.003
0.000
0.000
0.001
0.000
0.000
0.001

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1

0
1

—1

0
1

—1

0
1

—1

1

0
1

—1

0
1

—1

0
1

—1

1 —1

0 1

0 —1

1 —1

0 1

0 —1

1 —1

0 1

0 —
1

1 —1

0 1

0 —1

1 —1

0 1

0 —1

1 —1

0 —1

(c} "D' states

He

(N, n&}

(2,2a)
(2,3a)

IDe

K T 3
0.925
0.697

[sd]

0.074
0.290

w[

0.001
0.013

w[pp ]

0.745

D'
[sd]

0.250

w [pf]

0.005 0 —1
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TABLE I. ( Continued. )

O6+

(N, na)

(2,3b)
(2,4a)
(2,4b)
{2,4c)
(2,5a)
(2,5b)
(2,5c)

(2,2a)
(2,3a)
(2,3b)
(2,4a)
(2,4b)
(2,4c)
(2,5a)
(2,5b)
(2,5c)

1De

K TA

0 1 0
1 0 1

0 1 0
—1 0 0

1 0 1

0 1 0
—1 0 0

1 0 1

1 0 1

0 1 0
1 0 1

0 1 0
—1 0 0

1 0 1

0 1 0
—1 0 0

w [Pp']

0.312
0.634
0.369
0.005
0.630
0.370
0.029

0.995
0.645
0.357
0.598
0.269
0.134
0.581
0.296
0.124

[sd]

0.584
0.340
0.548
0.104
0.350
0.609
0.048

0.005
0.353
0.635
0.388
0.524
0.088
0.398
0.551
0.050

w [pf]

0.104
0.026
0.083
0.891
0.020
0.021
0.923

0.000
0.002
0.008
0.014
0.207
0.778
0.021
0.153
0.826

w [pp']

0.257
0.692
0.304
0.007
0.677
0.334
0.026

0.806
0.194
0.749
0.249
0.002
0.725
0.272
0.003

[sd]

0.658
0.290
0.582
0.136
0.303
0.620
0.123

0.194
0.801
0.241
0.695
0.075
0.260
0.637
0.103

w [pf]

0.085
0.018
0.114
0.856
0.020
0.046
0.851

0.000
0.005
0.010
0.066
0.923
0.015
0.091
0.894

K T 3
0 1 0
1 0 —1

0 1 0
—1 0 0

1 0 —1

0 1 0
—1 0 0

1 0 —1

0 1 0
1 0 —1

0 1 0
—1 0 0

1 0 —1

0 1 0
—1 0 0

TABLE II. Same as in Table I, in the Z~ ~ limit. For comparison, the DESB weights are given in

parentheses.

(2,2a)

(2,2b)

(2,3a)

(2,3b)

(2,4a)

(2,4b)

(2,5a)

(2,5b)

(2,6a)

(2,6b)

(2,7a)

(2.7b)

[ss']

0.774
(0.750)
0.226

(0.250)
0.748

(0.667)
0.252
{0.333)
0.731

(0.625)
0.269

(0.375)
0.723
(0.600)
0.277

(0.400)
0.718

(0.583)
0.282
(0.417)

lSe

w [Pp'l

0.226
(0.250)
0.774
(0.750)
0.252
(0.333)
0.748

(0.667)
0.269

(0.375)
0.731

(0.625)
0.277
(0.400)
0.723

(0.600)
0.282
(0.417)
0.718
(0.583)

[ss']

0.682
(0.667)
0.318

(0.333)
0.669

(0.635)
0.331

(0.375)
0.663
(0.600)
0.337
(0.400)
0.659
(0.583)
0.341
(0.417)
0.657
(0.571)
0.343
(0.429)

3S'
w[PP ]

0.318
(0.333)
0.682

(0.667)
0.331

(0.375)
0.669

(0.625)
0.337
(0.400)
0.663
(0.600)
0.341
(0.417)
0.659
(0.583)
0.343
(0.429)
0.657

(0.571)

(2,2a)

(2,3b)

(2,3a)

[2snp]

1.000
(1.000)
0.469
(0.556)
0.392
(0.222)

lpo
[2pns]

0.000
(0.000)
0.488
(0.370)
0.503
(0.593)

[2pnd]

0.000
(0.000)
0.043

(0.074)
0.105
(0.185)

[2snp]

1.000
(1.000)
0.279
(0.222)
0.543
(0.556)

3p0
[2pns]

0.000
(0.000)
0.534

(0.593)
0.419
(0.370)

W [2pnd]

0.000
(0.000)
0.187

(0.185)
0.038
(0.074)
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[2snp]

1po
[2pns]

TABLE II. (Continued. )

w [2snP]

3po
[2pns)

(2,3c)

(2,4b)

(2,4a)

(2,4c)

(2,5b)

(2,5a)

(2,5c)

0.139
(0.222)
0.462

(0.5625)
0.356
(0.125)
0.182

(0.3125)
0.458

(0.560)
0.342

(0.080)
0.200

(0,360)

0.008
(0.037)
0.484
(0.3125)
0.503
{0.625)
0.013

(0.0625)
0.483

(0.280)
0.502

(0.640)
0.016

(0.080)

0.853
(0.741)
0.054

(0.125)
0.141
(0.250)
0.805

(0.625)
0.059
(0.160)
0.156
(0.280)
0.784
(0.560)

