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We apply a perturbative method, which takes into account the interaction between different open
channels, to calculate total and partial widths of atomic resonances in the framework of the Fesh-
bach formalism. The method requires the calculation of elastic, e.g. , noncoupled open-channel
wave functions, as in the case in which only one channel is open, thus avoiding the solution of com-
plicated systems of coupled differential equations. As an illustration we have calculated energy po-
sitions, total and partial widths of "S'(3lnl) resonant states of He, C +, N' ", and 0"+. Our results
show that the accuracy reached with this simple approach is comparable to other different non-
Feshbach methods and that neglect of the coupling between different open channels can be con-
sidered as a reasonable approximation to obtain total and partial widths.

I. INTRODUCTION

Resonant states of atomic systems have received in-
creasing attention from the theoretical point of view in
the past few years. ' ' The simplest atomic resonances
are those of doubly excited states of I' ' heliumlike
heavy ions whose energy positions lie in a single continu-
um of the I' "+ ion. These are populated in collisions
of the type

I ++ He I**' '++ H ~I' " + He- +e
for Z & 5. When Z ~ 5, more than one continuum chan-
nel is open, and the I' "+ ion eventually produced
after the electron emission can be in an excited state. In
this case, the existence of several ionization thresholds
considerably complicates the treatment, specially in the
calculation of resonance widths. Besides, most authors
do not calculate the contributions of the different con-
tinua to the width, while knowledge of these partial
widths is very useful when the corresponding branching
ratios are indispensible to interpret double capture experi-
ments. ' ' ' Furthermore, in recent years some experi-
mental groups have begun to measure partial widths of
resonant states of He-like ions. ' ' In some cases, they
have used some theoretical inputs to interpret their ex-
periments and their results are still far from being
definite.

The Feshbach theory of autoionizing resonances has
furnished the theoretical background of a great number
of atomic calculations for doubly excited states above one
single ionization threshold. When more than one ioniza-
tion limit is involved, applications are scarce, mainly due

to the computationally involved implementation of the
method. Very recently, Martin et a/. "' have proposed
an easier way to calculate closed-channel functions by
making use of a parallelism between the Feshbach-
O' Malley theory for the treatment of doubly excited
states, ' and the Phillips-Kleinman nonlocal pseudopo-
tential. This method has been shown to be very useful,
especially when more than one ionization threshold is
open, and to provide energy positions that are in fairly
good agreement with experimental results and the
theoretical data obtained with other more ellaborate ap-
proaches.

On the other hand, in the Feshbach method one should
solve a complicated system of coupled differential equa-
tions for each open channel in order to obtain the corre-
sponding partial widths. The sum of such partial widths
easily provides the total width of the resonant state con-
sidered. In practice, one usually uncouples these open-
channel equations by neglecting the interaction between
different channels. '"' ' The resulting continuum
functions are then the solutions of the problem in a zero-
order approximation (they are exact solutions in the limit
Z = oo). In the case of large nuclear charges (Z =5—10),
screened Coulomb functions may be used to represent the
continuum. Therefore, it seems reasonable to use the
static exchange approximation (which goes beyond the
Coulomb approximation) to represent the continuum in
the case of a large-Z charge. This approximation has
provided total widths that are in good agreement with re-
sults obtained with other different methods. However,
in spite of this approximation being largely used before,
the corrections due to the coupling between different con-
tinua has never been quantitatively evaluated.
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The aim of this paper is to test the "uncoupled" ap-
proximation by explicit inclusion of the interaction be-
tween the different open channels and to provide a simple
method to improve it without completely destroying this
simple "uncoupled" picture (Sec. II). As benchmark sys-
tems to apply our method, we have chosen the ' S'(3lnl)
r sonant states of He, C +, N +, and 0 + (Sec. III).
Atomic units are used throughout unless for total and
partial widths which are given in electron volts (eV).

II. THEOR Y

We consider the problem of two electrons moving in
the field of a charge Z. We have to solve the Schrodinger
equation

(H —E)4=0,
where Vf is the nonrelativistic Harniltonian of the system.
In the Feshbach formalism, the resonant wave function
4 is written as a sum of a closed-channel Q+ and open-
channel P%' components

O' =P%'+ Qq',

equivalent since

ps~Ls~ C Lsn- E ps E r
n n ~ n n

and that the method of Martin et al. provides the
closed-channel wave function with a much more reduced
computational effort.

B. Open-channel wave functions

The open-channel wave functions P,, (E) are the solu-
tions of

E P /XP—P JfQ— . QAP Q, , (E)=0 (9)
1

E —Q&Q

with asymptotic conditions that depend on the physical
situation considered (electron-atom scattering, photoion-
ization, etc. ' '); v represents the set of quantum num-
bers that identify a particular open channel. The total
width is

(10)

where P is a projection operator such that asymptotically
PC=4, and Q =1 P. For a—two-electron system the P
operator has the form '

where

r„,=2~1&+„Q&PIg+ ) I' for E =E„'
P =P, +P, —P, P2,

where P, is a one-electron projection operator given by

P, = y P;= y ly.(., ))&y.(r, )

(3)

(4)

is the v partial width of the resonant state N„".The
shift is given by

oE,", =

+ATE„,

, ,

where
for a series of autoionizing states converging to the N, + 1

threshold, P is the hydrogenic function for the electron
i, and a represents the set of quantum numbers (nlm).

l&~" iQ~PI&. ) 1'
6E„,=P dE' .

