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Bremsstrahlung radiation emitted in fast-electron —H-atom collisions

Alain Dubois
Chemistry Laboratory III, H C. 0. erstedt Institute, University of Copenhagen,

DK 2100 Copenhagen, Denmark

Alfred Maquet*
Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards

and Technology, Boulder, Colorado 80309-0440
(Received 26 June 1989)

A previous calculation for free-free transitions is generalized so as to treat one-photon (spontane-

ous) bremsstrahlung emitted in the course of collisions of relatively fast electrons with atomic hy-

drogen. While the electron-atom collision is described within the first Born approximation, the role

of the atomic spectrum is taken into account exactly via the use of a compact representation of the

Coulomb Green's function. We discuss the main features of the cross sections and address some

physically relevant issues such as the importance of the screening by the atomic electron, the role of
the atomic structure, and limiting cases such as the soft-photon and the small-momentum transfer
limits. We also discuss the differences observed between the cross sections for spontaneous brems-

strahlung and stimulated free-free transitions.

I. INTRODUCTION
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We shall discuss here collisions of (relatively) fast elec-
trons with kinetic energies significantly greater than typi-
cal atomic excitation energies

( k,'/2, ki /2)» —,
'

in a.u.
The theory of such radiative collisions is notably

simplified in the two following limiting cases depending
on the frequency of the emitted photon.

(i) One is in the high-frequency region of the spectrum,
i.e. , for photon frequencies relatively large with respect to
characteristic atomic excitation frequencies. In such a
regime it can be shown and easily verified (see below) that
the projectile-nucleus interaction dominates the physics
of the process and the celebrated Sommerfeld formula, '

established for a pure Coulomb potential, provides an ex-
cellent description of the emission spectrum. For high-
atomic-number elements, however, the screening eftect of

Bremsstrahlung emission occurring during the course
of an electron —H-atom collision can be symbolically
represented by the following equation:

e(k, )+H( ls)~e(kf )+y(co, e, k)+H( ls) .

Here k, (kf ) are the wave vectors of the incoming (out-
going) electrons; y(co, e, k) represents a photon spontane-
ously emitted with frequency cu, polarization direction e,
and wave vector k and H(1s) symbolizes a ground-state
H atom. Conservation of energy imposes (atomic units
will be used unless otherwise stated)

the atomic electrons can become important, and sophisti-
cated theoretical methods have been developed to deal
with such bremsstrahlung spectra in the x-ray range.

(ii) The other is in the low-frequency (soft-photon) lim-
it, i.e., for photon frequencies much smaller than charac-
teristic atomic excitation frequencies. In this regime the
bremsstrahlung cross section diverges as co

' and be-
comes proportional to the field-free elastic-scat tering
cross section. We will illustrate this general theorem by
investigating the behavior of our results in the limit
~~0, see below.

In contrast with these limiting cases, no general
theoretical analysis is available when the emitted photon
frequency is comparable to characteristic atomic excita-
tion frequencies. Indeed, as previously noted by several
authors, the coupling between the electron-atom sys-
tem and empty modes of the radiation field (vacuum field)
with frequencies close to atomic excitation frequencies,
can create a resonant state, thus giving rise to a resonant
structure in the bremsstrahlung spectrum. In such a
case, one expects that the electronic structure and polari-
zability of the target play an important role on the dy-
namics of the process.

We have chosen to illustrate the main characteristics of
the bremsstrahlung cross sections and spectra by consid-
ering the electron —H-atom system. Though very simple,
this system displays the main elements necessary to de-
scribe the dynamics of such radiative collisions. In addi-
tion, once an appropriate set of physically grounded ap-
proximations has been chosen (typically: dipole approxi-
mation for the charged-particle —field interaction and first
Born approximation for the scattering stage, ...), it is pos-
sible to perform an exact analytic calculation of the
overall transition amplitude. This has the definite advan-
tage of making clear the limitations of the theory and al-
lowing one to investigate the analytic behavior of the
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cross sections in interesting limiting cases.
To this end we have extended and generalized a recent

calculation we had performed for the closely related pro-
cess of free-free transitions (FFT) in the same system.
As a result of this generalization we have been able to ex-
press the bremsstrahlung transition amplitude in a very
compact analytic form. In this respect our results
represent an extension of previous similar works on the
same process.