0.179
(0.222)
0.270
(0.125)
0.510
(0.5625)
0.221

(0.3125)
0.259
{0.080)
0.503

(0.560)
0.238
(0.360)

0.047
(0.037)
0.509

(0.625)
0.442
(0.3125)
0.049

(0.0625)
0.508
(0.640)
0.442

(0.280)
0.050

(0.080)

0.774
(0.741)
0.221

(0.250)
0.048
(0.125)
0.730

(0.625)
0.233

(0.280)
0.055

(0.160)
0.712
(0.560)

(2,2a)

(2,3a)

(2,3b)

(2,4a)

(2,4b)

(2,4c)

(2,5a)

(2,5b)

(2,5c)

w [2pnp']

1.000
(1.000)
0.627
(0.667)
0.373

(0.333)
0.602

(0.525)
0.342
(0.450)
0.056
(0.025)
0.592

(0.448)
0.318
(0.504)
0.089

(0.048)

1De
[2snd]

0.000
(0.000)
0.373
(0.333)
0.627

(0.667)
0.387

(0.4375)
0.417
(0.375)
0.196
(0.1875)
0.391

(0.480)
0.326
(0.240)
0.284
(0.280)

w [2pnf)

0.000
(0.000)
0.000
(0.000)
0.000

(0.000)
0.011

(0.0375)
0.241
(0.175)
0.748
(0.7875)
0.017

(0.072)
0.356
(0.256)
0.627
(0.672)

W [2PnP']

0.821
(0.667)
0.179
(0.333)
0.760
(0.525)
0.238
(0.450)
0.002
(0.025)
0.736

(0.448)
0.261
(0.504)
0.003
(0.048)

3De
[2snd]

0.179
(0.333)
0.821

(0.667)
0.231

(0.4375)
0.696

(0.375)
0.073

(0.1875)
0.250

(0.480)
0.649

(0.240)
0.101

(0.280)

w[ "f]

0.000
(0.000)
0.000

(0.000)
0.009

(0.0375)
0.066
(0.175)
0.925
(0.7875)
0.014

(0.072)
0.090
(0.256)
0.896
(0.672)

—1

2(n *)
1 Z'

(Z —1) 2N
E+ (13)

with N =2, as a function of Z ', then the energy itself.
As Z~ ~ we have

CT
n =n —p=n ——+. . .

Z
with p the quantum defect, and

(14)

—1 1

2(n *) 2n

0
n Z

(15)

It will be noticed that scaled Z-correlation diagrams
such as those provided by (13) are closely related to the
n ' diagrams of the pioneer article of Herrick and Sinano-
glu' (see also Ref. 34). The novelty of our approach with
respect to that reference is that calculations are actually
carried out for noninteger Z; and this fact, together with
the much higher accuracy of our parameters, permits us

to precisely localize the avoided crossings and thus dis-
cuss character interchange in a quantitative way.

Our Z-correlation diagrams are displayed in Figs. 1(a)(' S states), 1(b) ('P), 1(c) ( P), and 1(d) (' D) This in-.
formation is complemented in Table I [(a) (' S), (b)
('3P), (c) (' D)] with that of the weights [Eq. (11)] of
configurations of a given type making up the closed-
channel wave functions of He and 0 + (as a representa-
tive for ions with Z )2). In addition, the Z ~ ~ limit of
the weights is given in Table II. Width contributions y„"
are presented in Tables III [(a) (' S), (b) (' P), and (c)(' D)]. As we shall see, those properties are sufficient for
our discussion on classification schemes, although of
course many other ones can be calculated to describe the
resonance structure. To label resonances, the Conneely-
Lipsky (see Sec. V) notation is employed. In Table I we
have also included the Herrick-Sinanoglu-Lin (see Sec.
VI) notation, according to the usual equivalence
scheme, ' although, as we shall argue below, this
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TABLE III. Contributions y( ( to square root of resonance widths [Eq. (11)] corresponding to configurations of character [k], (a)"S'states, (b) "P' states (triplets not energy ordered), (c) ' D' states. Powers of ten are indicated by numbers in square brackets.

y l &s'l

1Se

y[PP l

1,3Se states

[ss']
y

[PP'l

He

(2,4a)
(2,4b)
(2,5a)
(2,5b)
(2,6a)

6.684[ —3]
1.384[ —4]
4.586[ —3]
1.705[ —4]
3.764[ —3]

(2,6b i
—7.1 12[—4]

(2,7a)
(2,7b)

(2,2a 1 1.838[ —2]
(2,2bi —3.172[ —3]
(2,3a } 1.067[ —2]
(2,3 b )

—4.002[ —4]

8.598[ —3]
1.060[ —2]
3.935[—3]
4.792[ —3]
1.917[—3]
3.330[—3]
1.025[ —3]
2.634[ —3 ]
7.622[ —4]
3.025[ —3 ]

—1.658[ —4]
—6.978[ —4]

1.28[ —6]—2.814[ —4)
3.650[ —5]

—1.849[ —4]
4.403[ —5)

—1.429[ —4]
3.588[ —5]

—1.916[—4]

2.681[—2]
6.733[—3]
1.461[—2]
4. 111[—3]
8.637[—3]
3.284[ —3]
5.656[ —3]
2.661[—3]
4.563[—3]
2. 122[ —3]

5.787[ —4]
—1.060[ —4]

