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Improved algorithms have been developed to simulate both off-lattice and hypercubic-lattice
diffusion-limited aggregation (DLA) in dimeiisionalities d in the range 2 d ~8. For the two-
dimensional cases using off-lattice clusters containing up to 10 particles, we find that the effective
fractal dimensionality is essentially independent of cluster size s for clusters containing more than a
few thousand particles and has a value of 1.715+0.004 (significantly higher than the mean-field
value of —,'). For d =3, 4, and 5, it appears to be possible to approach quite close to the asymptotic
(s-~ ~) regime and the effective fractal dimensionality for off'-lattice clusters is equal to the mean-
field value given by D =(d + 1)j{d+ 1) (within a few tenths of 1%). For d ~ 5 we were not able to
approach near enough to the asymptotic limit to make an accurate estimate of the limiting fractal
dimensionality. However, the simulation results are consistent with the mean-field theory predic-
tions. For d ~ 4 the effects of lattice anisotropy can be seen in the overall shapes of the clusters and
the dependence of the cluster radius of gyration on s. For d ~ 5 clusters containing 10' sites are still
in the fluctuation-dominated regime and the dependence of Rg on s is essentially the same for both
off-lattice and hypercubic-lattice models. For d =2 the effective value of v, which describes how the
width of the active zone grows, increases with increasing cluster size and approaches a value of
1//1. 715.

INTRODUCTION of Tokayama and Kawasaki lead to the result

Since the introduction of the Witten-Sander' model for
difFusion-limited aggregation (DLA), considerable in-
terest has developed in a wide variety of nonequilibrium
growth and aggregation models. Some of this work has
been summarized in recent books, conference proceed-
ings, ' and reviews. " ' The Witten-Sander DLA
model is still of considerable interest because it provides a
basis for understanding a broad range of phenomena in-
cluding random dendritic growth, ' dielectric break-
down, ' electrodeposition, ' ' fluid-fluid displacement in
Hele-Shaw cells and poious media, ' thin-film mor-
phology, and the dissolution of porous materials. In-
terest has also been sustained because the challenge of de-
veloping a theoretical understanding of this simple (to
define) model has not yet been fully met.

Most of our knowledge concerning the structure of
DLA clusters has come from computer simulations. Ex-
cept for d =2, where a significant effort has gone into the
development of eScient algorithms, most of this
knowledge is based on quite-small-scale simulations.
(However, for d =3 an effective fractal dimensionality
quite close to 2.50 has been obtained from about a hun-
dred 50000-site clusters grown on a cubic lattice. ) For
d ~4 only a few clusters containing up to 10000 particles
or sites have been generated.

The availability of estimates for the fractal dimen-
sionality of DLA for d =2—6 (Refs. 1, 30, and 31)
stimulated the development of several mean-field
and position-place renormalization-group models. In
particular, the mean-field theories of Muthukumar and

D (d) =(d +1)/(d + 1),

(8+Sd )/(6+5d) (d ~5. 1)

(8 —4d +d )/(d —2) (d ~ 5. 1) .

(2a)

(2b)

Except for d =2 where both mean-field theories give re-
sults that seem to be well outside the range of large-scale
simulation results for off-lattice DLA (or for lattice mod-
els in the regime where fluctuations dominate the effects
of lattice anisotropy) which indicate that D (2) = l. 71
+0.005, the simulation results are not accurate enough
to unambiguously distinguish between Eqs. (1) and (2).
However, the results obtained from Eq. (1) are in better
agreement than those obtained from Eq. (2) for d = 3.

In recent years a variety of new theoretical approaches
to DLA have been developed and a new mean-field
theory has been developed and extended to a variety of
nonequilibrium growth processes more or less closely re-
lated to DLA. Because of this increase in theoretical
activity, we were motivated to improve the reliability of
the simulation results so that a more meaningful cornpar-
ison with new theoretica1 predictions could be made.
Our objective was to reduce the statistical uncertainty for

where D(d) is the fractal dimensionality for an embed-
ding space or lattice with a Euclidean dimensionality of
d. In the rest of this paper we will describe this estimate
for D as DMF and refer to it as the mean-field value.
Hentschel obtained a different result from his mean-
field theory:
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d = 3—6 by an order of magnitude and, at the same time,
reduce the uncertainty associated with finite-size effects
by generating about 100 clusters each containing about
10 particles or sites using both hypercubic-lattice and
off-lattice models. In addition, we wanted to obtain re-
sults for d =7 and 8. We were not interested in generat-
ing record-size clusters since this would permit us to gen-
erate only a few clusters for each model. The numbers
and sizes of the clusters were selected as a reasonable
compromise between reducing uncertainties due to sta-
tistical and finite-size effects in view of the available corn-
puter resources (about 2500 h of IBM 3090 computer
CPU time).