In Sec. II, we shall outline the theoretical framework of
our calculation. The numerical results of our computa-
tion will be presented and discussed in Sec. III. We will
discuss, in particular, the relative magnitudes of the
different terms contributing to the cross section and in-
vestigate their behavior in the soft-photon and high-
frequency limits. The differences between spontaneous
and stimulated bresstrahlung will be also addressed. A
brief conclusion ends the paper in Sec. IV.

II. THEORY

The threefold differential cross section for detecting a
spontaneously emitted photon within the frequency range
co, co+dc@, and solid angle dQ(k), plus a scattered elec-
tron within the solid angle d A(kf ) is expressed as

dao dQ(k)dQ(kf )

Here k; is the incoming electron momentum,
p(Ef)=kf/(2n), and p(.ro)=co /(2nc) are the density
of states for the scattered electron with energy Ef and
emitted photon, respectively, and T&&, is the transition
matrix element, the structure of which will be described
below. This cross section, which has the dimensions of a
surface divided by an energy, is expressed here in units of
ao/(2 Ry).

As the elementary bremsstrahlung process involves the
spontaneous emission of one photon, the radiative cou-
pling between the electrons and the vacuum field can be
conveniently treated in first-order perturbation theory
with respect to the interaction Hamiltonian:

H„=—Aoa e' (po+p, ),1

where

Ao=c(2m/co)'

is the amplitude of the potential vector for a mode of the
radiation field with polarization e and frequency co, a is
the creation operator for one photon in this mode, and p0
and p, are the momentum operators for the projectile
and atomic electrons, respectively.

For the relatively high projectile kinetic energies we
have chosen to discuss here, a first Born approximation
treatment of the electron-atom collision provides a
correct description of this stage of the process. This
amounts to treating the projectile-target interaction to
first order in the electron-atom coupling Hamiltonian:

where r0 is the position of the projectile and
ro, = lro —r, l, r, being the position of the atomic electron.
Note that we will not discuss exchange effects, which are
expected to be small in this collisional regime.

Within this framework the corresponding expression
for the transition matrix element T&z, is second order in
the perturbation Hamiltonians H,'" and H„,each of them
acting only once:

Tf„=(flH„GO(E,)H," li &+&flH, "Go(E, )H, li & . (7)

Here li & and
l f & are the initial and final eigenstates of

the unperturbed Hamiltonian operator

H0 =H„+H,+HF

E; is the energy of the state li &; H„is the hydrogen atom
Hamiltonian, H, is the kinetic energy operator for the
free-electron projectile, HF is the radiation field Hamil-
tonian, and Go(z) =(z Ho) '—is the resolvent. In the in-
itial state no photon is present (vacuum field), whereas in
the final state one photon has been emitted with the fre-
quency given by the conservation of energy relation Eq.
(2). We note also that, as H„acts on both the projectile
and atomic electrons, the expression of T&&, contains, in
fact, four amplitudes.

Aside from an overall multiplicative factor, T&&, has
the same formal structure as the corresponding second-
order transition amplitude for free-free transitions. The
required sum over states for the radiation field and the
free-electron projectile, as well as the integration over the
projectile coordinates, can be carried out exactly, and
after some algebra one obtains '

do
den d A(k)d Q(kf )

f (1 l(
ia r 1)ll

+i co[M„(h,e;E„—co)

2
+M ), (b, , e; E i, +co)]

where a =
37 is the fine-structure constant, 5=k, —

k& is
the momentum transfer, and M&, (b„e;0)is a second-
order atomic matrix element of the form

M„(b,e;O)=(isle' 'G, (A)r

elis�&,

where G, (A) is the Coulomb Green's function. For com-
putational convenience we have used the electric-dipole
form of the interaction Hamiltonian.

The first term in Eq. (8) can be associated with process-
es in which the projectile itself emits one photon while
scattered by the atom. Apart from a factor of —1 it is
proportional to the atomic form factor. More precisely,
this term splits into two contributions which reduce to

(i) the ground-state atomic form factor, which stems
from the interaction between the projectile and the atom-
ic electron:

H(1) 1 1

0 701
& ls le'a'l ls &

= 16
(b, +4)

(10a)
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and (ii) a pure Coulomb contribution associated to the
projectile-nucleus interaction:

(lob)

3 k
(b, .e) iT„(b,;co)i

des dII(k)dQ(kf )

(13)
Note that if the nucleus charge were Z, this term would
be —Z.