4.015[—4]—7.337[—5]
2.850[ —4]

—5.092[—S]
2.365[—4]
8.632[—5]
2.921[—4]—3.807[ —5]

4.540[ —4]
3.295[—4]
3.057[—4]
2.388[—4]
2.131[—4]
1.964[ —4]
1.226[ —4]

—7.670[—5]
4.470[ —4]
6.644[ —4]

—7.45[ —6]
—1.353[ —5]
—4.56[ —6]—9.65[ —6]
—3.11[—6]
—7.33[—6]

1.025[ —3 ]
2. 100[—4]
7.027[ —4]
1.558[ —4]
4.950[ —4]
1.381[—4]

8.10[—6]
—3.32[ —6]
—1.386[—5]

1.773[—5]
7.357[ —4)
6.125[ —4]

—2.44[ —6] 3.567[ —4]

(2,2a)
(2,2b)
(2,3a)
(2,3b)
(2,4a)
(2,4b)
(2,5a)
(2,5b)
(2,6a }

(2,6b)
(2,3a)
(2,3b)

2.290[ —2]
—1.067[ —2]

1.551[—2]
—7.096[ —3]

9.773[ —3)
—4.789[ —3]

6.848[ —3]
—3.472[ —3]

5.139[—3]
—2.659[—3]

1.043[ —2]
1.880[ —2]
7.284[ —3]
1.190[—2]
4.717[—3]
7.920[ —3]
3.349[—3]
5.682[ —3]
2.527[ —3]
4.323[ —3]

—2.401[—5]—1.497[ —4]
—4.77[ —6]
—7.820[ —5]
—9.62[ —7]
—4.953[—5]

8.77[—8]
3.444[ —5]
1.78[ —7]—2.597[ —5]

3.331[—2]
7.980[—3]
2.279[ —2]
4.724[ —3]
1.449[ —2]
3.082[ —3]
1.020[ —2]
2.175[—3]
7.667[ —3 ]
1.637[—3]

8.572[ —4]
—4.753[—4]

6.815[—4]
—3.835[—4]

5.219[—4]
—2.990[—4]

4.101[—4]—2.379[—4]
3.306[—4]—1.931[—4]

7.042[ —4]
9.286[ —4]
5.790[—4]
7.421[—4]
4.489[ —4]
5.733[—4]
3.560[ —4]
4.564[ —4]
3.089[—4]
4.193[—4]

—2. 19[—6]
—7.25[ —6]
—1.59[ —6]
—5.47[ —6]
—1.17[—6]
—4.13[—6]
—8.78[ —7]—3.21[—6]
—6.97[ —7]
—2.68[ —6]

1.559[ —3]
4.461[ —4]
1.259[ —3]
3.531[—4]
9.697[ —4]
2.701[—4]
7.653[ —4]
2.153[—4]
6.388[ —4]
2.236[ —4]

y [SP] y EPdl

lpo

y [dfl

(b) 1,3po states

y [sPl y tPdl

3po

y fdfl

He (2,2a)
(2,3b)
(2,3a)
(2,3c)
(2,4b)
(2,4a)
(2,4c)
(2,5b)
(2,5a)
(2,5c)

1.334[ —2]
8.658[ —4]
6.279[ —3]
2.118[—4]
5.439[ —4]
4. 110[—3)

1.510[—3]
—9.852[ —5 ]

6.995[—4]
—9.139[—5]
—1.211[—5]

4.528[ —4]

3.825[ —4]
2.966[—3]
3.494[ —5]

—1.572[ —5]
3.462[ —4]
2. 18[—6]

1.350[ —4] —6.887[ —5]

—7.12[ —6]—2.34[ —6]
—5.22[ —6]
—1.114[—5]

8.02[ —6]
—3.33[—6]

8.79[ —6]
6.03[ —6]

—2.67[—6]
—8.80[—6]

1.484[ —2]
7.649[ —4]
6.973[—3]
1.093[—4]
5.399[—4]
4.559[ —5]
5.735[ —5]
3.728[ —4]
3.310[—3]
2.832[ —5]

7.158[—3]
3.256[ —4]
3.686[ —3]
3.075[ —4]
2. 186[—4]

—5.675[ —5]
2.469[ —4]
3.699[—5]—2.537[—4]
1.500[ —4]

2.345[ —4]
1.552[ —4]
1.547[ —3]—1.791[—4]

—1.998 [ —4]
1.079[—4]
3.221[ —5]
1.794[ —4]

2.262[ —3] 4.079[—5]

—1.51[—6]
—2.27[ —6]—1.14[ —6]

5.31[—6]
—1.07[ —6]—8.72[ —7]

3.97[ —6]
—8.26[ —7]—7.11[—7]
—3.31[—6]

7.099[—3]
5.703[—4]
3.722[ —3]
5.913[—5]
3.675[ —4]
2.302[ —3]
3.865[ —5]
2.623[ —4]
1.S79[—3]
2.96[ —6]

O6+ (2,2a)
(2,3b)
(2,3a)
(2,3c)
(2,4b)
(2,4a)
(2,4c)
(2,5b)
(2,5a)
(2,5t" )

2.379[—2]
9.416[—4]
1.536[ —2]
3.138[—3]
7.383[—4]
9.892[ —3]
2.338[—3]
5.674[ —4]
7.002[ —3]
1.770[ —3]