Computer models

In the Witten-Sander model for diffusion-limited ag-
gregation "particles*' are added, one at a time, to a grow-
ing cluster or aggregate of particles (or lattice sites) via
random-walk trajectories originating from "infinity. " In
all practical DLA algorithms the particles are actually
launched from a randomly selected position on a hyper-
spherical surface which just encloses the cluster and are
terminated if they either contact the cluster (in this event
the cluster grows by adding the particle at that position)
or move a large distance from the cluster. In the latter
event, a new particle is launched from a randomly select-
ed position on the enclosing hyperspherical surface. In
our case the launching surface has a radius of R,„+5R
and is centered on the original seed or growth site. Here
R „is the maximum radius of the cluster and 5R has a
value of 1.5 —3.5 particle diameters or lattice units de-
pending on the model (smaller values were used for 5R
for larger values of d). The noncontacting-particle trajec-
tories were terminated at a distance of kR,„ from the
center of the growing clusters. k was given a value of 100
for the two-dimensional simulations, at least 10 for the
three-dimensional simulations, and at least 4 for the
four-dimensional simulations. Values for k greater than
or equal to 2 were used for d =5, 6, and 7. For d =8, k
was set to a value of —,'for the lattice models and v 3 for
the off-lattice models. These values for k are quite con-
servative. Values of k much closer to 1 lead to no detect-
able distortions in the structures of the clusters. For ex-
ample, for d =2 values of k as low as 2 seem to give quite
good results. In the most simple DLA algorithms' the
particle trajectories are represented by random walks
with a fixed step length of one lattice unit (or a length on
the order of the particle radius in off-lattice simula-
tions ' '). Using these algorithms, it is not practical to
grow clusters containing more than a few thousand sites. '

Somewhat larger clusters ' ' can be grown by allowing
the particles to take longer steps when they are outside of
the region occupied by the cluster. The key to develop-
ing more efficient DLA algorithms is to also allow the
random walkers to take longer jumps when they are in
the empty region between the arms of the cluster. If the
particle is at the center of an empty hypersphere, then it
will first emerge from the hypersphere at a random posi-
tion on its surface and the random-walk trajectory inside
the hypersphere can be replaced by a single step to a ran-
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FIG. l. Here a particle of diameter do is shown in three lev-

els on the hierarchy of maps used to locate the particles in the
DLA cluster with respect to the mobile particles. This particle
represents a particle that has been just added to the cluster. To
indicate the presence of this particle all four elements in the
highest-level map with sides of length L~ will be "marked. " (b)
shows those elements in the next-lower-level map with sides of
length L, (L, /2) that will be marked and (c) shows those ele-
ments in the lowest-level map that will be marked. If only the
particle shown in (a) was present, a random walker at position
A would be allowed to move by a distance of L2 and a random
walker at position B would be allowed to move by a distance of
Ll. The distance moved by a random walker at position C
would be less than L, and this distance would be determined
from the lower-level more detailed cluster maps.

domly selected position on its surface. Alternatively, if
the particle is at the center of a hypercube, it could be
randomly moved to a position on the hypercube with a
probability given by the Laplacian Green's function.
We elected to use the first approach because of the
difficulty of calculating the Green's function for d-
dimensional hypercubic surfaces with d up to 8.