(E„" E')— (13)

A. Closed-channel wave function

In the standard Feshbach method, the closed-channel
wave function N„ is the eigensolution of the projected
equation

(QA'Q E,", )QN„'=0—, (5)

Vps: HAP

where E,", is the unshifted energy of the resonant state, I
and S are the total angular momentum and the total spin,
respectively, and ~ is the parity. When E„"is over more
than one ionization threshold [N, ) 1 in Eq. (4)), the solu-
tion of Eq. (5) is extremely expensive if a basis set of
nonhydrogenic orbitals is used. Instead, we use the pseu-
dopotential Feshbach method of Martin et al. "' which
replaces Eq. (5) by

( ~+ V EPS)PS@LS~ 0PS n n

where VPs is a pseudopotential defined by

+ X=-(ri r»
k

(14)

where 6 is the symmetrization (for singlets) or antisym-
metrization (for triplets) operator, 12 is the angular

l2momentum of the continuum orbital F and

The symbol indicates integration over continuum
states and summation over bound and resonant states
below the N, threshold, and P the principal value of the
integral.

A general expansion of g, must include all possible
channels with the same symmetry as the closed-channel
wave function N„,i.e. , with the same L, S, rr (and Ml,
M, ) quantum numbers. Therefore, for a given set (L, S,
~, MI, Ms) we can write a general expansion for P+ of
the type

1V,

g g B[gr(r&)Fr (r2)g&
& (r, , r~)]

y=-1 l,

and M is a large, but otherwise arbitrary, positive num-
ber. It has been shown'''- that both standard and pseu-
dopotential Feshbach methods are mathematically ln l, m,

&l, lcm, mzlLM) Y& '(r, )YI -'(r, ), (15)
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:-(r, , rz) ~ 0
"1 'Z

(16)
P y&P 0- &&0

(24)

[:-(r„rz)can be bound and/or resonant states below the
N, threshold]. The summation over l2 includes only the
angular momenta of the continuum electrons that are
consistent with the total angular momentum L. In the
following, we will suppress the quantum numbers L, S,
and rr in both @„and1i), . The insertion of Eq. (14)
in Eq. (9) leads to a system of coupled differential equa-
tions. In practical calculations, however, one usually re-
stricts the expansion (14) to a single term: ' "' '

S,, = (P,,(r)lF' ~(r) Yi"(r))

If we impose

(26)

It can be easily shown that the eigensolutions g of the
uncoupled Schrodinger equation (18) verify

y )E) gP APyJ'E))=E+ g O)S~„), )25)
y yea

where Sy is the overlap

/+i ——X i(E)=B[P (ri )F' (r& )d& I (r, , r2)] (17)
Sy -0 for @X', (27)

which is a generalization of the static exchange approxi-
mation used in the one open-channel case. This implies
the solution of one uncoupled Schrodinger equation for
each channel al:

(E PHP —)y i=0, (18)

where P is given by

P =P +P —P Pa 1 2 ] 2 (19)

The use of these approximate continuum functions in
Eqs. (10) and (11)has provided total widths I

„

that are in
reasonable agreement with results obtained with other
theories. Here we neglect the term PHQ (E—Q&Q) 'Q&P in Eq. (9). The inliuence of this term
has been initially discussed and calculated by Bhatia and
Temkin. Tl-e very small corrections due to this term
involve couplings between open and closed channels; it
seems reasonable then to neglect its contribution com-
pared to P HP& terms which couple states with eventu-
ally large density overlap within the open-channel wave
function (e.g. , 2ses and pep).

The theory we develop below will be applied in the
next section to the study of the ' S' symmetry. In this
particular case, the summation over l2 contains only one
term for each P,, orbital. Therefore, to identify each open
channel is no longer necessary to maintain the index l in
Eqs. (17) and (18). Then to simplify the notation we elim-
inate the index l in the following. For symmetries
different from S', our development is still valid by adding
such index whenever an open-channel wave function is
involved.