1.278[ —4]
1.637[—4]
3.199[—4]

—6.979[—4]
1.311[—4]
2.606[ —4]

—5.268[ —4]
1.002[ —4]
2.040[ —4]

—3.954[ —4]

—5.85[ —6]
—6.58[ —7]

2.90[ —6]
1.417[—5]
2.02[ —7]

—1.30[—6]
8.83[—6]—5.13[—8]

—6.91[—7]
5.99[—6]

2.391[—2]
1.105[—3]
1.568[ —2]
2.455[ —3]
8.692[ —4]
1.01S[—2]
1.820[ —3]
6.675[ —4]
7.205[ —3]
1.381[—3]

7.106[—3]
4.316[—4]
4.528[ —3]

—9.178[—4]
3.624[ —4]
2.811[—3)
7.115[—4]
2.827[ —4)
1.962[—3]
5.453[—4]

—6.088[ —5]
5.086[—4]
1.529[ —4]
9.678[ —4]
3.825[ —4]
1.423[ —4)

—6.872[ —4]
2.892[ —4]
1.139[—4]—5.074[ —4]

—4. 14[ —7]
—4.56[ —7]
—2.10[—7]
—1.95[ —6]
—2.23[ —7]
—1.04[ —7]

1.06[ —6]
—1.24[ —7]
—5.60[ —8]

6.59[ —7]

7.045[ —3]
9.398[—4]
4.681[—3]
4.800[ —5]
7.446[ —4]
2.953[—3]
2.539[—5]
5.717[—4)
2.076[ —3]
3.859[—5]

y [PP'l j sd]

1De

y nfl

(c} "D' states

y f. PP'l [sd]

3De

y [Pf]

He (2,2a)
(2,3a)
(2,3b)

2.022[ —2]
9.977[—3]
1.332[—3]

2.810[—4] —1.33 1 [ —4)
8.224[ —5 ] —1.190[—4]
1.430[ —4] 1.147[ —4]

2.037[ —2]
9.940[ —3]
1.589[ —3]

—4.041[—4]
1.303[—4]

4.578[—4]
9.231[—4]

8.76[ —6]
2.071[—5]

6.246[ —5]
1.074[ —3]
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TABLE III. (Continued. )

y[pp'] [sd]

lDe

y [pf] y [pp'] [sd]

3D e

y [pf]

(2,4a)
(2,4b)
(2 4c)
(2,5a)
(2,5b)
(2,5c)

0 (2 2a)
(2,3a)
(2,3b)
(2,4a)
(2,4b)
(2,4c)
(2.5a)
(2,5b)
(2,5c)

6.496[ —3]
9.839[—4]
4.386[—5]
4.684[ —3]
4.800[ —4]
7.134[—4]

3.273[ —2]
1.833[—2]
1.051[—2]
1.145[—2]
5.713[—3]
4.302[ —3]
7.991[—3]
4.222[ —3]
2.980[—3]

3.951[—5]
1.129[—4]
2.80[—6]
2.989[—5]
7.911[—5]—3.501 [ —5]

1.761[—4]—4.792[ —4]
8.510[—4]—4.170[—4]
5.840[ —4]
3.201[—4]

—3.294[ —4]
4.638[—4]
2.160[—4]

—8.464[ —5]
8.201[—5]—2.188[—5]—8.496[ —5]
9.324[ —5]—1.762[ —4]

—3.604[ —5]—4.597[ —5]
4.586[ —5]

—2.584[ —5]
7.227[ —5]

—4.931[—5]—1.747[ —5]
5.870[ —5]

—4.963[—5]

6.451[—3]
1.179[—3]
2.479[ —5]
4.629[—3]
6.524[ —4]
5.022[ —4]

3.287[ —2]
1.780[ —2]
1.141[—2]
1.101[—2]
6.369[—3]
4.573[—3]
7.644[ —3]
4.745[ —3]
3.147[—3]

—2.793[—4]
9.894[—5]
3.26[ —6]

—2.009[—4]
7.098[—5]—1.761[—5]

9.727[ —4]
4.474[ —4]—7.486[ —4]
3.881[—4]
1.773[—5]—5.602[ —4]
3.058[—4]
1.674[ —5]

3.048[ —4]
6.520[ —4]
1.37[—6]
2.106[—4]
4.842[ —4]
2.193[—4]

—9.662[ —4]
2.146[—3]
7.607[ —4]
1.445[ —3]
2.992[—4]
5.806[ —4]
1.043[—3]
2.677[ —4]

7.67[—6]
1.535[—5]—2.18[—6]
1.407[ —5]
3.343[—5]
8.552[ —5]

1.21[—6]—5.26[ —6]
6.24[ —6]
1.469[ —5]—6.655[ —5]
7.25[ —6]
1.653[—5]—5.860[ —5]

3.322[ —5]
7.663[—4]
2.45[ —6]
2.381[—5]
5.886[ —4]
2.872[ —4]

7.76[ —6]
2.588[ —3]
1.834[ —5]
1.848[ —3]
2.504[ —4]
2.766[ —5]
1.365[—3]
2.259[ —4]

equivalence cannot hold in all cases.
In light of those resonance properties, we now pass to

analyze the practical aspects of proposed classification
schemes.

