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Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model
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A state of a composite quantum system is called classically correlated if it can be approximated
by convex combinations of product states, and Einstein-Podolsky-Rosen correlated otherwise. Any
classically correlated state can be modeled by a hidden-variable theory and hence satisfies all gen-
eralized Bell's inequalities. It is shown by an explicit example that the converse of this statement is
false.

I. INTRODUCTION

Consider a composite quantum system described in a
Hilbert space A =W'I3|A' . An uncorrelated state of this
system is given by a density matrix W [i.e., an operator
WE%(A) with W~O and tr W=l] in A of the form
W= W'8 W for two density matrices W'EX(&; ). This
is equivalent to saying that the expectation value
tr( WA, A2) for the joint measurement of observables
A'PX(&') (i =1,2) on the respective subsystems always
factorizes, i.e.,

tr( WA ' A )=tr( W A 'I3I I)tr(W 1 A )

=tr( W'A ')tr( W A ) .

Such uncorrelated states can be prepared very easily by
using two preparing devices for systems 1 and 2, which
function independently and yield the states 8 ' and 8
respectively. Then the factorization property means that
if the measuring devices described by A ' and A also
operate independently, we are simply conducting two
separate experiments at the same time and the classical
multiplication rule for probabilities applies.

One way of preparing correlated states is the following:
Suppose that each of the two preparing devices has a
switch with settings r = I, . . . , n, say, and that with set-
ting r the device i produces systems in the state 8'„'.Sup-
pose we have also a random generator, which produces
numbers r =1, . . . , n with probability p„.We can com-
bine these three devices into a new preparing apparatus
by the following prescription: In each individual experi-
ment one first draws a random number r& Il, . . . , n I.
The switches of the two preparing devices are then set ac-
cording to the result ~ Clearly then, the expectation of a
measurement of observables A ' and A will be

g p„tr(W„'A ')tr( W„A ) =tr( W. A 'S A )

r =1

with the density matrix W=Q"„ tp„W„'W„,i.e. , W is a
convex combination of product states. Expectation
values for this state 8'no longer factorize. The physical
"source" of these correlations is the random generator,
which can be chosen as a purely classical device. There-
fore, we shall call a density matrix classically correlated if

it can be approximated (e.g. , in trace norm) by density
matrices of the form (1). States that are not classically
correlated have been called FPR correlated' to emphasize
the crucial role of such states in the Einstein-Podolsky-
Rosen paradox, and for the violations of Bell's inequali-
ties (see below). EPR correlation and classical correla-
tion are defined as a property of the density matrix 8'.
Since there are usually very diA'erent ways of preparing
the same state W; classical correlation does not mean that
the state has actually been prepared in the manner de-
scribed, but only that its statistical properties can be
reproduced by a classical mechanism.

The terminology "classically correlated" is further
justified by the observation that in classical probability
theory all states have this property. States in probability
theory are given by probability measures, and the state of
a composite system is given by a probability measure on a
product space. Like every probability measure this can
be represented as a limit of convex combinations of mea-
sures concentrated on a single point. And since the point
measures on a product space are product measures, we
conclude that any probability measure on a product
space can be represented as a limit of convex combina-
tions of product measures, i.e., is classically correlated in
the above sense. In the wider context of C*-algebraic
quantum theory, it is known that if one of two subsys-
tems of a composite system is classical (i.e. , has a commu-
tative observable algebra), all states of the composite sys-
tem are classically correlated.

For any set of correlations determined in an experi-
ment one can raise the question whether these correla-
tions can be described within a purely classical "hidden-
variable" theory. Such a theory is based on some proba-
bility space (fl, X,M), called the space of hidden vari-
ables, consisting of a O. -algebra X of subsets of 0 and a
cr-additive normalized measure M on X. For any measur-
ing device A with possible outcomes v, one demands the
existence of a measurable response function
ro~F~(v, to)ER interpreted as the probability that the
outcome v is obtained in an experiment with known value
coEA of the hidden variables. Therefore the response
functions must satisfy F„(v, )~F0 and Q,E~(v, co)=1
for every cuEA, where the sum is over all possible out-
comes of the measurement of A. A hidden-variable mod-
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el for some set of correlations is then given by a probabil-
ity space and a collection of response functions such that
the probability in an experiment with a measuring device
A on system 1 and a device B on system 2 for obtaining
the result v on A and simultaneously the result p on B is
given by the expression JM(dc@)F„(v,~)F~(p, co)