Using Eqs. (3), (4), and (19), we can write the projected
Hamiltonian P&P as

(y (E)lyi3(E)) =0(S pSp ) =0 . (28)

A simple analysis shows that the contribution of V2 and
V, to the first-order correction of the g wave functions
is zero, since they involve terms 0 (S &) with a&f3 and
0(S &S „)with aW/3 and y&cr, respectively. Then, the
remaining Vi term is the only one responsible for the in-
teraction between different open channels and the equa-
tion (9) can be written

E —g P,, 'HP, , P (E)= g P HP~f (E) . . (29)

Using the Lippman-Schwinger equation, we can formally
write

f+(E)=y (E)+ lim E —gP, , HP, , +is
e- 0+

y

X g P„HPgf (E) . (30)

the y (E) wave functions can be considered as zero-order
functions in a perturbative treatment of PAP [Eq. (20)]
with a zero-order Hamiltonian Ho [Eq. (21)]. We will
show in the next section that, in practice, Eq. (27) is al-
most directly verified by the g obtained in a static ex-
change approximation and one does not need to impose
such orthogonality condition. Therefore, we consider
that the g functions are orthogonal for different chan-
nels

P&P:Hp + V] + V2 + V3

where

A first-order treatment in V] leads to
(20)

l/i+(E) =g (E)+ lim E —g P AP +is
@~0+ y y

y

Ho = g Pr&Pr,
r

(21) X g P H'P y (E) (31)

Vi=g g P &Pij, (22)
(for incoming waves the sign in i c is the opposite one, but
that will not change our final result). Inserting in Eq. (31)
the projection operator P:

V = —gg g P,P);WP. yy y P ~P&—P~,
a P y&P 13 r&P

(23)

P=y )'. ly, (E ))&~,(E )ldE,

we obtain, after some algebra,

(32)
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&x (E') P WP Ix (E) &P+(E)=y (E)+ g P dE'
(E E—') x.(E')—t~ y &x.(E)IP.~P. lx.(E) &x.(E) .

aWa
(33)

Then the partial width I
„

is up to first order in V, :

=2~I&~„IQ~P.lx.(E) &I'

, &x.«') IP.~P. lx.«) & & +.IQ~P. Ix.(E') &+4~ 4„Q&P x (E) g P $
dE'

(E —E') (34)

where I
„

is the partial width obtained in the "uncou-
pled" approximation and I ','' is the correction derived
from the interaction with channels different from o, .

C. Discretization of continuum wave functions

To obtain both I „andI '„"we have to know only the

x (E) functions for all the accessible open channels. We
have solved Eq. (18) by using the discretization method of
Maci'as et al. ' . In this procedure, for each open chan-
nel a, the wave function g is written, in the static ex-
change approximation, as a sum of configurations g~&

which are symmetry and spin projected of the form

normalized x (E) function in a finite domain up to a nor-
malization factor'

X (E„)=p''(E„)X(E„), (36)

where p is called density of states and is given by

p (E„)= 2

E.+i —E.-i (37)

The resonant condition E =E„"in Eq. (11) is achieved
through an inverse interpolation procedure with respect
to a common scaling factor introduced in the STO basis.
Using Eq. (34) and the quadrature

XJ,"el y.(», )(f, (», )a,', (r, , r, )],
2

(35) (E;, E;,)—dE'~
p(E;)

(38)

where N k is the normalization factor and (f~k are radial
parts of Slater-type orbitals (STO's) whose exponents fol-
low a geometrical sequence. The discretized function
X (E) obtained in this way coincides with the 5-

the final expression for the partial width is

1 „=2'(E)l&@„IQMP Ix (E) & I', (39)

&x.(E; ) IP.~P. Ix.(E) & & @„I Q~P. Ix.(E;)&r'„".=4~p.(E)& e„lgmP. lx.(E) & g
gWa i I

EWE,

(40)

The same quadrature (38) permits the evaluation of the
shift

I & ~. I Q~P. Ix.«, » I'

(E" Ei,)—
III. RESULTS AND DISCUSSIQN

We have solved Eq. (6) for the ' 5'(3lnl) resonant
states of He, C +, N, and 0 + in a representation of
configurations built from the basis set of STO's given in
Table I. We have used M =500 in the pseudopotential of
Eq. (7) and we have checked that our results are invariant
in the range 100~M~1000. We have also tested the
convergence of our results by increasing the basis set,
what did not change the resulting energies, and verifying
that the weights of f configuration in the closed-
channel wave function are always ~0.01 (except for the
5'S' state of He which is 0.05), so that contributions of

higher-l quantum numbers cannot be expected.
The STO basis sets used in the solution of the open-

channel equations (18) with the discretization procedure
of Sec. II C are also given in Table I. For the S' symme-
try there are three open channels: 1s es, 2s es, and 2p ep.
The 2pep continuum function is exactly orthogonal to the
1ses and 2ses ones. In Table II we give the overlaps be-
tween the 1ses and 2s es wave functions for N + at
E =E„'.These results show that the orthogonality condi-
tion (28) is very well verified by our discretized continu-
um functions obtained in the static exchange approxima-
tion.

In Table III we present our calculated energies (with
and without shift) for the first nine 'S'(3lnl) and first six
S'(3lnl) resonant states of He, C +, N +, and 0 +, to-

gether with previous results of Ho and Callaway,
Oberoi, Herrick and Sinanoglu, Ormonde et al. (for
He), Ho, Abu-Salbi and Callaway' (for C + and 0 ),
Ho and Oza et al. ' (for N +), obtained with difFerent ap-
proaches. Our unshifted energies for singlet and triplet
states of He are in very good agreement with the results



COUPLED CONTINUUM PERTURBATIVE FESHBACH APPROACH. . . 4249

TABLE I. Basis sets used in the calculations of the closed- and open-channel wave functions. The
radial part of each STO is defined as P„=AI„r e ' . For the open-channel wave functions, ao
represents the first exponent in the even-tempered sequence aj =a+ 1, with j =0, 1, . . . , N —1 and
P= 1.6, of each Pk configuration [see Eq. (35)].