The two other terms contained in Eq. (8) account for
contributions in which the target itself emits one photon
while experiencing the collision with the projectile, this
latter supplying the needed energy for ensuring the global
conservation of energy. The magnitude of this contribu-
tion depends critically on the polarizability of the target
and is strongly dependent on the frequency of the emitted
photon. We note that these contributions were omitted
in most earlier treatments of atomic bremsstrahlung pro-
cesses and we will discuss below (Sec. III) the range of va-
lidity of such approximate treatments.

The computation of the matrix elements M„(b„e;II)
represents the main di%culty of the calculation. On us-
ing an integral representation of G, (A), "' we had pre-
viously obtained a fairly compact representation of these
matrix elements, in terms of Appell's hypergeometric
functions of two variables.

In the present application, however, we needed to com-
pute these matrix elements for values of 0 & 0, i.e., locat-
ed on the cut of G, (Q), which required us to analytically
continue the expressions obtained. To this end we have
found it convenient to express them in terms of Gauss
2F, hypergeometric functions whose analytic continua-
tion properties are easier to handle, and we have been
able to derive the following very compact expression (see
the Appendix for an outline of the derivation of these for-
mulas j:

where T„(b,;co) is a reduced matrix element that reads

1 16T„(h;co)=— —1
(b, '+4)'

+co[M„(b,;E„—co)+M„(b„E„+~)],
(14a)

with

M„(b,;II)= 3 +8(+b.)+8( —5) (14b)

where e, and e2 are two mutually orthogonal polarization
vectors. A convenient choice of coordinate axis, adapted
to the geometry of such radiative processes, is shown in
Fig. 1. The scalar products then read

[see Eqs. (12)].
If, as in most bremsstrahlung experiments, the photon

polarization is not detected, one has to sum over the po-
larization states of the spontaneously emitted photon and
the triple differential cross section for the emission of an
unpolarized photon is

~ unPOI

deed Q(k)dQ(kf )

3 k
[(h.e, ) + (b.e2)'] i T„(b,;co) i

M„(h,e;II)= i 6 +[3+8—(+5)+8(—b )], (11)

with

48(4 —3b, )

b, (1 —x )(4+6, )

24(1 —x+ib, ) 1

6 (1 —x)(1+x) (2+i')' 2 —I/x

X F 1, —1 ——;3——;01
2 1

(12a)

(12b)

k

kf

where

(1 —x)(1—x +id, )
Q x =&—2n,

( I +x)(1 +x+iA) '

and 8( —b, ) is obtained by changing b, ~—b, . Note that
if x is real (0, (0), the quantities 8(+6) and 8( —5) are
complex conjugates and their sum is real.

An interesting property of these matrix elements, re-
sulting from the rotational invariance of the atomic sys-
tern in its ground state, is the factorization of the scalar
product h. e which governs the angular dependence of
the cross section with respect to the photon polarization.

This allows us to rewrite the differential cross section
as follows:

, o, o)

f f ~f )t'f)

g (k, e, y)

(I, —,y- —)

~~ (i, e+"—,y)

FIG. 1. Coordinate axis chosen to describe radiative col-
lisions resulting in the emission of one bremsstrahlung photon.
k;, incoming electron wave vector; kf, scattered electron wave
vector; k, wave vector of the emitted photon with polarization
E I OI 62.
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and

kf Sln9f Sin(pf p)

I, ez = —k; sin 9—kf [cos9 sin 9fcos( Pf —P )

—sin9 cos9f ],

(16a)

(16b)

6 =kf+k, —2k, kfcosOf (16c)

If, in addition, one does not record the angular distri-
bution of the outgoing electron, it is possible to partially
perform the corresponding integration and one gets the
following expression for the double differential cross sec-
tion:

d ~unpo]

dco d A(k)

cr3 kf lT„(b,; oc)l.
co d Of sinOf 4k, 0 g4

X[26, sin 9

+kfsin 9f(3cos 9—1)] .

(17)

The last integration over Of cannot be performed analyti-
cally since T&, (b, ;co) depends in a complicated fashion on

9f, through the momentum transfer 5; see Eqs. (12), (14),
and (16c). This general expression of the twofold
differential cross section will serve as a basis for discuss-
ing the properties of the bremsstrahlung spectra, as de-
duced from a standard numerical integration of the ex-
pression Eq. (17); see the discussion in Sec. III.