State Configuration mixing State Configuration mixing

(2, n + )1Se

(2, n —)'5'
(2, n + )'P'
(2, n —)'P'
(2, nc)'P'
(2 n )lDe

(2, n + )'D'
(2, nc)'D'

(2sns + 2pnp)

(2sns —2pnp)

(2snp + 2pns)

( 2snp —2pns)
2pnd

(2pnp —2snd )

(2pnp +2snd)

2pn f

(2, n+ )'S'
(2, n —)'S'
(2,n+ )'P'
(2, n —) P'
(2, nc) P'
(2, n —

) D'
(2, n+ )'D'
(2, nc) D'

(2sns +
(2sns-
(2snp +
(2snp-
(2snp +
(2pnp-
(2pnp +

2pnp)

2pnp)

2pns)

2pns) +2pnd

2pns) —2pnd

2snd)

2snd)

2pn f
Although it is well known' ' ' that configuration mix-

ing contributions are rarely 1:1,the + notation is still em-
ployed for the sake of completeness. Nevertheless, when
weight ratios are closed to 1:0 than to 1:1,the advantage
of this classification, compared to the usual atomic orbit-
al notation, is not obvious. We see from Table I that, at
least for Z) 2, the notation 2s, 2p, 2s3s, etc. is often
more appropriate to roughly describe the wave-function
structures than the 2s +2p, 2s 3s+2p 3p counterparts.

Since the Cooper notation is still employed, and to our
knowledge the limitation in the reasoning of Ref. 17 has
not been quantitatively exposed, it is instructive to do so
for the simplest case of the lowest two 'S resonances of
the He atom. The usual atomic-orbital notation, which
applies to the singly excited Rydberg series, would be
2s, 2p, where the 2s, 2p orbitals can be taken, to a first

IV. THE + NOTATION

According to the notation of Cooper et al. ' as gen-
eralized by Bruch et al. ,

' we have the approximate
structures:

In the Z ~ ~ limit diagonalization of H yields the
(energy-ordered) eigen vectors corresponding to the
lowest 'S' resonances,

0.8796
0.4756

—0.4756
0.8796 (17)

and the coefficients in (17) are not equal to +( —,
')' be-

cause the difterence between the diagonal Hamiltonian
matrix elements is of the same order as the interaction
term.

To be fair to the pioneer article of Cooper et al. ,
' it

should be mentioned that the serniquantitative illustra-
tion given there is (approximately) correct. They treated
the case of the [2s3p, 2p3sI 'P manifold, in which the
Hamiltonian matrix reads

13Z 2 1 0 0.0928 0.0198
36 0 1 0.0198 0.0899

and the eigenvectors

approximation, as hydrogenlike. The reasoning then
goes that the electron interaction, however small, re-
moves the (near) degeneracy between the 2s and 2p lev-
els, yielding the 2s +2p and 2s —2p corn. bi nations.
The same argument would apply, to a greater extent, to
more excited (i.e., more hydrogenlike) states.

It will be noticed that the preceding argument is really
of an asymptotic nature, that is, that it refers to the
Z ~ ~ hydrogenic limit; it would be expected to apply to
He insofar as this limit is approximately fulfilled. How-
ever, the reasoning fails even in the Z ~ ~ hydrogenic
limit, as can be seen from Table II: in the
[(2s )'S, (2p )'SI manifold, the Hamiltonian matrix can
be written as

Z' 1 0 0. 1504 0-0507

4 0 1 0.0507 0.2168
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0.6803
—0.7329

0.7329
0.6803 (19)

are very close to +( —,
' )', as surmised by Cooper et al. It

will be noticed that the square of the coefficients in (19)
does not exactly coincide with the wt '",w~ "' weights
for the second and third states in Table II, because the
2p3d configuration, not considered in Eq. (18), or in Ref.
17, interacts with the 2s3p and 2p3s ones. A more com-
plete treatment in the Z~ ~ limit yields the coefficients,
in the [2s3p, 2p3s, 2p3d ] manifold:

0.6849
—0.6985
—0.2079

0.6257
0.7097

—0.3238

0.3734
0.0920
0.9231

(20)

To sum up, the main objection to the + notation is that
in general the reasoning of Ref. 17 does not, even approx-
imately, apply (see Table I), and is therefore not useful for
a classification scheme.

V. THE (N, na) NOTATION

The (X,na) notation of Conneely and Lipsky, ' with N
( =2) and n the "inner" and "outer" electron quantum
numbers, respectively, and a=a, b, c is at present the
most often one used for resonances under the TV=2
threshold, because those authors made a careful analysis
of the wave functions, reduced widths, and quantum de-
fects for a large number of resonance states. The
classification is based on the empirical relationship (13)
defining the effective quantum number n *. However, the
fact that the quantum defect p=n —n * often turns out
to be negative casts strong doubts upon its physical inter-
pretation. Accordingly, the classification scheme is also
based upon the explicit examination of the wave-function
structure and of the corresponding reduced widths. '

In fact, both quantum defects and wave-function struc-
tures are closely interrelated: when the former are appre-
ciably negative, one finds avoided crossings in the Z-
correlation diagrams, where the character of the corre-
sponding a, b, c series is exchanged. ' ' When a crossing
occurs near an integer value of Z, the labeling of the reso-
nance is not an easy matter, and most of the difficulties
encountered by Conneely and Lipsky' were due to the
fact that their empirical classification was based on an
isolated study for He, and that for resonances under the
N =2 threshold most pseudocrossings occur in the neigh-
borhood of Z =2 (see Fig. 1).

