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Systematic investigations on the structure of the reduced, first-order atomic density matrices and
the "exchange-only" correlation factors within the frameworks of the Hartree-Fock theory, local-
density approximation, and nonlocal-density approximation (NLDA) are carried out. The contours
of suitably averaged density matrices and correlation factors for some closed-shell atomic systems
are plotted and compared, clarifying some of their significant general features. Exchange energies
within the NLDA scheme for these systems have also been computed.

I. INTRODUCTION

An atomic, molecular, or solid-state ¹ lectron bound
system with Coulombic interactions is described by the
Hamiltonian

H=T+ U+ V„,

with the kinetic energy operator T= —
—,
' g; V,', the

electron-electron repulsion U =g; &, 1/r, , and the
external binding local potential V,„,=g, v,„,(r, ). [Har-
tree atomic units, i.e. , A'=m, =

~e~ =1 (numerically), are
used throughout. ]

For such a system, with spin-free interactions, the
ground-state physical properties can be derived with the
knowledge, at most, of the diagonal part of the second-
order spinless density matrix, I '(r, , rz~r&, r~). In gen-
eral, ' the pth order spinless density matrix is defined by

cJ l, ting). . .
&

c7 g
t I I

CT l, CT 2). . . ) (7

f P*(x]&xp». . . x &x +]». . . X&v)

I I t
X%(x)&x2». . . x &x +)». . . xv)

Xdr +, . dr+, (2)

where x is the space-spin index: x=(r, o. ). Within the
Hartree-Fock (HF) theory for closed-shell systems,
I' '(r„r2~ r„r2) can be exactly decomposed as2

21 HF(r, , r2lr, , r2)

=pHF(r& )pHF(r2) —I HF(r) lr2) I'HF(r2Ir) ) &2,

(3)

with the closed-shell HF first-order density matrix I HF
given by

erties may be extracted. The Hartree-Fock theory takes
into account the "exchange-only" correlations among
electrons with parallel spin orientations, from which the
"exchange-only" correlation factor C,„,h(r, , r2) emerges

2~HF(rl r2~rl r2) PHF(rl )PHF(r2)[ 1 +C,".',h(ri rz)l

Thus, from Eqs. (3)—(5),

C,„",h (r &, r2 ) = —
I
I H„(r, l rz ) I

' y[2PHF(r
& )pHF(r2 ) ] .

Here, the u, 's denote the canonical HF orbitals. The
one-electron density p(r) is given by p(r)=1 "'(r~r), in
general. Thus, within the realm of HF, for closed-shell
systems, the status of fundamentality is endowed to
I ~zz(r~r'), through which all ground-state physical prop-

The Hartree-Fock exchange energy is then given by

E,"„",
h
=

—,
' fPHF(rt)g„, h(r&, r&)lr, —r2l '«, «, ,

where

h PHF( 2)C h(rl r2)
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is the "exchange hole. "
The HF "exchange-only" correlation factor C„ch must

satisfy the following properties (C,„",h
——C,„,h ):

nonlocal-density approximation (NLDA) through which
the condition (6c) was restored through the prescription

(9)
lim (6a)

(6b)

withy=kF(ri)lri rzl

kF(r, )=[3~p(r, )]'

and

f C,.h(ri r2)pHF(rp)«, = fg,„,„(ri,r2)«,
= —1, for all r&

lim C,„,h(r, , r2) =C„,h(r, , rq),
p po= const

(6c)

(6d)

In Eq. (9), P is determined at all points ri via

C„",„"p r, , r, —
&2 p r2 dr2= —1.

The density matrix within the LDA regime thus turns
out to be

I'L'oI~(r, ~r2) =p' (r, )p' (rz)[3j, (y)/y ]

where C,„,.h(r, , rz) represents the exchange-only-
correlation factor for a homogeneous electron gas of den-
sity po. The exact form of C„,h(r, , r, ) is known:3'

C,„,.„(r,, r, ) = ——', [j,(yo)/yo] (7)

with yo=kF '~r, —r2~, kF"'=(3w po)' ', and j, , the first-
order spherical Bessel function:

j, (y) = [sin(y) —y cos(y) ] /y

A popular approximation, namely, the local-density ap-
proximation (LDA) consists of using the form (7) even
when the density p(r) is inhomogeneous. This is
achieved by the replacement kF '~kF(r), po~p(r).
Such a simplification leads to a reasonable estimate of the
exchange energy

F.,„,„=—
—,'(3/~)' ' fp (r)dr .