We note that a single differential cross section, associ-
ated with the overall probability for emission of one pho-
ton within the frequency range (co, co+dc@) can be de-
duced from Eq. (17) by integrating over the solid angle
dQ(k). One then gets [T„(b,;co) is independent from the
propagation direction of the emitted photon]

p / 16 3 kf IT„(&;~)l'
a cu d Of sinOf

d co 3 ki. 0 Q2
(18)

III. RESULTS AND DISCUSSION

In the expression, Eq. (14a), of the reduced atomic
transition amplitude T„(b„),cosine can distinguish be-
tween the first term, broadly speaking associated to the
generalized atomic form factor and arising from the
projectile-field coupling, and the second term, more close-
ly linked to the atom-field coupling. Accordingly, in the
following, these contributions will be referred to as "elec-
tronic" and "atomic", respectively. Depending on the

Again, in most cases, the Of integration has to be per-
formed numerically.

Coming back to the basic expression of the twofold
diff'erential cross section, Eq. (17), it is difficult to discuss
its analytical properties in general terms, given the com-
plicated structure of the matrix element T„(A;co),Eqs.
(14). However, as we will show in Sec. III, some physical
insight into its behavior in some limiting cases can be
gained by comparing the relative contributions of the
terms entering its expression.

magnitudes of the physical parameters governing the dy-
namics of the radiative collision, namely, the momentum
transfer 6 and the photon frequency co, one term or the
other can be dominant, thus imposing its behavior to the
general cross section. This allows us to deduce some in-
teresting features of the bremsstrahlung cross section,
even before performing any numerical calculation. This
can be achieved in the following particular cases.

(i) Soft pho-ton limit: co~0. In this limit the electronic
term, preceded by the factor co

' is dominant, and the
atomic term, which is proportional to co, becomes vanish-
ingly small. The reduced atomic matrix element

T&, (b, ;co) is then proportional to the field-free elastic-
scattering amplitude'

(19)

+2sin 9b, ] . (20)

The angular integration over Of can be performed exactly
after some cumbersome algebra, and leads to an expres-
sion, which although of closed form, is too complicated
to be reproduced here. ' The above result clearly
displays the infrared divergence of the bremsstrahlung
cross section and allows us to recover a particular version
of the Low theorem, when applied to the case of e-H
atom collisions. Here the integral is proportional to the
first Born approximation for the field-free total cross sec-
tion for elastic scattering of a fast electron by a ground-
state H atom.

A relatively compact expression of a single differential
cross section, integrated over the propagation direction
of the emitted photon, can be easily obtained by substi-
tuting the approximate form, Eq. (19), in the general ex-
pression, Eq. (18),

unpol 16 3 f 1 ~ . (6 +8)a — dO sinO
dco 3 k; co o (Q +4)

(21)

This analysis, based on the dominance of the electronic
term in the transition amplitude, is quite general and pro-
vides an excellent description of the behavior of the cross
section in the soft-photon regime. Within this context
soft photon means frequencies such that co&&co„where
co, is the smallest atomic excitation frequency. Here, for
ground-state hydrogen, co, corresponds to the 1s-2p tran-
sition i.e., co, =co]2=—'„a.u. So, as soon as co does not
fulfill the above condition, the soft-photon approximation
is no longer valid and one has to perform the complete
calculation of the expression, Eqs. (14).

Another apparent limitation of the validity of the ex-
pressions, Eqs. (20) and (21), is that they are deduced
from the approximate expression, Eq. (19), for T„(b,;co),

and the differential cross section for bremsstrahlung, Eq.
(17), reduces to

d~unpol a kf 1 ~ . (b, +8)
d Of sinOf

dcodQ(k) Ir k; co o (6 +4)
X [kf(3cos 9—1)sin 9f
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which is not completely correct at small scattering angles
Bf +0, i.e., at the lower integration limit. In this angular
range one has 6~0 as co~0 and the electronic contribu-
tion vanishes, being no longer dominant with respect to
the atomic terms. It can be checked, however, by com-
paring with the exact calculation, that as this angular
domain only contributes for a small amount to the in-
tegral, this does not significantly affect the validity of our
general analysis concerning the soft-photon limit.