In order to allow the particle to take large jumps, an
efficient way must be found to obtain a good underesti-
mate of the radius of the largest unoccupied hypersphere
centered on the current position of the particle. Mea-
kin developed an efficient DLA algorithm by using an
underlying lattice to indicate the distance to the nearest
particle or occupied site. Each time a new particle is
added to the cluster, the information on the underlying
lattice is updated in the region surrounding the added
particle. Unfortunately, for most computers, this ap-
proach is restricted to clusters containing up to a few
hundred thousand particles or sites for d =2. For
d =3 and for d =4 the maximum cluster size accessible
to this approach is less than 10 . Since this approach is
not practical for the growth of very large clusters, we
adapted that developed by Ball and Brady. In effect
this approach is equivalent to constructing maps of the
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cluster on different length scales. First the "map" on the
coarsest scale is examined and if it indicates that a jump
on the scale of this map can be taken, the jump is execut-
ed. If, on the other hand, the coarsest map indicates that
the particle is near to the cluster, a more detailed map
containing information about the location of the cluster
in the vicinity of the particle is consulted. This process of
consulting more and more detailed maps continues until
a jump is executed for the lowest-level (most detailed)
map is reached. At this level the map contains informa-
tion about the exact location of occupied lattice sites or it
contains the positions of these sites or particles in a list of
coordinates. This provides the information needed to
determine if the particle has contacted the cluster or if it
can be moved by a small distance (by one lattice unit for
the lattice models or by a distance on the order of one
particle radius for the off-lattice models).

After a particle has been added to the cluster, the maps
in each level of the hierarchy of maps must be updated.
This is illustrated in Fig. 1 for the case of a two-
dimensional off-lattice DLA model. This figure shows a
particle in three levels in the nested hierarchy of maps.
At the largest scale all four quadrants with sides of length
L3 will be "marked" (if they are not already marked) to
indicate the presence of the new particle. At the next lev-
el [Fig. 1(b)] all of the map elements with sides of length
L2 which are intersected by or contained within a circle
of radius do+L2 centered on the center of the particle
will be marked (here do is the particle diameter). At the
lowest level shown in this figure all of the map elements
in the map with elements of size L ] intersected by or con-
tained within a circle of radius do+L, [Fig. 1(c)] will be
marked. The lengths L, , L2, and L3 are related by
L 3 2L 2

=4L
&

~ In order to conserve memory, only the
marked parts of each map are stored.

In the case of the two-dimensional lattice models each
element in the lowest-level map consists of a 5X5 block
of sites represented by a bit map. In the off-lattice mod-
els each element of the lowest-level map is associated
with a list of particle coordinates. After each move, the
position of the particle is examined on successively
lower-level maps (starting at the highest level) until it is
found to occupy an unmarked part of the map on the nth
level and is then moved by the distance L„or the lowest
level of the hierarchy is reached. The eSciency of the al-
gorithms can be improved by going up only one level
after each move has been made.

The details concerning the hierarchy of maps depends
on the particular model and on the size of the clusters
which are required. In the off-lattice models the lowest-
level map elements may contain either the coordinates of
all of the particles whose centers are in those elements or
the coordinates of all of the particles that may be con-
tacted by a particle whose center is in that element. In
the former case particle lists associated with adjacent
lowest-level map elements must be examined which in-
creases the computer time requirements. However, more
stored information is needed for the latter case. In the
case of the off-lattice models care was taken to ensure
that mobile particles were stopped and added to the clus-
ter at the point along a jump at which they first contacted

the cluster. Extensive tests were also carried out to verify
that no accidental particle-particle overlaps occurred.

RESULTS

Two-dimensional DLA

Clusters containing more than 10 sites ' have been ob-
tained using the algorithm of Ball and Brady and an in-
vestigation of the structure of large two-dimensional
square lattice DLA clusters using 4X 10 -site clusters has
already been published. We were unable to improve
significantly on this algorithm and consequently only re-
sults from the off-lattice model are reported here. Prior
to the start of this work almost all of the investigations of
two-dimensional (2D) off-lattice DLA were carried out
using clusters containing 50000 or fewer particles (more
recently a few 250000—particle clusters have been gen-
erated using an algorithm described by Meakin ). Using
the approach described above, a quite large number of
10 -particle clusters was generated. After each 5% incre-
ment in the cluster mass, the radius of gyration R and
the width of the active zone g were recorded (here g is the
variance in the deposition radius).