However, such an average description violates the "Fer-
mi (or, exchange) hole condition" (6c); also, the Hermiti-
city of the correlation factor is lost.

In order to better simulate the realistic systems, Slater
introduced a multiplicative parameter a in the approxi-
mation (8). The values of a were chosen to be atom (or
molecule) dependent. Gopinathan et al. devised a
scheme to compute the spin-dependent a values (a&, a& )

for atomic systems, employing a linear approximation to
the spherically symmetric Fermi hole. Within the densi-
ty functional framework, Perdew and Zunger intro-
duced a "self-interaction correction" (SIC) to the local-
spin-density (LSD) approximation (within the Kohn-
Sham regime) so that for the same orbital with a given
spin, the classical Coulomb and exchange-energy contri-
butions were made to exactly cancel each other, which, of
course, happens naturally within the HF theory. Perdew
and Zunger also plotted the exchange hole Q,„,h(ri, rz)
for some chosen values of r, for the case of neon with r2
orientations parallel to r, . They demonstrated that the
shape of the exchange hole for the LSD-SIC case mimics
the corresponding HF one very well, whereas the "LSD-
only" hole very poorly represents it. A study on the
shapes of HF Coulomb' and exchange ' ' ' holes was car-
ried out by several workers.

In their alternative approach to correct for the LSD
approximation, Alonso and Girifalco introduced a

and analogously,

A(ri lr~) =p' "(ri )p' "(r~)[3ji (y )/y ]

One of the attractive features brought about by NLDA is
the following: Starting exclusively from a given density
distribution p(r) = I '' (r~r), NLDA enables one to obtain
satisfactory approximations' '' to the full first-order
density matrix I ' (r~r'). Upon Fourier transformation
of this I '''(r~r') one is able to obtain reasonable (as com-
pared to the HF quantities) estimates of the first-order
density matrix in momentum space' viz. , I ', (p~p'),
and consequently the atomic or molecular momentum
density y(p) = I ",' (p~p), as well as the Compton
profile. ' Qadre et al. ' ' ' further harnessed the
nonlocal-density approximation to extract estimates of
kinetic-energy anisotropies' and the directional Comp-
ton profiles'2 employing the molecular p(r) as a starting
point.

The success of the nonlocal-density approximation
prompts one to compare the density matrices and corre-
lation factors within LDA and NLDA with their HF
counterparts. All the earlier studies carried out" for the
portrayal of I ''' and C„,h employed the following stra-
tegy: Take a fixed point r] and move r2 parallel to r, and
obtain the curves for I '''(r, ~r2) or C,„,&(ri, r2) where ri
and r2 denote ~r, ~

and ~r~~, respectively. Incidentally,
Weyrich' has recently presented contours of I '''(r~r')
using HF quality wave functions for small organic mole-
cules.

In this article, a different and more general approach is
adopted. Different con tours of spherically averaged
I'"(ri~r2)

~
as well as those of C,„,h(ri, rz) are drawn and

compared, on the same footing, with those within the
LDA, NLDA, and HF domains. For such a study,
selected close-shell atomic systems, viz. , Be, Ne, Mg, Ar,
Ca, and Kr are considered. Further, the exchange ener-
gies for these species within NLDA are computed and
compared with the LDA and HF exchange energies.

II. DENSITY MATRICES

For notational convenience I ' "(r
~

r') will be written as
I (r ~r'). For the closed-shell atoms mentioned earlier, the
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density matrix I (r~r') and the "exchange-only" correla-
tion factor C,„,h(r, r') computed within the three regimes,
viz. , HF, LDA, and NLDA, are displayed. For the HF
part, the near Hartree-Fock (NHF) quality wave func-
tions with Slater-type-orbital (STO) bases tabulated by
Clementi and Roetti' were chosen. For the purpose of
portrayal of I H„and C,„",h, we take only the normalized
radial part of the HF orbitals. This is equivalent to the
prescription

—O.ppg

I HF(r~r')= f [I HF(r~r')]e e &. &(42r) 'dQ, (12) —0.62 ——

for spherically symmetrizing the density matrix, whence
the HF exchange-only-correlation factor becomes

—2,5—

Note that the quantities on the left-hand sides of Eqs. (12)
and (13) are spherically symmetric in the primed and
unprimed variables. The figures depict the contours of
I (r~r') and C,„,„(r,r'), i.e., loci of I (r~r')=const and

C,„,h(r, r') =const with the HF description as a standard.
As to the contours of I within the LDA and NLDA
theories, note that the dependences are on ~r~ and ~r

—r'~,
hence, for plotting, we choose r parallel to r'. For the
contours of I HF(r ~r') given in Figs. 1 —4, the following
general salient features are noteworthy.