(ii) Resonant bremsstrahlung emission A.t higher fre-
quencies the dominance of the electronic term becomes
less marked and the situation can be completely reversed,
namely, the atomic contribution becomes dominant.
This is particularly so if the emitted photon frequency co

matches, or nearly matches, an atomic excitation fre-
quency co-cot„,where co,„=—,'(1 —n ), n =2, 3, . . . . In
such a case the second-order matrix element
M &( b e E„+co), Eq. (9), or its reduced form
M&, (b,;E„+co)becomes very large and dominates the
total transition amplitude. This comes from the fact that
these matrix elements contain the Coulomb Green's func-
tion, which has poles when its argument is equal to the
energy of the bound states. To each of these poles is asso-
ciated a resonance in the bremsstrahlung emission spec-
trum, see Fig. 2, below.

Exactly on resonance ~=co„,our expression of the
cross section becomes infinite. These unphysical infinities
arise from the fact that we have neglected the radiative
shifts and widths of the atomic levels. This is consistent
with our lowest-order perturbative approach, which, un-
derstandably, is not valid at resonance. Note that in such
particular cases, a two-level model of the atom would be
relevant.

(iii) First Born Coulom-b bremsstrahlung Still at h. igher
frequencies, i.e., if m)&~,„,where atomic hydrogen exci-
tation energies obey the following inequalities:

co&„&—,', the projectile-nucleus interaction dominates
the dynamics of the collision. ' This feature of the
bremsstrahlung process, well known in the context of the
production of x-ray spectra by electron impact, can be
understood here as follows: At relatively large photon
frequencies both the electronic and atomic contributions
are notably modified. These modifications arise primarily
from the fact that the greater co, the greater 6, since
k, —kf &6 &k, +kf and k, —kf =2'. Accordingly, in
the limit b. ))1, the electronic term, see Eq. (8), reduces
to —I /co (or —Z/co in case of hydrogenic ions). Parallel
to this, the atomic contribution strongly decreases and
becomes negligible, as the matrix elements M„(h,e;0)
are then very small because of the oscillatory nature of

I
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b
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D

O

—5
I

\

\

0.5 1.0 I. 5

F REQU E N C Y cu (a. u. )

2.0

FICr. 2. Variations of log, o[da„„„,~/(dcodII)] in terms of the
emitted photon frequency co; 0=45', k; /2=10 a.u. Short-
dashed line, contribution of the Coulomb-Born term, Eq. (23b);
long-dashed line, contribution of the electronic term, Eq. (20);
dot-dashed line, atomic contribution; solid line, overall cross
section Eq. (17). The cross section is expressed in units of ao/(2
Ry).

the operator exp(ih r), wh. ich enters their expression, Eq.
(9). This trend, concerning the atomic contribution, is
even reinforced by the fact that the matrix elements M&,
become approximately proportional to co

' with opposed
signs and that they partially cancel each other. ' This ap-
proximate co ' dependence compensates the multiplica-
tive factor co, which further accentuates the decrease of
the atomic contribution. As a result of these multiple
cancellations the matrix element T„(h;co),in the limit of
large co (and b, ), becomes

T„(A;co)-——,1
(22)

den dQ(k) 7T k, CO

X d BfsinBf 6
0

X[23, sin 0

+kf(3cos 0—1)sin Of ] . (23a)

The angular integration can be easily performed and
one recovers the following closed-form result

and the corresponding approximate expression for the
twofold differential cross section reads

d ~ unpol

d unpol

den dII(k)
~3 kf 1 sin 9(k, —3kf )+2(k, +kf ) k, +kf

3sin B—2+ ln
2k kf k kf

(23b)

Again, the angular integration over the propagation
direction of the emitted photon can be easily performed,
and one obtains the well-known first Born approximation
formula for the bremsstrahlung emission in a Coulomb
field'

]6 3 ] $ kI +kfa —ln
3 k 6) k; kf

(24)

These formulas, which will be referred to as the
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Coulomb-Born approximation in the following, provide a
correct description of the bremsstrahlung spectra at pho-
ton frequencies well above the ionization threshold, see
the discussion below.

(iv) Small momentum transfer, Bethe Bor-n approxima
tion: 5~0. The calculation is notably simplified if one
restricts oneself to the study of collisions resulting in a
small momentum transfer. It is then convenient to ex-
pand the exponential e' ' in powers of 6 and, if one re-
tains only the first-order term e' '-1+i h. r, one obtains
the so-called Bethe-Born approximation for the transition
amplitude. It immediately appears then that the elec-
tronic term vanishes since the dipolelike operator is not
diagonal in the atomic basis. The remaining atomic
terms also simplify and become

i oc[M„(b„eE, t—to)+M„(b,e;E„+co)]
——co[( ls ~e.rG, (E„—ro)b, .r~ ls )

+ ( Is~6, rG, (E„+to)er~ ls ) ] .