The dependence of the cluster radius of gyration R on
cluster size s can be described quite well by the power law
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Flax. 2. Dependence of the effective values of the exponents P
and v on the cluster size s obtained from 10 -particle two-
dimensional off-lattice DLA clusters.

for clusters containing more than a few hundred parti-
cles. The effective values of the exponent p and the cor-
responding dimensionality D& were obtained by least-
squares fitting straight lines to the dependence of ln(R )

on ln(s) over 10 growth increments [i.e., for clusters of
sizes s„1.05s, . s2=(1.05) s, ]. Figure 2 shows the
dependence of p on s[(s,s2)' ] obtained from 377 10-
particle clusters. It is apparent from these results that
there is no tendency for the fractal dimensionality D& to
change from the value of about 1.71 obtained from much
smaller scale simulations. For clusters in the size range
10 —10 the result P=0.5830+0.0014
(D&=1.715+0.004) was obtained and for clusters in the
size range 10 —10 the result P =0.5832+0.0014
(D&=1.715+0.004) was obtained. The statistical uncer-
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Here g is the variance in the deposition radius for clusters
of size s. Plischke and Racz measured the exponent v
using quite-small-scale square-lattice DLA clusters and
obtained an effective value of 0.48+0.01. Meakin and
Sander then carried out two-dimensional off-lattice
simulations and found that v increased from a value of
about 0.48 for small clusters to about 0.54 for clusters
containing 25 000—50000 particles. The results shown in
Fig. 2 indicate that v continues to increase with increas-
ing s and reaches a value of about 0.56 for s =10 . This
is consistent with the idea that v~P as s ~ Oc.

The dependence of M (1) on I was also measured where
M (1) is the mass contained within a distance 1 measured
from the cluster origin. For a fractal structure we expect
to find that
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FICs. 3. Estimation of the effective fractal dimensionality D~.
(a) shows the dependence of 1n[l ' 'M(l)] on ln(l) and (b)
shows the dependence of the eftective value of the exponent y
(D }on ln(l}.

tainty ranges given here are 95% confidence limits based
on the variance in the values of P obtained from individu-
al clusters. A much smaller (but completely unrealistic)
estimate of the statistical uncertainties is obtained from
the standard error from least-squares fitting a straight
line to the coordinates (ln(R ) ), ln(s), where (Rg ) is the
mean radius of gyration for clusters of size s. These re-
sults are in excellent agreement with those obtained ear-
lier (P=O. 584) from 1000 50000—particle off-lattice clus-
ters. Figure 2 also shows the dependence of the ex-
ponent v on ln(s) obtained in a similar fashion. Here v is
the exponent which describes the dependence width of
the active zone of g on s:

V

M(1)-l~, (5)

Three-dimensional results

Figure 4 shows a projection of and a cross section
through a 3 X 10 -site cubic-lattice DLA cluster. It is ap-
parent from this figure that lattice anisotropy has a simi-
lar effect on cubic-lattice DLA clusters as it does on
square-lattice DLA clusters. The overall size (about 1000
lattice units) of this cluster is similar to that of a
100000—site square-lattice DLA cluster which has a
more or less diamondlike shape. ' Since a quite large
amount of computer time is required to generate a cluster
of this size (about 9 h on an IBM 3090 computer) more
quantitative results were obtained from smaller clusters.
Ninety-eight 1.25 X 10 -site cubic-lattice clusters and 169
100000—particle off-lattice DLA clusters were generated.

Figure 5 shows the cluster-size dependence of the
effective fractal dimensionality (D&) obtained from some
of these clusters. For both the lattice model and off-
lattice model the effective fractal dimensionality lies close
to the mean-field value of 2.50. For the 482 100000—site
cubic-lattice clusters not shown in Fig. 5 the effective
dimensionality lies in the range 2.495+0.005 for clusters
in the size range 2500~s ~50000 sites. The somewhat
smaller value obtained for the larger clusters is consistent
with the idea that lattice anisotropy reduces the effective
fractal dimensionality. However, it is clear that enor-
mous clusters would be required to reach a value
significantly lower than 2.48. For a cluster with six dis-
tinct arms and a relatively small (interior) tip angle asso-
ciated with each arm the theoretical approach of Turke-
vich and Scher would predict a fractal dimensionality
much closer to 2.0 (exactly 2.0 for a zero tip angle).
Noise-reduced DLA simulations with relatively large
noise-reduction parameters (m = 100, where m is the
number of contacts required for growth) lead to clusters
with an effective fractal dimensionality D& of
2.20—2.25. ' ' The results shown in Fig. 5 indicate that
no practical scale simulations will lead to effective fractal
dimensionalities approaching this range.