I =0
Closed-channel wave function

/=1 I=2

1 —3

4—6
7—9
10
11

I

3
I

5
3

20
I

10
I

ll

2 —3

4—6

7—9
10

I

3
I

5
3

20
I

10

3—6

7—9

I

3
I
5
3

20

4
I

5

3
20

Configurations included: all possible nin'I with n' (7
(138 configurations for singlets and 118 for triplets)

1ses
ao

I
2
I
4

Open-channel wave functions
2$ ES

a0

9 2 9
9 4 I

Configurations included: all possible g, q [Eq. (35)]

2p Ep

a0

TABLE II. Overlaps &yi„,(E)~y2„,(E)& for N + between
our discretized yI„,and y2„,continuum wave functions at the
resonance energies E =E„'with n = 1 —10.

1'S'
2 ISe

3 ISe
4'S'
5 ISe

6 ISe

7 'S'
8 ISe

9 'S'
10'S'

&x.let &

7.54[—5]
7.21[—5]
6.67[—5]
5.87[—5]
5.73[—5]
5.57[—5]
5.35[—5]
5.29[—5]
5.22[—5]
5.11[—5]

1 'S'
3Se
3Se

4 'S'
5 3Se

6 3Se

7 'S'
8 S'
9 3Se

10 S'

&x.

Imp�&

3.40[—7]
3.39[—7]
3.37[—7]
3.32[—7]
3.32[—7]
3.31[—7]
3.28[—7]
3.27[—7]
3.26[—7]
3.26[—7]

of Oberoi' who used a conventional Feshbach method
and did not calculate the shifts. Our previous results for
the two first 'S' resonances of N + reported in Ref. 25
are slightly improved since the present energies are ob-
tained with a larger basis set. In order to compare with
the results obtained with complex-scaling ' ' or close-
coupling" ' methods, we have also included the energy
shift given in Eq. (41). In this case, the general agree-
rnent is also very good for all systems. The shift is always
very small [=10 for He and =10 for C +, N +, and
0 +): one order of magnitude smaller than the experi-
rnental errors in electron spectroscopy experiments.

In Table IV we show the total widths of these resonant
states calculated in the "uncoupled" approximation (I )

and taking into account the interaction between diA'erent

open channels (I +I "'). These are compared with pre-

vious results. '7' ' ' ' ' For C +, N'+, and 0 + our
(I +I'") values are in excellent agreement with those of
Ho, Oza et al. ' (N +), and Ho and Abu-Salbi and Cal-
laway' (C +, O +). This is very encouraging in view of
the enormous basis set used by Ho ' and the complexity
of the close-coupling calculations. " However, even our
"uncoupled" I widths compare reasonably well to those
results. In fact, Table IV shows that the I '" corrections
are always approximately one order of magnitude smaller
than the corresponding I widths. This last assertion is
also valid for the He atom, although the comparison with
other results for the singlet state is not so impressive as in
the previous case. In this respect, we can observe in
Table IV two major discrepancies for the widths of the
3'S' and 5'S' states. The disagreement for the 3'S' state
(two orders of magnitude) concerns mainly the width re-
ported by Ho and Callaway, since our value is in fairly
good agreement with the width reported by Ormonde et
al. and by Herrick and Sinanoglu. In fact, as pointed
out by Ho this 3 'S' resonant state of He is very unsta-
ble to variations in the parameters of the basis sets in a
complex-scaling calculation. The value of our calculated
width is more similar to that of the 4 'S' state of the oth-
er three ions given in Table IV than to that of their 3 'S'
state. This has been explained by Bachau et al. who
proved that the correlations patterns are exchanged be-
tween the 3 'S' and the 4 'S' states for Z )2.

The origin of the strong discrepancy for the width of
the 5 'S' state of He with the results of Ho and Calla-
way and Herrick and Sinanoglu is not as clear. In the
work of Bachau et al. it is also shown that the 4 'S' and
5 'S' resonances exchange abruptly their character and
properties around Z =2, in fact, when their energies are
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TABLE III. Energies of the first nine 'S' and first six S' resonant states of He, C +, N'+, and 0 +,
which lie above the n =2 threshold. —E: our calculated energies without shift; —(E+5E): our re-
sults including the shift given in Eq. (41); 0: results of Oberoi (Ref. 34); HC: results of Ho and Calla-
way (Ref. 33); HS: results of Herrick and Sinanoglu (Ref. 27); OWL: results of Ormonde et al. (Ref.
35); AC: results of Abu-Salbi and Callaway (Ref. 1); H: results of Ho (Refs. 7 and 36); 0 et ai. : results
of Oza et al. (Ref. 16).