Comparison between Tables I and II shows that for
0 + (and, in fact, already for Li+), the closed-channel
component of the resonances presents, to a good approxi-
mation, the "high-Z" structure. Comparison between
Tables I (weights) and III (width contributions) shows
that for Z )2, both of these quantities follow similar pat-
terns.

As Z decreases, the weights and width contributions
display monotonic behavior, except in the neighborhood
of avoided crossings in the Z diagrams. For example,
from Tables I and II, comparing Z~ ~, 0 +, and He,
one finds character (i.e., weight) mixing of the (2, 2b)'S
and (2, 3a)'S, and (2, 3b)'S and (2,4a)'S resonances, and

character interchange of the (2, 4b)'S and (2, 5a)'S,
(2, 5b)'S and (2, 6a)'S, (2, 3c)'P and (2, 4b)'P, and
(2,4c)'P and (2, 5b)'P states, respectively. Notice from
Fig. 1(c) that the avoided crossings for P states occur for
Z & 2 and therefore have no infiuence on Table I(b).

For resonances with mixed characters, one often finds
that the ordering of the weights does not correspond to
that of the width contributions. Thus, for 'S He states,
which ionize yielding a 1ses state, when w " )w in
Table I(a), the same order is found for y(" 1 and y(~i' 1

[Table III(a)], but for the "mixed" (2,3b)'S and (2,4a)'S
and partly mixed (2, 5a)'S and (2, 6a)'S resonances, we
find that u " & w while ~y("

~
&& ~y ~. The

difference with S states will be noticed, their energies do
not exhibit pseudocrossings and their properties have a
more regular behavior.

It is interesting to note that inspection of the resonance
properties (energies and lifetimes) calculated at physical
(integer) Z values would lead to the (hasty) conclusion
that they vary smoothly with Z, with the possible excep-
tion of energy pseudocrossings, where widths, as well as
any other property of the closed-channel components,
would simply be interchanged at the left and right side of
it, and would present a "mixed" value in the middle of
the avoided crossing. However our data show that the
situation is not so simple, a counterexample is provided
by the (2, 3c)'P and (2,4b)'P states, whose characters
have been interchanged [Table I(b)] for He with respect
to the positive ions, while the avoided crossing is situated
at Z =2 (see Fig. 1) to good precision, so that one would
have expected a mixed, and not interchanged, character
for He. The variation of configuration weights in the
neighborhood of an avoided crossing is analyzed in the
Appendix, where it is shown that the closer the weights
of the two states are to 1 and 0, the closer the weight
crossing will be to the energy pseudocrossing position.

A related question is the following: How does the pres-
ence of an avoided crossing affect the resonance widths?
This bears on the related topic: Are reduced widths, as
employed by Conneely and Lipsky, useful as a further
property to help the classification?

An analysis of the behavior of the widths in the neigh-
borhood of a pseudocrossing at Z=Zp is also given in
the Appendix, where it is shown that a similar situation
to the weights holds, in the sense that, when (and only
when) the widths are strongly dissimilar outside the
avoided crossing, they cross at a position that is close to
Zp e

To complement those analyses with an illustration, we
shall take as specific examples two avoided crossings: (i)
that between (2.3b ) 'S and (2, 4a ) 'S, occurring at
Zo ' =0.536 (Fig. 1), and (ii) between (2, 3c)'P and
(2, 4b)'P, at Zo ' ——0. 5 (Fig. 2).

If we draw for integer Z the positions [Fig. 2(a) and
2(b)] and widths [Figs. 3(a) and 3(b)] of those four reso-
nances, there seems to be a smooth variation of both
properties, and the crossing of the I values for the P
states is clearly accidental. Notice that lines are only
used in both figures to help the eye, as in Herrick and
Sinanoglu. '

However, inspection of the weights in Tables I [(a) and
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2/

2/4

olds, more avoided crossings appear, and for larger-Z
values, so that the a, b, c labeling becomes increasingly
difficult to assign without the help of Z diagrams. On the
other hand, widths are of little help in the classification,
and because of their sensitivity to the positions of avoided
crossings, if these occur in the neighborhood of an in-
teger Z, calculations should not be performed just for sin-
gle species but for a range of fractional Z values.
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VI. THE K, T, A NOTATION

This was introduced in the work of Wulfman, and Her-
rick and Sinanoglu' and Lin. It is noteworthy that,
following different approaches, these authors arrived at
essentially the same scheme. However, as we shall reason
below, in practice this cannot be exactly so.

The former authors studied the problem from a
group-theoretical point of view, as a symmetry breaking
of the SO(4)XSO(4) group. They introduced two "ap-
proximate quantum numbers" I(, T to characterize
doubly-excited-state-basis (DESB) functions, which were
assumed to approximate very well the Coulomb (r,z')
mixing between hydrogenlike configurations correspond-
ing to the same shell (same N, different n).