(25)

The sum of the second-order matrix elements is propor-
tional to the dipole dynamic polarizability a(co) of the
ground state and one has

ito[M), (b„e;E„—co)+M(, (b„eE(,+co)]
——to(h. e)a(co) . (26)

An explicit expression for a(cu) can be obtained from our
general formula for the matrix element, Eqs. (11) and
(12), by taking the limit 6~0. After some algebra one
recovers the known analytic formula which has been pre-
viously derived in several instances from a direct calcula-
tion, see Ref. 9, Eq. (21), and references therein.

This interesting result clearly shows the importance of
the target dynamic polarizability on the physics of radia-
tive collisions. It has served as a basis for general discus-
sions on dynamic aspects of bremsstrahlung spectra.
It should be kept in mind, however, that it is valid only at
small momentum transfer, i.e., for small-angle scattering
and relatively low frequencies such that k, -k . A de-f
tailed study of similar processes including free-free transi-
tions, and laser-assisted atomic excitation, ' shows in
fact that the Bethe-Born approximation has a very limit-
ed range of applicability and should be used with great
caution.

Let us turn now to the discussion of our numerical re-
sults, obtained for the twofold differential cross section,
Eq. (17), by using the analytical formula, Eqs. (14), for
the atomic matrix elements. The computation of these
latter quantities did not present special difficulties and
was performed on a Macintosh-Plus microcomputer. In
the high-frequency range co) ~E„~,the hypergeometric
functions 2Ft contained in Eqs. (12) are very slowly con-
vergent and we had to use standard analytic continuation
formulas. The final angular integration over the propaga-
tion direction of the scattered electron was performed nu-
merically, using an adapted form of a gauss-Legendre
quadrature. ' '

b
CU 3

D -7
O

O

0.5 lO 5

FREQUENCY ~ (a. u. j

20

FIG. 3. Variations of log, „[do„„„„~/(dcodQ)]in terms of the
emitted photon frequency co, at different kinetic energies k /2
of the incoming electron (0=45'). Dashed line, k; /2=5 a.u. ;
dot-dashed line, k; /2=10 a.u. ; solid line, k; /2=20 a.u. The
cross section is expressed in units of ao/(2 Ry).

In Fig. 2 is presented the frequency dependence of the
cross section at fixed incoming electron energy
(k,. /2=10 a.u. ) and emitted photon direction (8=45').
In addition to the exact cross section itself, we have also
reported the variations of partial cross sections obtained
by retaining only the contribution of either one of the
electronic, or atomic or Coulomb-Born terms. Figure 2
illustrates several of the characteristic features of the
dependences of the bremsstrahlung spectra on the photon
frequency. In the low-frequency domain, the infrared
divergence of the cross section is clearly shown. We ob-
serve also that, as expected, the electronic contribution,
as given by Eq. (20), is by far dominant in this range and
that the Coulomb-Born cross section, Eq. (23b),
significantly overestimates the exact result.

The situation is completely reversed in the optical-vuv
range (where vuv is vacuum ultraviolet) (0.2 ~co ~0.5),
where the cross section is dominated by the atomic term,
which exhibits a typical resonant behavior, see Fig. 2. In
this range of frequencies the electronic contribution not-
ably underestimates the cross section and, interestingly
enough, the Coulomb-Born cross section seems to pro-
vide a smooth average of the exact result.

At still higher frequencies, i.e., above the ionization
threshold co) —,

' a.u. , the situation is again modified and
one observes a steady decrease of the atomic term which
does not contribute anymore at frequencies co) 2 a.u. see
Fig. 2. In a parallel fashion the Coulomb-Born cross sec-
tion, as given in Eq. (23b), provides an excellent approxi-
mation to the exact one, as was anticipated in our previ-
ous discussion of the high-frequency limit.

