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Approximate solution of the hydrogenlike atoms in intense laser radiation
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The exact solution to the minimally coupled Dirac equation is called the Volkov solution. An
operator R is developed, which when applied to the free-electron state function gives us the Volkov
solution. We apply the operator to the exact solution of the hydrogen atom to find that it is the ap-
proximate solution of the hydrogen atom in the presence of intense laser field. The restriction on
the laser intensity is that the Kibble parameter c&, which is the ratio of the electron's quiver energy

Eq to its rest mass energy Eo, is small compared to l.

I. INTRODUCTION

Volkov' is credited with obtaining the exact solution of
the Dirac electron in an external electromagnetic field.
Later, the exact solution for the minimally coupled
Schrodinger equation and the Klein-Gordon equation
was used extensively to explore a host of quantum pro-
cesses such as bremsstrahlung. However, the results
obtained by using the minimally coupled Klein-Gordon
equation were found to be not much different from those
obtained using the minimally coupled Schrodinger equa-
tion. Simultaneously, a few researchers used the Volkov
solution for similar processes to find out if there were any
differences. It was discovered that the difference be-
tween the results when the minimally coupled
Schrodinger equation's solution was used compared to
when the Volkov solution was used is large when the in-
tensity of the laser field is sufficient to make the quiver
energy E of the electron comparable to its rest mass en-

ergy Eo.
The problem of photoionization of the hydrogen atom

in a laser field has been tackled by many authors' and
they have investigated the phenomenon in the context of
multiphoton absorption. Its importance in the field of
laser fusion research lies in the fact that photoionization
of atoms is the first important process which will occur
when the laser pulse hits the DT-fuel pellet. The use of
the Volkov solution in this field was first done by Kel-
dysh, " who assumed the electron's final state in the
bound-free photoelectric effect to be the solution of the
minimally coupled Klein-Gordon equation. Unfortunate-
ly, the effect of the laser field on the atom was completely
ignored. But, if the laser radiation is intense enough to
affect the electron's final-state interaction, then there is a
possibility that its effect on the electron's bound state
could be important.

In our present analysis, we attempt to obtain a solution
of the hydrogen atom in an intense laser field such that
we can use the solution to calculate the cross section for
the photoionization of the electron from the quasibound
to quasifree state. In Sec. II we develop the theory of a
new operator R which when applied to the free-electron
Dirac solution gives us directly the Volkov solution of an
electron in a laser field. We then apply this operator R to
the exact solution gH of the minimally coupled Dirac

equation for the case of the hydrogen atom and investi-
gate the final resulting wave function it+. It is found that
so long as the Kibble parameter cz, which is the ratio of
the electron's quiver energy E to its rest mass energy Eo,
is small the wave function f~ is the solution of the hy-
drogen atom in an intense laser field. ' This is an impor-
tant solution and its use will be explored in a future pa-
per.

II. THE EXACT SOLUTION
OF THE MINIMALLY COUPLED DIRAC EQUATION

We treat the electron relativistically to take into ac-
count the relativistic effect of the laser field. We use the
Lorentz-Heaviside units' with A=c=1 and the metric
g""=(1,—1, —1, —1). The laser beam can be represent-
ed by a classical monochromatic field, the amplitude of
which is

A„=(0, A)= Aocos(k. x),
where

(2.1)

k„=(ko,k)= ~k~(no, n), (2.2)

and the gauge is E-k=0. The exact solution for the elec-
tron in the intense laser field 3„ is given by the Volkov
state"

e+, =(m IE, )' 1+ (y )n( yA) u, e
2n p;

—i(p,. x —S, )

ut. u, =/E, //m, (2.4)

and

S;=(2n p )
' J [2ep; A —(eA) ]dy . (2.S)

The subscript i indicates that the incident electron and
the y are the usual Dirac matrices. ' The expression (2.3)
is an exact solution of the minimally coupled Dirac equa-
tion.