Figure 6 shows the cluster-size dependence of the dis-
tance 5R between the cluster center of mass and the orig-
inal seed or growth site. It is apparent that 5R grows
much more slowly with increasing cluster size than does
the overall cluster size (represented by the radius of gyra-
tion in Fig. 5). The dependence of M on s was deter-

where the exponent value provides a measure (D ) of the
fractal dimensionality. Figure 3(a) shows the dependence
of ln[M(l)/l' '] on ln(l) obtained from approximately
400 10 -particle off-lattice clusters. Similarly, Fig. 3(b)
shows the dependence of the effective value of the ex-
ponent y in Eq. (5) on ln(1). The results shown in Figs.
3(a) and 3(b) are consistent with the idea that in the
asymptotic limit (I~ Oc, s ~ Oo ) D =D& —l. 715.

With the algorithms used for this work about 2.5 h of
CPU time on an IBM 3090 computer is required to grow
a 10 -particle 2D off-lattice cluster. About 1000 h of
CPU time was required to obtain the results shown in
Figs. 2 and 3.
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mined for all of the models discussed in this paper. In all
cases 6R grows much more slowly with increasing cluster
size than the cluster radius.

The dependence of the width of the active zone g on
the cluster mass or number of particles s was measured in
all of our simulations. Figure 7(a) shows the dependence
of the exponent v (which describes how g grows with in-
creasing cluster size) on the cluster size. These results
were obtained from 86 350000—particle oA'-lattice clus-
ters. Figure 7(a) also shows the dependence of the
effective value of P on In(s). For clusters containing more
than about 2000 particles v increases with increasing
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FIG. 5. Dependence of the eft'ective fractal dimensionality
D~ obtained from 98 1250000—site cubic-lattice DLA clusters
(solid curve) and from 169 100000—particle oft'-lattice three-
dimensional DLA clusters (dashed curve).
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FIG. 6. Growth of the distance 6R between the cluster center
of mass and the cluster origin obtained from the 169 3D off-
lat tice clusters.
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FIG. 4. (a) shows a projection of a 3X10 -site cubic-lattice
DLA cluster and (b) shows a cross section through the cluster
origin along the plane of projection.

FIG. 7. Dependence of the width of the active zone g on
cluster size for three-dimensional DLA clusters. {a) shows the
dependence of the effective exponents P and v obtained from the
350000—particle off-lattice clusters. (b) shows the cluster-size
dependence of v and g obtained from the 1.25 X 10'-site lattice-
model clusters.
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cluster size but has only reached a value of about
0.35 —0.36 for the largest cluster sizes. Figure 7(b) shows
similar results obtained from the 85 1.25 X 10 -site clus-
ters (diff'erent from those used to obtain the lattice model
results shown in Fig. 5). In this case also there is also an
increase in v with increasing cluster size and the results
are consistent with an asymptotic value of about 0.4.

The dependence of M(l) on t was also measured for the
350000—particle off-lattice clusters and a value of about

2.485+0.005 was obtained by D from the off-lattice
clusters.

Results from four-dimensional simulations

Clusters containing up to 10 sites were grown using
the four-dimensional lattice model. This is two orders of
magnitude larger than the largest previously reported 4D
clusters. ' ' Figure 8 shows two projections and a cross
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FIG. 8. Two mutually perpendicular projections and a cross section through a 10 -site DLA cluster grown on a four-dimensional
hypercubic lattice.
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FIG. 9. Growth of the radius of gyration for the four-

dimensional DLA clusters. (a) shows the dependence of Rg /s~
(P*=1/3.40) on the cluster size obtained from the off-lattice
clusters and (b} shows the cluster size dependence of the
effective fractal dimensionality DI3 for both lattice-model and
off-lattice clusters.

section through one of these clusters. For clusters of this
size the effects of the hypercubic-lattice anisotropy are
quite apparent.