He

1'S
2 lSe

3 lSe

4 ISe
5'S'
6'S
7 ISe

8 lSe

9 'S"

1 3S'
3Se

3'S'
4'S'
5 3S'
6 'S'

—E (a.u. )

0.354 503
0.316450
0.281 510
0.263 503
0.257 663
0.256 161
0.246 610
0.244 376
0.243 909

0.287 343
0.270 364
0.258 163
0.250 034
0.249 009
0.244 819

—(E+6E) (a.u. )

0.353 978
0.316 683
0.281 286
0.262 970
0.256 928
0.256 068
0.246 483
0.244 184
0.243 862

0.287 277
0.270 260
0.258 135
0.249 934
0.248 984
0.244 805

0
0.354 48
0.316 14
0.281 48
0.263 04
0.257 46
0.256 12
0.246 38
0.244 20
0.243 86

0.287 34
0.270 36
0.258 14
0.250 02
0.249 00
0.244 82

0.353 54
0.31745
0.281 15
0.263 50
0.257 37

0.287 28
0.270 28
0.258 13
0.249 96
0.249 00

HS

0.353 71
0.313 69
0.279 83
0.261 34
0.249 21
0.255 13
0.245 67
0.240 00
0.243 17

OWL

0.353 44
0.316 66
0.279 99
0.261 67

0.255 40
0.246 29

0.243 35

—E (a.u. ) —(E+6E) (a.u. )

C4+

AC H

1'Se
2'Se
3'Se
4'Se
5 1Se

6 'Se

7 'Se

8 lSe

9 'Se

1'Se
2 3Se

3 3Se

43Se
5 3Se
63Se

3.714 438
3.564 574
3.289 262
2.911 376
2.816 277
2.695 590
2.569 512
2.518 248
2.457 144

2.937 301
2.873 256
2.766 421
2.578 860
2.540 581
2.487 185

3 ~ 712 520
3.560 424
3.281 642
2.910417
2.814 959
2.692 882
2.569 097
2.517 719
2.455 737

2.937 202
2.873 024
2.765 897
2.578 844
2.540 469
2.486 923

3.7127
3.5619

2.9104
2.8136

2.9373
2.8729

3.7127
3.5624
3.2915
2.9106
2.8163

1 'Se
2'Se
3 'Se

4 lSe

5 ISe
6'Se
7'Se
8 'Se
9 lSe

1 3Se

2 3S"

3 3Se

4 3Se

5 3Se
6'Se

—E (a.u. )

5.109 799
4.931 104
4.601 278
4.002 701
3.888 029
3.739 585
3.525 553
3.463 838
3 ~ 389 342

4.033 775
3.957 938
3.829 738
3.536 804
3.491 131
3.426 510

—( E +6E) (a.u. )

5.107 727
4.926 303
4.592 926
4.001 656
3.886 434
3.736 523
3.525 101
3.463 204
3.387 803

4.033 673
3.957 692
3.829 162
3.536 749
3.491 008
3.426 220

Ns+-

0 et al.

5.1080
4.9275

4.002
3.885

3.524
3.462

4.035
3.958

5.1080
4.9280
4.6042
4.0020
3.8880
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TABLE III. ( Continued).

Oh+

]S»
2'S»
3 'S'
4 1S»

5 'S»
6'S
7 'S»

8 'S»

9 'S»

1 'S»

2 'S»

3 'S»
4-'S»
5-'S»
6-'S»

—E (a.u. )

6.727 362
6.519 716
6.135 493
5.267 600
5.133 265
4.957 001
4.632 681
4.560 484
4.472 697

5.303 841
5.216 213
5.066 666
4.645 845
4.592 776
4.516 926

—(E +6F. ) (a.u. )

6.725 156
6.514 360
6.126 532
5.266 480
5.131 436
4.953 646
4.632 196
4.559 762
4.471 058

5.303 736
5.215 953
5.066 046
4.645 788
4.592 646
4.516 613

AC

6.7254
6.5156

5.2669
5.1301

5.3037
5.2159

6.7255
6.5168
6.1390
5.2669
5.1332

TABLE IV. Total widths of the first nine 'S» and first six 'S» resonant states of He, C, N', and
0 +, which lie above the n =2 threshold. I: our results in the uncoupled approximation [Eqs. (10)
and (39)]; I + I''': our results including interaction between open channels [Eqs. (10), (39), and (40)];
HC: results of Ho and Callaway (Ref. 33); HS: results of Herrick and Sinanoglu (Ref. 27); OWL: re-
sults of Ormonde et al. (Ref. 35); AC: results of Abu-Salbi and Callaway (Ref. 1); H: results of Ho
(Refs. 7 and 36); 0 et al. : results of Oza et al. (Ref. 16).