Any hidden-variable model can be extended to mea-
surements with continuous outcome parameters, and can
be modified to a "deterministic model" in which the
response functions take only the values 0 and 1. There-
fore we shall stay with the above simple definition. The
existence of a hidden-variable model is exactly the hy-
pothesis of the usual derivations of Bell's inequalities,
the "locality" of the theory being expressed by the fact
that the response function for 3 is independent of B and
vice versa. It is known that while these inequalities are
necessary conditions for the existence of a hidden-
variable model, they are not sufficient. On the other
hand, the set of correlations admitting hidden-variable
models is a convex set, and as such is completely de-
scribed by some set of linear inequalities. We shall refer
to any one of these inequalities as a (generalized) Bell s in-
equality. Despite some partial results in this direction,
no efficient procedure for obtaining all generalized Bell' s
inequalities is known.

An interesting question is, then, whether or not the
correlations described by a quantum state of a composite
system admit a hidden-variable model. The measuring
devices of system 1 are then represented by observables,
i.e., by Hermitian operators 3 HX(&') with spectral
resolution 3 =g aQ„i.e., eigenvalues a, and eigenpro-
jections P„.We then say that a state WE%(&'8 & ) ad-
mits a hidden-variable model if there are a probability
space (Q, X,M) and response functions, defined for all
Hermitian 3 =g„a+Eg(&') and B=gJ3„g„
ES(& ) with discrete spectrum, such that for all 3, B,
v~ and p,

J M(des)F„(v,co)Fii(p, co)=tr( W P,SQq) . (2)

We claim that all classically correlated states admit
hidden-variable models, and hence satisfy all Bell inequal-
ities. This can be proven quite simply for convex com-
binations of products as in (1). We then take
0= [1, . . . , n I, M( [r ] )=p„,F„(v,r) =tr( W„'P„),and
define Fii analogously. Then Eq. (1) implies Eq. (2). We
omit the somewhat technical, but straightforward ap-
proximation arguments needed to extend this result to all
classically correlated states.

We conclude that every state violating some general-
ized Bell s inequality, i.e., any state not admitting a
hidden-variable model, cannot be classically correlated,
i.e., is EPR correlated. The well-known experiments
demonstrating a violation of Bell's inequalities can thus
be taken as direct experimental evidence for the existence
of EPR correlated states. The vital importance of such
states for quantum theory is further underlined by the
fact that they are automatically generated by an interact-
ing time evolution. To be precise, any unitary time evo-
lution, which takes aH classically correlated initial states
again to classically correlated states, necessarily factor-

izes into the product of two separate time evolutions.
Consequently, the ground state of an interacting system,
which is often especially easy to prepare, is usually not
classically correlated. The states of a relativistic
quantum-field theory are even more universally EPR
correlated, since any state of finite energy (in particular,
the vacuum) violates Bell's inequalities for suitable space-
like localized observables.

Since any state violating some generalized Bell's in-
equality is EPR correlated, one might conjecture that the
converse holds, i.e., that every state admitting a hidden-
variable model is classically correlated. This conjecture
is indeed true for pure states of a composite quantum sys-
tem, given by unit vectors in &'W . (This can be
demonstrated by constructing violations of Bell's inequal-
ities using techniques from Ref. g). The purpose of this
paper is to show that this conjecture is false for general
mixed states. We shall do this by explicitly constructing
hidden-variable models for a family of quantum states,
which are not classically correlated.