Figure 9(a) shows the dependence of in(R /s ) onP

ln(s) obtained from 69 100000—particle off-lattice DLA
clusters. Here /3* is the mean-field-theory value for 13

(1/3.4). The results shown in Fig. 9(a) show that the
effective value for the fractal dimensionality D& is close
to 3.4 (DMF) for clusters containing more than about
1000 particles. Figure 9(b) shows the cluster-size depen-
dence of D obtained from the off-lattice clusters andp
from 340 100000—site clusters grown on a four-
dimensional hypercubic lattice. The lattice-model simu-
lations lead to clusters with an effective fractal dimen-
sionality that rises to a value close to 3.38 with increasing
cluster size. For the off-lattice clusters a slightly higher
value (quite close to 3.40) is obtained. Results were also
obtained from 46 300000-site lattice-model clusters. The
effective fractal dimensionality obtained from these clus-
ters was also quite close to 3.40 (DMF ). Overall, these re-
sults are consistent with the idea that D=3.40 for off-
lattice model clusters. The effective fractal dimensionali-
ty of the lattice-model clusters may be slightly reduced by
the effects of lattice anisotropy.

Five- and six-dimensional simulation results

Using the improved algorithms described above we
were able to grow clusters to a size of 100000 particles or
sites for d =5. Eighty-two off-lattice clusters and 241

FIG. 10. Cluster-size s dependence of the effective fractal
dimensionality D& obtained from the Ave-dimensional (a) and
six-dimensional (b) DLA models. In (a) the horizontal dashed

13line corresponds to D,ff
=

3

lattice-model clusters were grown to this size. For d =6
clusters were grown to a size of 100000 sites using the
lattice model and 47 clusters were grown to a size of
70000 particles using the off-lattice model. The depen-
dence of the effective fractal dimensionality D& on the
cluster size is shown for all of these models in Fig. 10.
For d =5 both models give results which are quite close
to the mean-field value of —", (4.333. . . ). For d =6 the
effective values obtained for D& are distinctly larger than
the mean-field value of —", or 5.285. . . . For d =6 a clus-
ter containing 100000 sites is still quite small (the radius
of gyration is about 9.2 lattice units) so that the effective
fractal dimensionalities shown in Fig. 10(b) may not be
close to their asymptotic (s ~ ~ ) values.

Seven- and eight-dimensional models

No previous results exist for d )6. Twenty-eight
70000—site clusters were generated using the 70 lattice
model and 30 25000—particle clusters were grown using
the off-lattice model. For d =8 the clusters were even
smaller. Using a lattice model 56 10000—site clusters
were grown and 38 4500-particle off-lattice model clus-
ters were grown. Figure 11 shows the results obtained
for the size dependence of the effective fractal dimen-
sionality from the 7D 1attice model and SD oF-lattice
model. In both cases the effective fractal dimensionality
starts out at a value much smaller than the mean-field
value DM„=6.25 for d =7 and DM„=7.222. . . for
d =g) but increases with increasing cluster size and has
reached a value substantially in excess of the mean-field
value for the largest cluster sizes.
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tini""'""" is also in good agreement with the simulation
results.

Although the origin (growth site) of two-dimensional
DLA clusters appears to be at the center of anomalously
high density, the results shown in Fig. 3 indicate that
the average density p(r) at a distance r from the origin
decreases asymptotically according to the power law

p(r) —r (7)

C(r)-r (8)

where the exponent a has a value of d —D. Although we
did not measure p(r) for other positions in the cluster, the
two point density-density correlation function C(r) also
has the form
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FIG. 11. Cluster-size dependence of the effective fractal
dimensionality D& obtained from the seven-dimensional lattice
model (a) and eight-dimensional (b) off-lattice model for DLA.

DISCUSSION

D = 1+&2/2 = 1.707. . .

for two-dimensional off-lattice DLA. This value for D is
4 standard deviations from the simulation results. Be-
cause of the possibility of finite-size effects, even for very
large (10 particles) clusters, this theoretical prediction is
not inconsistent with the simulation results. Similarly,
the value of 1.7099. . . obtained theoretically by Naga-