It is interesting to compare the present dispersion
curve for spontaneous bremsstrahlung cross section, with
the corresponding one obtained for (stimulated) free-free
transitions in the frequency range co ~

—,
' a.u. , see Ref. 9,

Figs. 5 and 6. Common features in these curves are the
infrared divergence as co~0 and the presence of reso-
nances located at frequencies co =co]„.However, the deep
minima observed in the FFT dispersion curves are no



4294 ALAIN DUBOIS AND ALFRED MAQUET

longer present in the case of bremsstrahlung. This can be
ascribed to the fact that in this latter case we have as-
sumed that the scattered electron is not detected and that
the polarization of the photon is not observed. As a
consequence of the resulting integration and averaging
processes, the minima are washed out. This clearly indi-
cates that, unless the electron is detected in coincidence
with the photon and the polarization state of this latter is
observed, conventional bremsstrahlung cross sections are
less rich in information about the dynamics of the col-
lision than their FFT counterparts.

Figure 3 shows that the bremsstrahlung spectra depend
only moderately on the kinetic energy of the incoming
projectile. One observes that the cross section regularly
decreases as E, =k, /2 increases, the dispersion curves
being almost similar.

The dependence of the cross section on the incoming

electron kinetic energy E, at various photon frequencies
and fixed emission angle (8=45') is shown in Fig. 4,
which displays the variations of the different contribu-
tions to the cross section in terms of E; within the range
5~E; «20 a.u.

Figure 4(a) illustrates the low-frequency regime: The
electronic contribution almost coincides with the exact
result while the Coulomb-Born result is significantly
larger. The atomic term, which is too small to appear in
the figure, does not contribute in this frequency range.

The case of ultraviolet radiation is illustrated in Fig.
4(b), corresponding to co=0.35 a.u. The atomic term in
then dominant and almost coincides with the exact re-
sults, the electronic and Coulomb-Born contributions be-
ing negligible.

In the high-frequency range (co=2 a.u. ), see Fig. 4(c),
the Coulomb-Born approximation provides a fair esti-
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FIG. 4. Variations of the cross section der„„~„/(deedQ), expressed in units of ao/(2 Ry) as a function of the incoming electron en-

ergy k; /2 at fixed angle of emission (0=45 ). (a) co=0. 1 a.u. ; (b) co=0.35 a.u. ; (c) co=2 a.u. Short-dashed line, Coulomb-Born ap-
proximation; long-dashed line, electronic contribution; dot-dashed line, atomic contribution; solid line, overall cross section.
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mate of the exact result. Although they are not negligi-
ble, neither the atomic nor the electronic contributions
can separately approximate the correct cross section.
Note the change of scale for the cross section, this latter
becoming much smaller in the high-frequency range.

IV. CONCLUSION

APPENDIX: ANALYTIC CALCULATION
OF THE MATRIX ELEMENTS

M t, ( h, e; 0 ) EQ. (9)

The needed second-order matrix element can be ob-
tained via the following differentiation process:

We have presented in this paper a theoretical analysis
of the bremsstrahlung spectrum emitted during the
course of collisions of relatively fast electrons with hydro-
gen atoms. We have identified diA'erent contributions to
the overall cross section and compared their relative
weights, depending on the frequency of the emitted pho-
ton and the magnitude of the momentum transfer.

The so-called electronic contribution, arising mainly
from the projectile-field coupling, is dominant in the
low-frequency (soft-photon) limit. In this case, the Low
theorem is applicable, and the cross section, which then
varies as co, is proportional to the field-free elastic-
scattering cross section.

The occurrence of resonances in the bremsstrahlung
spectrum is recovered. In the corresponding frequency
range such that co-co„,i.e., if co is of the same order of
magnitude as characteristic atomic excitation frequen-
cies, the atom-field coupling dominates the physics of the
process and the so-called atomic contribution coincides
almost exactly with the overall cross section. This obser-
vation highlights the important role of the polarizability
of the target in such radiative collisions.

At higher frequencies the screening of the Coulomb
field of the nucleus by the atomic electron becomes negli-
gible and the so-called Coulomb-Born approximation
provides a fair description of the process. This stems
from the fact that, in this frequency range, the atom-field
coupling is much weaker and that accordingly, the phys-
ics of the process is dominated by the dynamics of the
projectile-nucleus-field system.

The remarkably compact analytical expression, Eqs.
(11)—(14), we have obtained for the transition amplitude
has allowed us to perform all the numerical computations
reported here on a microcomputer. The case of photon
frequencies above the ionization threshold, which usually
presents severe difficulties in similar calculations, was
easily handled thanks to the use of standard analytic con-
tinuation formulas.
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1 c3 0 . . c3M„(b„e;II) =-
, lim ie.