(1) The contours of I H(Fr~r') are symmetric around
r =r', as they should be, since, in general, I (r~r')
=I *(r'~r) by Hermiticity in conjunction with the reality
of the NHF orbitals, by construction.

(2) The negative-valued contours of I HF ought to be
multiply connected, as they can never cross the line r =r'
because I (r~r)=p(r) ~o.

(3) For small values of both r and r', one expects a
linear behavior. This follows from the fact that only s-

~8.7~
75~

300~
-2 5 —062 -0 15

Q

—p.p3 - 0.009

FIG. 2. Contours of the spherically averaged Hartree-Fock
density matrix for neon. The successive contour values differ by
a factor of 2 for the positive-valued contours and by a factor of
4 for the negative-valued ones.

(Here a, /3 denote the typical exponents for s-type STO's. )

The symmetry of I (r~r') demands that such contours will
be almost linear, making equal intercepts on the axes.

(4) For increasing values of r and r' the contours be-
come curved in general. Further, if a tangent to the con-

type STO's contribute significantly to I for small values
of r and r', whence

I HF(r ~r') —e "e ~" =1—ar Pr'+O(r —)+O(r' ) .

-3 0.64—

-0 044
2.58—

- 0.75~

/—o o44 —0 022 —p pp2

0

336
2660 M1~=I /25B I p64—0.?5 —0.37 -0.18

FIG. 1. Contours of the spherically averaged density matrix
for beryllium within the Hartree-Fock theory. The successive
contour values differ by a factor of 2 both for positive- as well as
negative-values contours.

FIG. 3. Contours of the spherically averaged Hartree-Fock
density matrix for calcium. The neighboring contour values
differ by a factor of 2 both for positive- and negative-valued
contours.
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FIG. 4. Contours of the spherically averaged Hartree-Fock
density matrix for krypton. The successive contour values dift'er

by a factor of 2. Note the rich, complex structure of the density
matrix (see text for further details).

FIG. 5. Contours of the density matrix within the local-
density approximation for neon. The neighboring contour
values dift'er by a factor of 2. The directions of r and r' are
parallel.

tour is drawn at r=r', it is observed that the contour
(that has to be positive valued) entirely lies in the region
bounded by the tangent and the r and r' axes. Thus,
around r=r', the contours are convex as seen from the
increasing r(=r') side.

(5) For large values of both r and r' (in principle, when
both r and r'~ oo), I (r ~r') is represented as'

I (r
1

r') = [p(r)p(r')]'

(for a positive-valued I ). Thus, for extremely large r and
r' values, p(r) —r'e '. Also I ~0 for r =r' Hence. ,

lnI (r ~r') —i[in(r)+1 (rn')] —a(r+r') .

Also, for very large r values, r ))1n(r), hence, for a con-
tour of I, a(r + r') —const leading to a linear behavior, a
feature clearly discernible in the plots of I (rjr') for
asymptotic values of r and r'.

Among the studies carried out, beryllium (X=Z=4)
exhibits the simplest I (r ~r') plot. Note that, for Be, only
the Pz,

" is seen to possess a prominent 2s-orbital node, '

which occurs around r =0.75. Thus, in the region
r )0.75, r') 0.75 one never encounters negative-valued
contours as is borne out by Fig. 1. In general, the oc-
currence of the negative-valued contours is a cumulative
effect of the nodal structure which arises out of the ortho-
gonality of the radial wave functions. Thus, for Ne
(where 2s is the only orbital that has a prominent node),
the negative region appreciably shrinks towards the r and
r' axes (see Fig. 2). It also turns out that in all the I
plots, the negative-valued contours occupy a very small
fraction of the total diagram.

For both Ne and Ar, the positive contours are seen to
flatten around r =r' for large enough r and r' in accor-
dance with (5) above. However, for Ar, the negative re-

gion becomes significant, owing to the inclusion of 3s and
3p orbitals that give rise to the nodes. Petal-like struc-
tures representing closed contours for the negative part
for Ar, Ca, as well as Kr, are conspicuous; only the last
two among these are displayed in Figs. 3 and 4, respec-
tively.