(2.3)

where u; is a spinor satisfying the normalization condi-
tion
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III. APPROXIMATION SOLUTION
FOR THE HYDROGEN ATOM IN THE PRESENCE

OF AN INTENSE LASER FIELD

Another way of looking at (2.3) is to propose an opera-
tor R defined as

solution gH of the hydrogen atom. In other words, the
state function

(3.8)

is such that

[y.(i B eA—c —e A )
—m]$„=0 . (3.9)

R = 1+ (y n)(y. A) e'
2n 'p

where the operators

S=(2n.P) ' J [2eP A —(eA) ]dy,

and

(3.1)

(3.2)

(3.3)

This is found to be true for the laser intensity range when
the Kibble parameter c.„which is the ratio of the
electron's quiver energy to its rest mass energy, is smaller
than unity. In Eqs. (3.6), (3.7), and (3.9) we are assuming
a bound state for the electron.

We begin by substituting (3.1) and (3.8) on the left-
hand side of Eq. (3.9) to get

One can easily show that the Volkov solution (2.3) can
also be derived from the Dirac solution for a free electron
by operating on it with R, i.e.,

+i R Wfree &

where the free state of the electron is given by

[y.(iB—eAc —eA) —m]X 1+ (y.n)(y. A) e' gH .
2/i p

(3.10)

We first calculate the (i8) term in (3.10) which is given as

(3.5)
T, =(iy rl) 1+ (y n)(y A) e' PH .

2n 'p
(3.1 1)

Hence the operator R as given by (3.1) is important in the
sense that when it operates on the free state it generates a
Volkov state for the electron in an intense laser field.

Suppose that the state fH is the exact solution for the
minimally coupled Dirac equation for a hydrogen atom.
Hence, if Ac = —e /r is the ion's Coulomb potential, then

gH is the solution of the equation

Using the fact that (y n)(y n)=0. and the commutation
rules as given in Ref. 13 in (3.11), we get

Ti =y n/n p[eAe ' iB—(eA) /2e '
]PH

+iy"[1+e(2n.p) '(y n)(y. A)]e '
B„PH .

(3.12)

[y (i'll —eA&}—m]tPH=0 . (3 6) The rest of the terms in (3.10) are combined into

What we want to do next is to show that an approximate
solution g„ to the equation

[y (i B eAc ——e A ) —m]$~ =0, (3.7)

where A„ is given by (2.1), can be obtained by the opera-
tion of the operator R, as given by (3.1), on the exact

T~= y (eA—c+.eA+m)e '
litH

—e(2n p)

X[e(y.A)(y n)(y. A)+e(y Ac)(y n)(y. A. )

+m (y n)(y. A)]e (3.13)

Using the fact that (y A)(y n)(y A)=. —A y. n and
canceling, we get

T=T&+Tz=(eA/n. p)y ne ' iBQH+iy"[I+e(2n. p) '(y. n)(y A)]e '
B„PH

—(ey. Ac+ey A +m)e '
lirH

—e(2n p) '[e(y A&)(y n)(y. A). +m(y n)(y A)]e

Under the approximation that the Kibble parameter cz is much smaller than unity, one can easily show that

iy"e(2n p) '(y n)(y A)e . ' B„QH=ie(2n.p) 'e ' {(y n)(y. A)(y 8)+2[n (y A) —A (y n)]y B{gH .

(3.14)

(3.15)

In (3.15), we have used the commutation rule for the
Dirac matrices and the gauge property of the radiation
field. Further calculations also show that

and

~c~ =e ' eP'Ac (3.17)

e(y A, )(y n)(y A)e

=e ' e [(y.n)(y A)(y Ac)+2~ Ac~(y. A)],
(3.16)

Using (3.15), (3.16), and (3.17) in (3.13), we obtain

T=e ' [e(2n.p) '(y. A)(n r)) —ey. A]PH

—e (n.p) 'i Ac~y. A gH . (3.18)
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Under the nonrelati vistic approximation, n .p =I, and
therefore (3.18) is very small. Hence (3.9} is true under
the approximation that the laser intensity is such that the
Kibble parameter c~ is small compared to unity.

IV. CONCLUSION

applied to the free-electron state gives us the Volkov
state. A logical extension of this is to apply the operator
to the exact solution of the hydrogen atom. We tried and
discovered that the resulting wave function is indeed an
approximate solution for the case when the Kibble pa-
rameter cz is smaller than unity.

As an exact solution for the hydrogen atom and for the
case where the electron is in an intense laser field exists,
we made an attempt to solve for the combined case where
the hydrogen atom is in the presence of an intense laser
field. To this end, we developed an operator which when
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