Lin assumed that the closed-channel wave functions
are quasiseparable in hyperspherical coordinates; chan-
nel functions were then defined and used to diagonalize
the Schrodinger equation at each hyperspherical coordi-
nate R; avoided crossings in the ensuing curves were dia-
batised and remaining radial couplings neglected; from
the properties of the channel functions and analysis of the
curves, two "angular correlation" K, T (equivalent to
those of Herrick and Sinanoglu) and one "radial correla-
tion" quantum number A were introduced. In this treat-
ment, both intershell (functions with same N, and
different n) and intrashell (same N and n) correlations
were considered. Since for a given symmetry species,
Lin's quantum number A is determined when K and T
are known; both notations have been taken as identical
(this can be seen from Table I, where the correspondence
drawn by Lin has been employed). A related scheme is
the molecular picture of the atom proposed by Ezra and
Berry, which introduces the U =0.5 (N —K —T —1)
quantum number.

We first notice that those approaches deal exclusively
with the closed-channel component of the resonance
wave function, and that widths were not considered in
the classification, in agreement with our remarks in Sec.
V.

Both SO(4) coupling coefficients and channel curves
yield very useful descriptions of Feshbach resonances.
Our interest here lies in how good a labeling scheIne they
provide. Firstly, this classification is obviously much
more satisfactory than that of Sec. V because the labels
are given a clear, physically intuitive interpretation.
Also, it can be applied to more excited resonances than
the previous method. On the other hand, since Lin es-
tablished a one-to-one correspondence (save for F states)
between his classification and that of Conneely and Lip-
sky, which we have used in our tables; both schemes have
been taken as equivalent in practice.

However, this cannot be correct. It will be noticed
from the n* diagrams of Herrick and Sinanoglu' that
the DESB classification aims at "diabatic" (i.e., character
conserving) Z diagrams, in sharp contrast with the
Conneely-Lipsky classification, which yields "adiabatic, "
i.e., character swapping, or even characterless (for mixed
states) diagrams. Hence, the equivalences usually em-
ployed ' and given in Table I cannot hold in general,
and their use for the (He) doubly excited states with

"mixed" character is questionable.
The applicability of the DESB approach has been criti-

cally studied by Lin and Macek and Robaux, who
pointed out, for some He resonances, the importance of
intershell corre1ations. Now, Lin does take into ac-
count these correlations and reaches the same labeling.
Since intershell correlations are most important in the
avoided crossing regions of the Z diagrams, to see the
correspondence between the schemes of Herrick and
Sinanoglu and Lin we have to deal separately with those
regions and the rest of the diagrams.

Let us first consider those avoided crossing regions.
There, Herrick and Sinanoglu' replace, in a semiquanti-
tative way (and from not very accurate calculations),
crossing for avoided crossings in their n * diagrams.
However, since the resonance widths are smaller than the
avoided crossing separations, the only physically mean-
ingful quantities are the resonance positions given in Fig.
1, and not those of a "diabatic" diagram. Hence, we con-
clude that the Herrick-Sinanoglu labeling scheme breaks
down for the 'S He resonances with mixed characters dis-
cussed above. Since for higher-excited resonances more
avoided crossings appear and for larger-Z values, the K, T
labels become less meaningful when a larger number of
ionization thresholds is involved.

On the other hand, Lin's equivalent labeling is not
based on DESB but on qualitative considerations of the
channel function energy curves. Hence, in cases of mixed
characters, where K and T lose their meaning according
to our reasoning, either the same holds for Lin's K and T
labels or such a classification differs from that of Herrick
and Sinanoglu, and the two schemes cannot be equivalent
as claimed. It is also clear that the problem is not solved
by the introduction of an additional quantum number A.

We now consider the regions outside the avoided cross-
ings. There K and T have unambiguous values, and the
question is how good the approximate quantum numbers
are. Herrick and Sinanoglu' provided an answer to this
question by calculating the projection of the closed-
channel wave functions over the corresponding DESB
functions (see also Ref. 27). They carried out these calcu-
lations for the lowest ' P He resonances (and for H ).
The results were, in general, quite good, with some excep-
tions that can be easily traced to the appearance of char-
acter mixing.

However, as pointed out above, He is not a good test
case for approximate quantum numbers since it does not
lie outside pseudocrossing regions. In Table II we have
included, within parentheses, the weights of
configurations of a given type corresponding to DESB
states. Notice that w Iv'] =w t 'w j+w

Although the DESB weights and ours are not directly
comparable for Z ( ~, because of our much larger bases,
a perusal of Tables I and II shows that the description
afforded by DESB is a good one in general. Further, we
see that Lin's correspondence between the (N, na) and
(K, T) schemes holds for Z = oo.

We also see that Lin's classification of 'S, 'P He reso-
nances cannot be equivalent to that of Herrick and
Sinanoglu. Take, for example, the (2, nb)'S states with
n =4, 5, 6: the comparison shows that, taking the overlap
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between our closed-channel wave functions and DESB as
a criterion, these states would be approximated by DESB
with E =1 and not with E = —1 as stated by Lin; the
opposite holds for (2, na) with n )4; a similar criticism
can be applied to (2,nc)'P states. Moreover, no distinc-
tive IC, T labels can be attached to (2, 3b)'S and (2,4a)'S
resonances. Of course, a definite conclusion would need a
comparison of our data with the weights of Lin's F„"(R)
and P„(R;0) functions, where R and 0 are hyperspheri-
cal coordinates, so that assignation is not based solely
upon consideration of energy diagrams for the channel
functions.