For Mg and Ca, positive contours show an appreciable
curvature as compared to their counterparts for Ne and
Ar, respectively. For Mg, the negative part is almost

FIG. 6. Contours of the density matrix for neon within the
nonlocal-density approximation. The successive contour values
difT'er by a factor of 2. The directions of r and r' are parallel.
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FIG. 7. Contours of the negative of the Hartree-Fock
"exchange-only" correlation factor, i.e., —C,„,„(r,r'), fo y-
lium.

FIG. 9. Contours of —C,"„,h (r, r'), the negative of the
"exchange-only" correlation factor, for neon within the local-
density approximation. The directions of r and r' are parallel.

insignificant which is attributed to a sizable positive con-
tribution from the nodeless 2p orbital augmented by the
3s positive contribution which is overwhelmingly larger
than its negative one. The above features are noticeable
from the contour plot for Mg, which cannot be presented
here due to paucity of space.

The contours for Kr exhibit a complicated structure,
with an alternative interlacing of the positive- and

rnegative-valued contours, around r =r =0 (cf. Fig. 4).
The contours of I LDA(r~r'), as well as I NLoA(r~r'), do

not exhibit the symmetry and the rich structure as in the

case of I HF(r~r'). For the respective r and r' ranges
chosen, the negative region is lopsided both within LDA
and NLDA. Contours of I LDA and I NLDA for Ne as a
representative case are drawn in Figs. 5 and 6, respective-
ly. The I N„DA contours mimic their HF counterparts for
r = r' =0 (linear behavior), a feature absent for the LDA
case. Also, the I LD~ contours, in general, exhibit a
greater curvature than those within NLDA. Owing to
their very complicated implicit dependence on the densi-
ty, the LDA and NLDA curves elude any systematic gen-
eral investigation.

O ~~ah O
Q Q~hl
OdOO d

'D ~~~~ ~ ~ + ~ + ~ ~ Q o)
Cg

D' U Q' Q' Q U' Q.
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FIG. 8. Contours of the negative of the Hartree-Fock
"exchange-only' correlation factor, i.e.,

—C,„,„(r, '),~ r r') for ar-
gon.

FIG. 10. Contours of —C„,h (r, r'), the negative of the
"exchange-only" correlation factor, for neon within the
nonlocal-density approximation. The directions of r and r' are
parallel.
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III. EXCHANGE-CORRELATION FACTORS
AND EXCHANGE ENERGIES

A discussion of contours of I (r~r') has been presented
in the previous section. It is also instructive to examine
the contours of C,„",h(r, r'). As to the contours of the
(exchange-only) correlation factor C,„",„(r, r '), observe
that there is a good deal of detail and symmetry within
the realm of HF (see Figs. 7 and 8 for Be and Ar, respec-
tively), which is lost in the LDA and NLDA descriptions
(cf. Figs. 9 and 10 for the case of Ne). As the C,„,h fac-
tors within the LDA and NLDA regimes depend on ~r~

and
~
r —r'~, Figs. 9 and 10 are drawn with specific direc-

tions of r and r', viz. , r being parallel to r'. In fact, the
curvature evinced by the C„,h contours is very small in
comparison with the LDA ones as displayed in Figs. 9
and 10. Also, it is evident that LDA and NLDA theories
do not adequately represent the HF exchange hole local-
ly, even though gross quantities such as the exchange-

energy estimates, as compared to the HF values, are ap-
proximated rather well. ' The reason for the loss of de-
tail in the NLDA case is attributed to absence of the or-
bitals and p' (r) being a nodeless, as well as a rather
slowly varying, quantity [cf. Eq. (9)]. It is also noted that
C,„",h (r, r') mimics its HF counterpart well for both
small r and r' values. The overall similarity between con-
tours for LDA and NLDA for a given species is remark-
able as can be inferred from Figs. 9 and 10. Unlike the
factor C,„",h, the correlation factors C,x,h and C,„",h are
inherently asymmetric; however, an attempt to force the
symmetrization in to C,"„,h in an ad hoc manner only
worsens the exchange-energy' estimates. That the
NLDA is an improvement over LDA follows from the
Eexch values lying closer to Eexch than do the Eexch
values for prechosen' NHF electron densities.