He

1'S»
2 1S»

3 'S»

4 1S»

5 1St
6'S»
7 1St

8 1S»

9 lS»

1-'S»
2-'S»

3 'S»
4-'S»

5 -'S»

6-'S»

1 'S»
2'S»
3 1S»

4 'S»
5'S»
6 1S»

7 'S»

8 'S»

9 ]S»

1 'S»
2-'S»
3-'S»

4 'S»

5 'S»

6 'S»

0.0970
0.1709
0.0487
0.0573
0.0026
0.0223
0.0257
0.0029
0.0115

0.0010
0.0013
0.0006
0.0004
0.0004
0.0004

1
0

0.1453
0.5012
0.0065
0.0895
0.2619
0.0026
0.0428
0.1268
0.0014

0.0015
0.0046
0.000 09
0.0012
0.0035
0.000 06

0.0800
0.1623
0.0407
0.0561
0.0017
0.0189
0.0251
0.0024
0.0130

0.0008
0.0013
0.0005
0.0004
0.0004
0.0003

0.1298
0.5271
0.0085
0.0832
0.2703
0.0030
0.0403
0.1303
0.0016

0.0013
0.0047
0.000 10
0.0011
0.0035
0.000 07

C4t

0.0816
0.1810
0.0001
0.0639
0.0001

0.0008
0.0013
0.0005
0.0001
0.0003

AC

0.129
0.524

0.082
0.276

0.0013
0.0046

HS

0.083
0.146
0.046
0.037
0.0003
0.023
0.018

0.015

0.129
0.525
0.0078
0.082
0.276

OWL

0.0860
0.2246
0.0478
0.0688

0.0249
0.0297
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TABLE IV. (Continued).

I 0+I (1)I 0 0 et al.

lSe

2 'Se

3 lSe

4 1Se

5 ISe

6 lSe
71Se

g lSe

9 lSe

0.1495
0.5272
0.0061
0.0931
0.2820
0.0025
0.0447
0.1346
0.0013

0.1359
0.5523
0.0078
0.0876
0.2903
0.0028
0.0426
0.1384
0.0014

0.139
0.544

0.133
0.571
0.007
0.088
D.288

0.087
0.30

0.041
0.14

1 'Se
2 S'
3 3S'
4 3S'
5 3Se

6 3Se

0.0016
0.0049

0.0015
0.0049
0.000 09
0.0012
0.0038
0.000 06

0.0014
0.0050
0.000 10
0.0012
0.0038
0.000 07

I 0+I (ll AC

1Se

2 lSe

3 lSe

4 lSe

5 lSe
6'Se
7 lSe

8 'S'
9 lSe

0.1532
0.5482
0.0059
0.0961
0.2976
0.0024
0.0461
0.1405
0.0012

0.1410
0.5723
0.0074
0.0913
0.3057
0.0026
0.0442
0.1437
0.0012

0.136
0.579

0.136
0.569
0.0069
0.090
0.305

0.095
0.313

1 3Se

2 S'
3 3Se

4 S'
5 S'
6 3Se

0.0015
0.0052

0.0015
0.0052
0.000 09
0.0013
0.0040
0.000 06

0.0014
0.0053
0.000 10
0.0012
0.0041
0.000 07

He
0 ( I)

~2pep

1'S'
2 lSe

3 'S'
4 'S'
5 1Se

6 lSe
7'S'
g lSe

9 lSe

5.98[—3]
1.38[—6]
3.61[—3]
6.43[—6]
3.99[—5]
1.73[—3]
2.00[—6]
1.71[—5]
9.05[—4]

—2.40[—3]
—3.99[—5]

2.81[—3]—7.87[—3]—5.71[—4)—2.49[—3]
3.71[—5]—3.38[—4]—8.49[—4]
9.88[—5]—2.28[—4]

6.75[—2]
2.53[—2]
3.39[—2]
9.33[—3]
4.33[—6]
1.53[—2]
4.03[—3]
8.74[—5]
7.92[—3]

2.36[—2)
1.45[—1]
1.12[—2]
4.80[—2]
2.59[—3]
5.31[—3]
2. 17[—2]
2.84[—3]
2.67[—3]

—1.74[—2]—6.97[—4]
—6.41[—3]

1.19[—3]—9.41[—4]
—2.64[—3]

1.81[—4]—6.13[—4)
—1.26[—3]

—9.79[—4]
5.02[—5]
1.75[—5]

—4.32[—4]
1.72[—5]
1.29[—6]

—2.09[—4]
—4.74[—7]1 S"

2 S'
3 3Se

4 3Se

5 3Se
6'S'

1.85[—6]
3.49[—12)
1.37[—6]
2.67[—9]
1.67[—9]
8.38[—7]

5.56[—4]
2.39[—4)
3.37[—4]
7.31[—5]
6.44[—5]
2.35[—4]

—6.35[—5]
2.32[—5]—3.79[—5)
2.79[—6]
7.81[—6]—2.28[—5]

4.24[—4]
1.09[—3]
2.57[—4]
3.10[—4]
3.33[—4]
1.38[—4]

—8.36[—5]—3.61[—5]—4.65 [—5]—7.85[—7]
—2.01[—5]—2.47[—5]

4.54[—10]
—3.26[—7]

7.72[—9]—4.99[—9]—1.86[—7]

TABLE V. Partial widths of the first nine 'Se and first six 'Se resonant states of He, C, N', and0, which lie above the n =2 threshold. I '„': our results in the uncoupled approximation [Eq. (39)];
I „'''. corrections due to the interaction between open channels [Eq. (40)]. Numbers in square brackets
denote powers of 10 by which the preceding value should be multiplied.
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TABLE V. (Continued).