VII. CONCLUSIONS

As both theoreticans and experimentalists are studying
increasingly excited doubly excited states, and in view of
the complexity of the resonance spectra, a classification
scheme is of enormous usefulness. This should be care-
fully distinguished from methods that provide insight on
the structure of doubly excited states: many quantities,
such as ( ri z ), (r &z' ), (cos8&z), etc. , can be employed
to describe that structure; ' ' on the other hand, la-
bels are usually required to take integer, or at most frac-
tional, values, and, most importantly, to unambiguously
determine a given state.

In practice, a common attitude in the assignation of la-
bels to resonance positions is either to use energy order-
ing (provided no resonance is mised in the search) or
eclectically employ any of the three schemes studied in
the previous sections, which are mistakingly taken as
equivalent.

Our main conclusion is that energy ordering together
with Z diagrams is, at present, the only general solution
to the classification problem, and even more so for reso-
nances lying above several thresholds. Existing schemes
can be viewed as providing a compact and physically ap-
pealing description of, and a classification for, some par-
ticular sets of resonances. Unfortunately, they do not
seem to provide a general labeling. Basically, the reason
is that, whatever the properties used to characterize reso-
nances, such classification schemes cannot still hold when
two states are mixed to an appreciable extent, so that
they do not possess any definite character. Also,
differences between those schemes should be taken into
account.

Thus, despite its undeniable historic importance, the
Cooper notation should be abandoned as a general
scheme, and only be used as a rough way to characterize
some doubly excited states. For resonances under the
% =2 threshold for the He isoelectronic series, the
Conneely-Lipsky labeling provides a kind of energy or-
dering that has an approximate physical interpretation,
except for He "mixed" states (although He was paradoxi-
cally the system treated in Ref. 18). To find out which
states are "mixed, "energy calculations can be carried out
for noninteger nuclear charges Z; also, very accurate cal-
culations must be performed should an avoided crossing
occur in the close neighborhood of an integer Z, since a
small shift in its position can imply significant changes in
the corresponding resonance widths (see Fig. 5). When

APPENDIX

Taking a linear model to describe a sharp pseudo-
crossing between two resonance positions E, and E2 as
functions of fractional nuclear charge Z, we write the two
closed-channel wave functions Pl and Pz in the usual way,
as linear combinations of two "diabatic" (character con-
serving) wave functions whose energies H&& and Hz&
cross at Z =Zo,

Pi =(cos8)y, —(sin8)gz,

Pz=(sin8)y, +(cos8)yz,

and we assume that for Z =Zo

(A 1)

1 1H —H =aii 22 Z Z 0

—:aX, H, 2=C . (A2)

The rotation angle |9 is then given by

22 110=——
—,
' tan

4 ' 2H12
=—+ —,

' tan ' . (A3)
2c

To simplify the analysis, we suppose that two
configurations Pl and Pz (or one configuration g, and a
complementary set orthogonal to it) dominate in the ex-
pansion for the diabatic wave functions. We can then
write

pl =(costs)gi —(since)gz,

yz = (since)gt+ (cosco)$3,
(A4)

an avoided crossing occurs close to an integer Z value, in-
spection of the configuration weights [Eq. (11)], together
with the analysis given in the Appendix, permits one to
decide whether a state is "mixed" or characters have in-
terchanged.

In the regions free of avoided crossings, the Herrick-
Sinanoglu K and T approximate quantum numbers are
very useful as providing physical insight on the properties
of the closed-channel component of the resonance. This
scheme is not equivalent to energy ordering and therefore
to the Conneely-Lipsky scheme. It breaks down at the
pseudocrossings whose energy separation is larger than
the sum of the corresponding widths (otherwise only an
average width is meaningful, and can also be defined
from the "diabatic" states, whose energy positions cross).
The relationship of Lin's proposal to the Herrick and
Sinanoglu' scheme requires clarification.

Finally, avoided crossings in Z-correlation diagrams,
involving two or more states and wider Z ranges than in
Fig. 1, become the rule, rather than the exception, for
resonances above several thresholds. Then the regions
where the E, T (or K, T, A) scheme holds becomes in-
creasingly restricted and Z-correlation diagrams in-
dispensable.
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io(' =cos (8+co), w( =sin (0+co) .

From (A3) and (A5) we shall have to ' =to when

2c
tan(2co) .

(A5)

(A6)

and from (Al) and (A4) the configuration weights [Eq.
(11)]are then given by

Y, =(cos0)y, —(sin8)yz

1 ax1—
(a 2+4 2)i/2

1 ax1+
(

2 2+4 2)i/2

Yz ——(sin9)y i + (coso)yz

1/2

1/2

(A8)

That is, the weight crossing occurs for Z=Zo when
co =n ~/2. It takes place for Z (Zo when the
configuration mixings due to the co rotation (A4) and the
0 rotation (Al) occur in the same direction and for
Z )Zo in the opposite case.

The variation of the widths in the pseudocrossing is a
little more complicated. Defining first the Y values [Eq.
(12)] for the diabatic wave functions,

1 ax
(

2 2+4 2)i/2

1 ax+ —1—
(

2 2+4 2)i/2

1/2

1/2

3'2

and the widths are given by Eq. (12). We see that I i
= I"z

or Y, =+Y2 when

y i
=

& pi I
QHP l xi ), yz =

& q z I QHP lxz & . (A7)
2'
(y,' —yi )

(A9)

Assuming that, for lxl small, gi =gz, we have for the
closed-channel functions:

Assuming c/a small, the widths will cross for Z =Zo un-
less those of the diabatic states are similar (y i

-—+yz ).
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