II. CONSTRUCTION OF THE EXAMPLE

There are two main difficulties in constructing an ex-
ample of a state with nonclassical correlations, which
nevertheless admits a hidden-variable model. The first is
to prove that some explicitly given density matrix
WC%(&'& ) is not classically correlated, i.e., that
there is no way in which it can be represented as a convex
combination of product states. The second difficulty is to
verify Eq. (2), which is an infinite system of equations, in-
dexed by the set of all observables. We shall circumvent
both difficulties by considering only states of very high
symmetry. To be specific, we take &'=-&~=—I(:d as Hil-
bert spaces of equal finite dimension d. The states con-
sidered are those given by density matrices W satisfying
( UIS U) W( U" C3 U*)= W for all unitary matrices U on
(t. . We shall call such states U Uinvariant for short.

Before embarking on the construction of the hidden-
variable model, it is useful to establish some facts about
such states. The first is that any operator 3 commuting
with all unitaries of the form U(3 U is a linear combina-
tion of I and the "flip" Vdefined by Vpg=Py. This
is seen most easily by considering matrix elements
(y„y, Acp~I3y~) for some basis y, , . . . , yd. Since
for all r there is a unitary operator taking g, to —g, leav-
ing the other basis elements fixed, the matrix element
vanishes unless [n, m I

= [p, q I. Since any permutation
of the basis can also be realized unitarily, 3 depends only
on the three matrix elements with n = m =p =q,
n =pWq=m, and n =quip =rn. These are linked fur-
ther by considering for U rotations in a two-dimensional
plane, making 3 depend on just two complex parameters,
which can be taken as the coefficients of 1 and V, or as
trA and tr( A V). For density matrices W tr W—= 1 is
fixed, so that the set of U(3 U invariant states is
parametrized by the single parameter 4:=tr( WV). Since
V = I and V*= V we have —1 ~4 ~ 1. Note that 4=1
corresponds to a state with Bose symmetry and += —1

corresponds to a state with Fermi symmetry. In terms of
N the state is described by
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W=(d —d) '[(d —i') I+(d4 —1).V],
tr( WA 8 ) =(d —d ) '[(d —N)(tr A )(trB )

(3a)

+(dilly —1)tr( AB )], (3b)

F,„(v,co) =F„(v,Uco) . (4)

The simplest choice for such functions is the one we shall
adopt for system 2:

F (pi,ice)=(co, Q„co) where 8= gP„Q„.
Note that for any positive integrable function p:Q~R
there is a unique positive operator p= fM(den)~co&(co~

such that

M dc@ p cu F& p, co =tr p.

This will allow us to compute the integrals (2). A charac-
teristic feature of the response functions F~ is that

where we have used the formula tr( V. A gB ) =tr( A 8 ).
There is a linear projection P mapping arbitrary densi-

ty matrices W to ( U U)-invariant ones by
P( W) = J d U( U U ) W( U* U* ), where d U denotes the
Haar measure of the unitary group of (I . This integral
does not have to be calculated explicitly, since its value
depends only on the two parameters trP W=tr W and

tr[(PW) V]= f dUtr[W(U*@ U*)V(UC3 U)]=tr( W'V) .

Suppose now that W is classically correlated. Then so is
each (USU)W(U*U*), and hence, by approximating
the integral by suitable Riemann sums, P W is represented
as the limit of convex combinations of classically corre-
lated states, and is hence itself classically correlated.
Thus in order to determine the set of all ( US U)-
invariant, classically correlated states we only have to
compute the possible values of 4=tr( W'V) for classically
correlated W. For a product state W = W' W we find
that C&=tr( WV) =tr( W'. W ) is positive. Hence the
same is true for convex combinations and for norm limits
of such states, i.e., for all classically correlated states.
Moreover the extremal value 4& =0 (respectively, N= 1) is
attained by taking W' and W to be orthogonal (respec-
tively equal) pure states. In short, a (UI3 U)-invariant
density matrix is classically correlated if and only if
4&=tr( WV) is positive.