~ Bp Bp' a'--o

XM„„(b„b,';fI)
c =v'=&

where

(A1)

p, p

X G, (r', r; A)e' ' . (A2)

A closed-form expression for this latter matrix element
has been previously derived by Klarsfeld. ' Its derivative
with respect to 8' is easily obtained and, after taking the
limit 5'~0, one is left with the following expression:

p=p'=1

where

J(p. ,p') = [(p+x ) +5 ] (p'+x )

1

X duu' 'i (1 —u u) (1 —u u)
0

(A4)

Here x =v' —2A and

p x
p'+x

p —x+i 6
p+x+i 6 (A5)

The integral entering the expression of J(p,p') represents
an Appell hypergeometric function F, of two vari-
ables, ' ' the derivatives of which can be straightfor-
wardly obtained. We have found it convenient, howev-
er, to derive another expression of M„(h,e;0), Eq. (A3),
in terms of Gauss hypergeometric functions 2F] whose
analytic continuation properties were more suitable here.
To this end it is enough to rewrite the integrand of the in-
tegral in Eq. (A4) as follows:

(1 —u+u ) (1—t( u )
(u ) 1

(u —u ) (1 —u u)
2Q

(u —u )(1—u u)
+sym(u+, u ), (A6)

which allows us to reexpress J(p, p') as a sum of zF, functions
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J(p, ,p') = [(p+x ) + b. ] ~(p'+x )
1 (u+) 1

j3 jQ

2(u ) Et 1 1 +
2 1+ 3
F 12——;3——;u

(u+ —u )' ' x' x' +sym(u+, u )
. . (A7)

This expression can be notably simplified by using a con-
tiguity relation between 2F, functions which, when spe-
cialized to our case, reads '

1 1
2F1 p 2 —;3——;u

(1+p')
2 x'5 (p'+x)[(l+p')~+&2)~

(1+x )Bp(+b, ) = i—
(2 —I/x )4x ~'(p' —x )'(p'+x )(1—x + id, )'

(2 —1/x ) 1

(2 —1/x —p) (1 —u )t'

2F1 p+1, 2 ——;3——;u1 1

(2 —1/x —p) ' ' x' x'

and, after some algebra, J(p, ,p') can be expressed as

(A8)

X(tl+) 2FI 3, 2 ——;3——;u+

The derivative with respect to the parameter p' is com-
puted in a similar way, and one obtains

a2
J(p,p'), = 33+83(+b,)+8, ( b, ), —

Bp Bp

(A12)

J(p, p')= 3, +8, (+6)+8,(
—b ),

where

(A9)
where

3(4—3b, )

2'x b, (1 —x )(4+6, )
(A13a)

1 (p —x) +b.
1 —1/x 2'x 6 (p'+x) [(p+p') +b, ]

1 (p —x 2ih+—6 )8, (+b, )=i
(2 —1/x )(1—1/x ) 2'x 'b, '(p' —x ') X(u ) 2Fi 4 2 ——;3——;u (A13b)

8,(+b, )=i 3

2(2 —1/x )b, (1 —x ) (1+x ) (1 —x +i 5 )

X(u+) 2Fi 2, 2 ——;3——;u+

and 8, (
—b, ) is obtained by substituting b ~—b, .

The next step is to compute the derivatives with
respect to the parameters p and p' [see Eq. (A3)]. This
can be achieved by using the derivation formula '

1 1
(u)"2F, p, 2 ——;3——;u

with

(1 —x )(1—x+ih)
(1+x )(1+x+ib )

We have found it convenient to transform further the
latter hypergeometric function, which leads to the follow-
ing expression for 83(+b ):

3(1—x+ib, )

2 x'(2 —I/x )4 (1 —x )(1+x ) (2+id, )3

1 1=p(u ) '2F& p+1, 2 ——;3——;u (Alo) 1 1X F 1, —1 ——;3——;Q2 1 X X
(A13c)

Then, by again using the contiguity relation Eq. (A8), one
has

6 J(p, p') = A 2+Bz(+5)+Bz( —b. ), (Al 1)
6p @=1

where

Replacing the expression Eq. (A12) for the derivatives in

Eq. (A3) for the transition amplitude, one obtains the for-
mulas, Eqs. (11) and (12), in the text. It should be noted
that this expression is not unique and that given the
numerous existing relations between contiguous 2F, func-
tions, many equivalent formulas can be derived.
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