0r l sos
(l)rjses

C4+
0r„„ 0

rzpep

1 'S'
2'S
3 'S'
4'Se
S lse
6 lSe

7 lse

8 'S'
9 'Se

1 'S'
2 3se

3 'Se
4 3se
s's
6's

1.08[—2]
1.22[—7]
1.69[—4]
8.16[—3]
1.84[—6]
1.00[—4]
4.03[—3]
3.49[—6]
6.29[—5]

4.60[—6]
1.30[—8]
1.06[—7]
4.22[—6]
9.87[—9]
1.05[—7]

5.09[—4]
—3.59[—6]

1.76[—5]
3.91[—4]

—1.06[—5]
1.61[—5]
1.98[—4]

—1.01[—5]
1.08[—5]

—1.47[—7]
3.10[—9]
2.99[—9]

—1.42[—7]
3.36[—9]
3.46[—9]

6.62[—2]
7.61[—2]
3.52[—3]
3.96[—2]
3.80[—2]
1.53[—3]
1.78[—2]
1.85[—2]
8.47[—4]

5.99[—4]
9.84[—4]
3.73[—5]
4.97[—4]
7.32[—4]
2.76[—5]

—1.48[—2]
3.30[—2]
5.69[—4]

—7.50[—3]
1.35[—2]

—5.90[—5]
—3.30[—3]

6.00[—3]
—8.93[—5]

—7.20[—5]
1.35[—4]
2.72[—6]

—5.28[—5]
8.57[—5]
5.79[—7]

6.38[—2]
4.25[—1]
2.84[—3]
4.17[—2]
2.24[—1]
1.01[—3]
2.10[—2]
1.08[—1]
5.25[—4]

8.53[—4]
3.59[—3]
4.97[—5]
6.92[—4]
2.73[—3]
3.25[—5]

—1.18[—3]
—7.09[—3]

1.39[—3]
8.28[—4]—5.00[—3]
4.35[—4]
5.89[—4]—2.49[—3]
2.14[—4]

—3.98[—5]
—4.66[—5]

9.58[—6]
—2.58[—5]
—4.07[—5]

6.13[—6]

0r„„ N+
0r„„ 0

r2pep
(l)

r2pep

1 'Se
2'S
3'S
4's
s 's'
6 lse
7'S
8 lse

lse

1 3se
2'S
3 3S'
4's"
S 'Se
6 'S'

l. 12[—2]
3.85[—7]
1.80[—4]
8.56[—3]
3.27[—6]
1.15[—4]
4.23[—3]
5.62[—6]
7.06[—5]

4.88[—6]
1.69[—8]
1.21[—7]
4.54[—6]
1.33[—8]
1.26[—7]

5.74[—4]
—6.70[—6]

9.77[—6]
3.99[—4]

—1.44[—5]
1.35[—5]
1.99[—4]

—1.28[—5]
9.29[—6]

—1.17[—7]
1.74[—9]
1.48[—9]

—1.17[—7]
2.52[—9]
2.32[—9]

6.59[—2]
8.21 [—2]
3.70[—3]
3.98[—2]
4.17[—2]
1.64[—31
1.78[—2]
2.01 [—2]
8.74[—4]

5.96[—4]
1.07[—3]
4.06[—5]
5.00[—4]
8.09[—4]
3.01[—5]

—1.40[—2]
3.21[—2]
5.53[—4]

—7.03[—3]
1.31[—2]

—8.07[—5]—3.07[—3]
5.70[—3]

—1.01[—4]
—6.55[—5]

1.32[—4]
2.78[—6]—4.85[—5]
8.47[—5]
5.58[—7]

7.23[—2]
4.45[—1]
2.27[—3]
4.47[—2]
2.40[—1]
7.55[—4]
2.26[—2]
1.14[—1]
3.58[—4]

8.96[—4]
3.84[—3]
4.96[—5]
7.39[—4]
2.97[—3]
3.19[—5]

—1.76[—4]
—7.05[—3]

1.13[—3]
1.17[—3]

—4.77[—3]
3.45 [—4]
7.19[—4]

—2.32[—3]
1.60[—4]

—3.41[—5]
—4.31[—5]

8.95[—6]
—2.22[—5]
—3.82[—5]

5.68[—6]

0r„„ 0

Oe+
0

r2pep
(l)

r2pep

1 'S'
2 lse
3 'Se
4 lse
s 'Se
6's
7 'Se
8 'Se

9 'S'