For constructing the hidden-variable model we shall
utilize the U(3 U symmetry by choosing the space 0, as
the unit sphere [coCC"~~~co~~= 1 I and M as the unique
probability measure on 0, invariant under all unitary ro-
tations of the sphere. The response functions F„ofan
observable A =g„a+„willbe taken to depend only on
the family [P, I of orthogonal projections, but not on the
eigenvalues a, or the labeling of the projections P .
Moreover, it sufBces to consider only the case where each
P, is one dimensional, since for projections of higher di-
mension the response function can be chosen as a sum of
response functions of one-dimensional projections. The
symmetry under unitaries of C" will be imposed by the re-
lation

Fii(p, n) depends only on Q„,but not on the remaining
projections in the spectral family of 8. It is vital for our
construction that the choice of response functions F~ for
system I does not have this property. Suppose to the
contrary, that F„(v,co)=f(P„cu)depends only on P .
Then for each fixed co the map P~f (P, co) is additive on
families of mutually orthogonal projections. Hence (as-
suming d ~ 3) by Gleason's theorem there is a density
matrix W such that f(P, co)=tr(W P). Then Eq. (2)
holds for the density matrix W= fM(dao) W S ~co) (co~,
but this state W is explicitly represented as an average of
product states and is thus classically correlated. We note
in passing that the reason not to settle for the simplest
case d =2 in the present paper was exactly to exclude the
suspicion that the result is a spurious e6'ect due to the
failure of Gleason's theorem for d =2.

Using only Eqs. (4) and (5), we can reduce the calcula-
tion of all the integrals in Eq. (2) to the computation of a
single integral. By the choice of F~ there exists, for each
A and v a positive operator F„(v)such that

M dao F~ v, co F~ p, cu =tr F„v. (6)

It remains to construct a family of response functions
F„(v,co) satisfying (4), for which 4 becomes negative.
Thus we have to make the integral (7) as small as possible
under the constraints Fz(v, co) ~0 and ggz(v, co)=1 for
all cu and all A. Since for every co and every A these con-
straints single out a convex set in R", we expect that the
smallest values of + is attained for response functions
taking only the values 0 and 1. This suggests the follow-
ing choice:

1 if (co,P cu) ( (co,P„co)for all vip
0 if ( co, P„co) & ( cu, P„co) for some pWv,

Using the Ud invariance of M, we find

tr( UF„(v)U*.Q„)= fM(dao)F„(v,co)(co, U*Q„Uco )

= fM(des)F„(v,U*co)(co, Q„co)
= fM(des)F „,(v, ~)Fii(p, n))

=tr[F „,( ).Q„].
Since this holds for all one-dimensional projections Q„,
we find UF„(v)U*=F „«(v). In particular, P„(v)
commutes with all unitaries commuting with A, that is to
say it has a representation P„(v)=Q„A(v,p)P„.Since
F„is not to depend on the labeling of the projections P„,
we conclude that A, (v, p) depends only on whether or not
v=p. Hence F~(v)=A, ,P„+A&I for some A, „A2CR,
which are independent of A. Since QP„(v)= I we must
have k, +d A, 2

= 1. Hence for computing all P„(v) it
suffices to compute the integral (6) with Q„=P,for
which the right-hand side of (6) is A. , +A,2. Comparing
Eqs. (6) and (3) we find that Eq. (2) holds with 4& deter-
mined by

4= —1+(d +d ) fM(de)F„(v,co)(co,P co) .
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Note that we have left F„(v,m) unspecified at all points
where ( co, P,, co ) is the minimum of the numbers
(cu, P„co),but not the unique minimum. However, since
this set is of measure zero, it will not contribute to the in-
tegral (7) anyway, and we may choose on this subset any
measurable function satisfying the constraint. We have
written Eq. (8) in such a form that the covariance proper-
ty postulated in Eq. (4) is manifest. Moreover, F„is in-

dependent of the labeling of the P, , in the sense that it
only depends on ( cu, P,,cu ) and the set of numbers
( co, P cu ), but not on their ordering.