The exchange energies within NLDA can be obtained
setting

C,„„.h (r], rz) = C„,.h(r], r]z )
NLDA

= ——', j, I [3n p(r, )]' r, I /( [3n p(r, )]' r,

and performing the integration after Eq. (5)

= fp(r])p(rz)C, „,h(r], r]z)(2r]z) '«]«z
Transforming the six-dimensional volume element dr&dr2 to the metric coordinate system on the lines of Coulson and

Nielson

dr]drz =r] rzr]zsinH]d8]dr]drzdg]dy

and integrating over the angles 8] (in the interval [O, n]) and P,y (in the interval [0,2n] ) one arrives at

EN„ (&] )P(&z)Cexch(&] &12)&lrzd&]diaz6( r1, r2, r12

(14)

(15)

where the condition A(r r]z, r]z) indicates that r], rz, and r]z form a triangle, thus ~r] —rz ~

~ r]z ~ r]+rz Hence.
= oo = oo r =r +r

Nr DA 2 12 2 1

F-,„„h=4~ . r]p(r] )dr, rzp(rz)drz C,„, (hr ]r ]z)dr ]z
1 2 1 12 2 1

1
r =oo —r

2 1

—r +r12 I 2+4' f r]p(r] )dr] f rzp(rz )drz f C,„, (r hr ])d]zr ]z
1 r2 12 1 2

TABLE I. Exchange energies E„„.h for some selected closed-shell atoms within the LDA, NLDA,
and HF theories" (values in Hartree a.u. ).

Atom

Be
Ne
Mg
Ar
Ca
Kr

~ LDA
exch

2.313
11.03
14.61
27.87
32.59
88.63

~NLDA
exch

2.561
12.09
15.25
28.65
33.58
91.05

HF
exch

2.670
12.13
16.02
30.30
35.35
94.63

LDA
error
(%)

13.5
9.1

8.8
8.0
7.9
6.3

NLDA
error
(%)

4. 1

0.3
4.8
5.4
5.1

3.8

aSee text for further details.
Percent errors defined with respect to the corresponding HF values obtained from the NHF wave

functions of Ref. 15.
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The exchange energies for closed-shell atoms within
NLDA along with corresponding HF and LDA values
are displayed in Table I. From this table, one notices a
numerical ordering: E""„&E „&E .„, which evi-
dently means that the NLDA exchange energies fall
closer to the HF ones than do the corresponding LDA
values. The fair agreement between LDA and NLDA ex-
change energies with the HF values is thus on a gross
scale, where the subtleties in the details of local structure
of the exchange hole are obliterated.

IV. CONCLUDING REMARKS

In this paper, an attempt has been made to investigate
the details of the atomic density matrices and the
"exchange-only" correlation factors within the frame-
works of Hartree-Fock, local-density approximation, and
the nonlocal-density approximation. A clear connection
with the earlier works of Boyd et al. and others' '" can
be established as follows: In the plot for C,„",h(r, r') con-
tours, draw a line parallel to the r axis through a
prechosen value of r'. The points of intersection, weight-
ed by the density p(r), would lead to the shapes of the ex-
change holes for a fixed electron coordinate as plotted in
the studies cited above.

Further, it may be pointed out that the present analysis
employs exclusively the STO basis sets tabulated by
Clementi and Roetti. ' Using other basis sets such as the
popular Gaussian-type-orbital (GTO) basis, one would
expect similar general features at a gross level. However,
the STO's inherently possess two desirable characteristics
rigorously satisfied by the exact wave function and the

exact electronic density, respectively, viz. , the "cusp con-
dition" and "an asymptotic exponential falloff. " The
GTO's, being deprived of these properties, would give
rise to a qualitatively different behavior of the contours
for I and C,„,h especially for the limiting and asymptotic
values of r and r'. Moreover, beyond the Hartree-Fock
approximation, one may employ the natural spin orbitals
(NSO's), thereby making tangible the exact density ma-
trix and the full exchange corre-lation factor.

Systematic investigations on the density matrices and
correlation factors within momentum space hitherto
remain to be carried out except for some studies on the
"correlation coefticients" in momentum space
analogous to those for the position space already re-
ported in the literature. The density matrices in the coor-
dinate and momentum spaces are connected via a six-
dimensional Fourier-Dirac transformation. Thus, one ex-
pects complementary features exhibited by I and I
as demonstrated by Coulson for their respective diago-
nal parts. The generalization of the present study to
molecular' as well as solid-state systems is also straight-
forward. All these studies are being carried out in this
laboratory.
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