) 3Se

2 3se
3'S
4 3se

s S'
6 3se

1.16[—2]
6.87[—7]
l.89[—4]
8.88[—3]
4.75[—6]
1.27[—4]
4.39[—3]
7.73[—6]
7.62[—5]

5. 10[—6]
2.05[—8]
1.35[—7]
4.78[—6]
1.66[—8]
1.44[—7]

5.52[—4]
—8.97[—6]

4.19[—6]
3.92[—4]

—1.70[—5]
1.13[—5]
1.94[—4]—1.45[—5]
7.97[—6]

—9.45[—8]
6.33[—10]
3.88[—10]

—9.80[—8]
1.77[—9]
1.44[—9]

6.60[—2]
8.71[—2]
3.88[—3]
4.01[—2]
4.48[—2]
1.74[—3]
1.79[—2]
2.13[—2]
8.85[—4]

5.94[—4]
1.14[—3]
4.32[—5]
5.02[—4]
8.72[—41
3.21[—5]

—1.31[—2]
3.09[—2]
5.22[—4]

—6.59[—3]
1.26[—2]

—9.98[—5]
—2.86[—3]

5.36[—3]
—1.10[—4]
—5.99[—5]

1.28[—4]
2.75[—6]—4.47[—5]
8.23[—5]
5.10[—7]

7.56[—2]
4.61[—1]
1.89[—3]
4.72[—2]
2.53[—1]
5.76[—4]
2.38[—2]
1.19[—1]
2.43[—4]

9.32[—4]
4.04[—3]
4.95[—5]
7.77[—4]
3.16[—3]
3.14[—5]

4.33[—4]
—6.83[—3]

9.38[—4]
1.35[—3]—4.49[—3]
2.77[—4]
7.81[—4]

—2.14[—3]
1.19[—4]

—2.98[—5]
—3.97[—5]

8.33[—6]—1.95[—5]—3.56[—5]
5.25[—6]
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represented as functions of Z, they present an avoided
crossing in that region. Therefore, any small deficiency
in the basis sets used in the calculations would appreci-
ably affect the widths of these states of He, especially in
this case where two states with quite different widths are
mixed. On the other hand, the 5 'S' state is very unstable
in complex-scaling calculations with respect to small
variations in the rotation angle; also, the set of
configurations used by Herrick and Sinanoglu is too res-
trictive since it only includes 3ln, l configurations.

Finally, in Table V we present the partial widths I
obtained in the "uncoupled" approximation and the cor-
responding I '" corrections due to the interaction be-
tween the different open channels. In this case, there is
neither theoretical nor experimental data available to
compare with. It is apparent from Table V that, in gen-
eral, for C, N, and 0 the I '" corrections are
much smaller than the zero-order approximations I' ',

especially for triplet states. For singlet resonances, these
corrections are slightly more important: in the most un-
favorable cases, they do not exceed 35% of 1 (the very
small widths are excluded in this analysis). For the He
atom, we can state the same qualitative argument, al-
though the previous percentage would have to be slightly
increased in some isolated cases.

IV. CONCLUSIONS

We have presented, in the framework of the Feshbach
formalism, a simple perturbative method to calculate to-
tal and partial widths of atomic resonances above more
than one ionization threshold that takes into account the
interaction between different open channels. We have
shown that the accuracy of the total widths obtained in
this way is comparable to that provided by other methods
such as complex scaling or close coupling. Besides, it
provides directly partial widths that would be hard to ob-
tain with other different approaches. Its computational
implementation is very easy when it is combined with the
pseudopotential Feshbach method of Martin et al. "'
which avoids solving a projected Schrodinger equation in
the closed-channel space, and the discretization pro-
cedure of Macias et al. '' is used to calculate the open-

channel components. Indeed, for a given basis in our
pseudopotential approach, the set of dielectronic in-
tegrals does not depend on the number of ionization
thresholds involved, so that computer times to obtain the
resonance wave functions are the same than those re-
quired for the calculation of bound states with such a
basis. This is no longer true when projection of nonhy-
drogenic basis sets is used in the standard Feshbach ap-
proach. Moreover, the evaluation of partial and total
widths with both our discretization and perturbative
methods require computer times which are comparable
to those involved in the evaluation of widths for resonant
states which lie above only one ionization threshold.
This computer saving is larger when our comparison is
carried out with other nonFeshbach methods.

We have analyzed the neglect of the interaction be-
tween different open-channels in the calculation of the
continuum wave functions. The relative errors originated
by such an approximation are always small for total and
partial widths. The physical reason is that transition am-
plitudes for electron-ion inelastic scattering are always
small at resonance energies as compared to the unity am-
plitudes corresponding to the initial condition in one
specific channel. This also shows the validity of the static
exchange approximation in the case of several open chan-
nels. The method proposed to calculate corrections to
this "uncoupled" approximation has been easily applied
in the framework of the discretization method of Maci'as
et al. '' The resulting corrected widths are comparable
to those obtained through much more ellaborate methods
from the computational point of view. Our work illus-
trates the efficiency of the Feshbach method to give ac-
curate energies and widths of resonant states which lie
above several ionization thresholds.
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