Since with Eq. (8) the integrand in Eq. (7) is a function
of the d numbers (cu, P„co),we need to compute the
probability distribution of these special random variables
with respect to the measure M. Choosing a basis g„,in
which the P„arediagonal, we have (co, P„co)=x„+y„,
where co=+ (x„+iy„)P„.A function f depending only
on u„(co)=x„+y„hasexpectation value

J M(der)f(u, (co), . . . , ud(co))

Xf(u, (co), . . . , u~(co))

where N denotes a normalizing factor, and we have sub-
stituted dx„dy„=—,'du„dcp„and have integrated out the
angle variables g„.We thus obtain a probability measure
on the simplex (generalized tetrahedron)
t(u&, . ud)~g„u„=1 I, which is just the restriction of
the Lebesgue measure on the hyperplane g„u„=1 to the
simplex. Remarkably, this measure depends on the
choice of the complex number field for the Hilbert spaces

For the real and quaternion fields, which ax-
iomatic quantum mechanics has been forced to consider'
as well, we would obtain an additional factor (Q„u„),
with o.= —

—,
' for the reals, emphasizing the corners of the

simplex, and o, = 1 for the quaternions, emphasizing the
center.

With this probability distribution of ( co, P„co), the
computation of the integral in (7) can now be made
without pencil and paper. After the above-mentioned
substitution, we have to compute an integral over a regu-
lar simplex S with d vertices, embedded into R" ', and
which is best imagined to "stand" on the face with u, , =0,
so that u represents the "vertical" coordinate. By
definition of the measure, the total volume of S is 1. The
subset in which u u„for all p is again a simplex S'
with the same base, whose apex is the barycenter of S,
which is at height u =d '. The volume of S' is d
since S is the disjoint union of d pieces congruent to S'.
We have to compute the integral of u over S'. This is

equal to the height of the barycenter of S', which is d
times the height of S, which is equal to d, multiplied
by the volume of S', which is d '. Hence the integral isd, and we obtain our final result

4'= —1+d (d+1) . (9)
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The positive zero of this expression, considered as a poly-
nomial of d, is at the inverse golden ratio, hence 4 (0
and, in fact, N~ ——' for all d ~2. Hence we have con-
structed a hidden-variable model for a Ud-invariant state
[see Eq. (3) with @ given by Eq. (9)], which is not classi-
cally correlated since N(0. A surprising aspect of Eq.
(9) is that for large d, 4 approaches —1, which is as far
removed from the classically correlated states N ~0 as is
compatible with positivity of 8. Note also that there is
no a priori reason why a hidden-variable model should
give correlations compatible with a quantum-mechanical
positivity condition. This is shown by a strange
phenomenon happening for large values of N: If one
chooses Fz(v, co) = (co,P„cu) instead of (8), one obtains a
hidden-variable model for the Ud-invariant state PR'
where 8' is a pure state with wave vector y(sg. As
shown above this is the classically correlated state with
&=+1. Suppose, however, that we define I'~ as in Eq.
(8)„butwith reversed inequality signs. Then it is easy to
see that the integral in Eq. (7) is larger than for
Fz(v, cu)=(co, P cu). Hence we obtain a hidden-variable
model for a "state" with 4) 1 (e.g. , @=—,

' for d=2).
Thus the correlations are given by (positive) expressions
of the form tr( W.P Q„) as in Eq. (2), but W is not a
positive operator. Thus there must be some positive
operator CCM(A'& ) with tr( WC) (0, and the only
"paradox" here is that by the positivity of all
tr( W.P„SQ„)this C cannot be a positive linear combina-
tion of products of positive operators, i.e., C cannot be
classically correlated.

Finally, we would like to mention a possible extension
of this result. Up to now we have identified quantum-
mechanical observables with decompositions I =gg „of
the identity into mutually orthogonal projections P .
However, for many purposes this concept turns out to be
too narrow, " and it is useful to allow, instead of projec-
tions, arbitrary positive operators G, with I =Q,G,
where tr( WG„) is interpreted as the probability of the
outcome v of some measuring device described by the
decomposition I G„I.In order to also represent observ-
ables of this type in the hidden-variable model one would
have to define the corresponding response functions Fz,
and compute the integrals of Eq. (6) also for these. Due
to the lack of symmetry, it is a much more difficult task
than for the projection valued case to do this explicitly.
Even the case d=2 seems to involve some nontrivial
geometrical estimates. We conjecture, however, that the
existence of hidden-variable models for some nonclassi-
cally correlated states can be demonstrated also in this
wider setting.
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