By developing improved DLA algorithms for d ) 2 and
using quite large amounts of computer time, we have
been able to substantially reduce the uncertainties con-
cerning the effective dimensionality D& describing the re-
lationship between the overall cluster size and its mass.
For d =2 our results for off-lattice DLA are in good
agreement with earlier work. The fractal dimensionality
of 1.715+0.004 obtained from the off-lattice simulations
is 25 standard deviations larger than the mean-field value
[DMF= —', (Refs. 34, 35, and 47)] and about 17 standard
deviations below the value of 1.75 obtained by Hentschel
using a different mean-field theory. Assuming a dia-
mondlike shape, Turkevich and Scher obtained a fractal
dimensionality of —, from the strength of the singularity in
a Laplacian field gradient normal to the surface of a dia-
mond with the boundary condition /=0 on the diamond
surface and /=1 at infinity. (Here P is the scalar field
which obeys the Laplace equation V =0. ) However, the
diamondlike shape does not seem to be appropriate for ei-
ther square-lattice or off-lattice DLA. Using related
ideas Ball has presented arguments leading to the result

and it appears that the exponents a and n' are equal in
the limit r ~ ~ . For d = 3, 4, and 5 the off-lat tice simu-
lations give values of D& very close to the mean-field
value of (d +1)/(d+1) and for d =3 and 4 the
hypercubic-lattice simulation gives effective values for D
that are about 2.48 and 3.38, respectively (just below the
mean-field values of 2.50 and 3.40). This is probably an
effect of lattice anisotropy (the effects of lattice anisotro-
py on the overall cluster shapes can be seen clearly in
Figs. 5 and 8). The mean-field theory of Hentschel [Eq.
(2)] leads to the prediction D =2.524 for d =3 and
D =3.385 for d =4. For d = 3 our simulation results are
in better agreement with the predictions of the mean-field
theories, but the value for D obtained from Eq. (1) is
closer to the simulation results than that obtained from
Eq. (2). For d =4 the simulation results and both mean-
field theories [Eqs. (1) and (2)] are in quite good agree-
ment.

For d & 6 the effective fractal dimensionality at first in-
creases quite rapidly with increasing cluster size, reaches
a broad peak and then decreases very slowly towards its
asymptotic value. For d =6 the effective fractal dimen-
sionality increases with increasing cluster size and
reaches a plateau at a value slightly larger than the
mean-field value. It seems most probable that in this case
the effective value for D& would decrease as it does in the
other cases. The position (cluster size) of the peak in D&
increases with increasing d and from the results obtained
for d &6 we would expect, for clusters containing about
10 particles, that D& would have a value close to its
maximum. Similarly, for d =7 and d =8 the effective
value of D& increases continuously with increasing s
reaching a size substantially larger than the mean-field
value for the largest attainable cluster sizes. If these re-
sults were taken at face value, they would indicate that
d —D decreases with increasing d. This seems unlikely in
view of the fact that d —D increases with increasing d for
small d and that the asymptotic (d ~ ~ ) value for D is
d —1 (Refs. 58 and 59) for off-lattice DLA. Overall,
these simulations indicate that the fractal dimensionality
is distinctly different from the mean-field values of —,'[Eq.
(1)] and —' [Eq. (2a)] for two-dimensional off-lattice DLA
but for d ~3 the simulation results are consistent with
the mean-field predictions of both Eqs. (1) and (2). How-
ever, Eq. (1) seems to give values for the fractal dimen-
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sionality that are in slightly better agreement with the
simulation results. In addition, Eq. (1) is consistent with
the idea that D~d —1 as d~ao (Refs. 58 and 59),
whereas Eq. (2) indicates that D ~d —2 as d ~ co.

The dependence of the e6'ective fractal dimensionality
on cluster size is almost the same for small off-lattice- and
lattice-model clusters with sizes up to s' where s' has a
value of about 1000 for d =2, 10000 for d =3, and ) 10
for d ~4. Beyond this size the eAects of lattice anisotro-
py become more important than the statistical fluctua-
tions for the numbers of clusters which we were able to
grow. It would be possible to distinguish between the

oft-lattice and lattice models by growing much larger
numbers of smaller clusters for d ~ 3.

Although the results given here are consistent with the
predictions of Eq. (1) for d )2, they should not be regard-
ed as an a%rmation of the mean-Beld theories used to ob-
tain this equation. At this stage Eq. (1) should be regard-
ed as a successful empirical formula which gives values of
D that are in good agreement with the simulation results
for d + 3 and the theoretical asymptotic limit (D ~d —1

as d ~~ ). A comprehensive theory for DLA should
be capable of explaining the failure of Eq. (1) for 1 =2 as
well as its success for d )2.
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