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Random sequential adsorption of mixtures
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We present a theory that describes the random sequential adsorption of a two-component mixture
of hard disks of greatly differing diameters on a Aat surface. The jamming limit of the large disks
can be obtained from a numerical solution of two coupled first-order differential equations. In the
special case of a mixture of disks and point particles the equations take on a simple form, and the ki-
netics and jamming limit can be determined essentially exactly for certain ranges of the adsorption
rate constants.

I. INTRODUCTION

The random sequential adsorption (RSA) model is
defined by the following rules: (i) objects are placed at
random in a d-dimensional volume; (ii) if the last placed
object overlaps with any of those already present it is im-
mediately removed; and (iii) otherwise it is permanently
fixed (i.e., no dift'usion is allowed). The process usually
begins from an empty volume and continues until the
jamming limit, that is until it is impossible to place fur-
ther objects.

The model has a long and interesting history. ' In
the early days of computer simulation it was believed that
equilibrium configurations could be generated with a
RSA algorithm. However, it was quickly realized that
the RSA configurations are fundamentally different from
their equilibrium counterparts. Although inapplicable
to equilibrium fluids, the RSA model in two dimensions
does have important applications to the adsorption of
proteins and latexes on solid surfaces. Like many
statistical-mechanical problems, exact solutions for the
jarnrning limit and kinetics of the RSA process exist only
in one dimension. ' In two dimensions most of our in-
formation comes from numerical studies. In particular,
the jamming limit for disks adsorbing on a flat, uniform
surface has been determined as 54.7%. In any dimen-
sion d, the coverage 0, close to the jamming limit, varies
with time as 0„—H(t)- t ' ", a result first conjectured
by Feder" and later proved by Pomeau and Swendsen. '

At low to intermediate coverages the rate of adsorption
can be expressed as a power series in the coverage. Re-
cently we have found the exact values for the coefficients
of this series up to the third order for the one-component
hard-disk system. " Our expression is accurate up to a
coverage of about 30%—35% (i.e. , 55%—64% of the cov-
erage in the jamming limit).

To our knowledge there has been only one study of the
RSA of mixtures. Barker and Grimson investigated the
adsorption of mixtures of lattice objects of different
shapes but with the same size on a square lattice by
means of computer simulation. ' In this paper we
present a theoretical analysis of a continuum case, name-
ly, a two-component mixture of hard disks adsorbing on
a flat uniform surface. The theory is applicable when the
disks are very different in size. An interesting feature of

this system is that it is possible to determine the jamming
limit of the large disks from the numerical solution of
two coupled first-order differential equations. In the
one-component case, or when the two radii are similar,
the nature of the adsorption process undergoes a distinct
change in character as the jamming limit is approached.
This can be understood in terms of the subdivision of the
available area into small disconnected pieces ("target
areas") at high coverage. As a result of this complica-
tion there is, as yet, no theory that predicts the jamming
limit coverage for the single-sized hard-disk systems.
However, for a mixture of large and small particles, as
long as the small ones do not adsorb too slowly compared
with the large, it turns out that the large particles are
prevented from ever reaching a density where the the
asymptotic kinetics (for them alone) are applicable. The
small particles continue to adsorb after the large disks
have reached their jamming limit. It is a simple matter
to determine the remaining fraction of the surface that
will be covered by the small disks, since in this region
they behave almost like the one-component system, for
which we know from simulations that the jamming limit
is 54.7% of the available surface.

Our analysis is, in general, approximate. However, in
the limit case of disks and point particles the results are
essentially exact as long as the point particles adsorb
sufficiently rapidly.

II. THEORY

Consider a mixture of disks of radii r~ and r~, with
r~ &&rz, adsorbing on a flat uniform surface of area A.
At time t =0 the disks adsorb onto the empty surface at
rates k„and king per unit area. Let N„(t) and N„(t)
denote the number of each species adsorbed at time t.

We first consider the probability P~(N„, N~ ) that a
large disk arriving randomly on the surface will adsorb
given that there are already A'~ and Az adsorbed parti-
cles of type 3 and 8, respectively. For this event to
occur the center of the closest adsorbed particle must be
at least a distance r ~ ~

=r, + r~ or rzz =2rz from the
center of the incoming particle, depending on whether
this nearest adsorbed particle is small or large, respective-
ly. The exclusion circles corresponding to the latter situ-
ation are illustrated in Fig. l. In geometrical terms the
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A'=A ~—r„~Nti(t) . (3)

So we can define the effective density of A disks within
this area,

FIG. 1. Illustration of the concept of exclusion circles. For
the particular configuration shown, the shaded area cannot be
occupied by the center of an incoming large (B) disk. r~z and
r» denote the radii of the AB and BBexclusion circles, respec-
tively.

required probability P~(N„,Nti) is equal to the fraction
of the total surface that the unshaded area in Fig. 1

represents. To calculate P~(N„,Nti ) imagine first remov-
ing all the small particles from the surface. The fraction
of the area now available to a new B disk P~~ can be ex-
pressed as a power series in the coverage 0+ =N~mrti IA,

Pe~ ( N „,Ne ) —g S, s 0~ .
i =0

In general the S;~ are functions of N„, r~, and re (al-
though we are imagining a situation in which the small
disks have been removed, they could have influenced the
placement of the B's). Equation (1) is simply a generali-
zation of our result for the one-component system. " In
the Appendix we demonstrate that So g =1 SI g = 4,
Sz z = 6&3/sr+ a(r z /rid )0& +O(0& ), and S3 z = 1.4069
+O(0~ ), where 0„=N„mr~ /A represents the .coverage
of the large disks. We further show that a(r„/r~)~0 as
r~ Ir~ ~0.

Now consider the original configuration (including the
small disks) once more. The adsorption probability is less
than P~~ as a result of the presence of the small particles.
Precisely we have

Pti(N~, Nti ) PeeQ„—
Q„ii represents the conditional probability that, given
that the center of the large incoming disk lands in the
area AP~~, it lands in an area containing a circular re-
gion of radius r~~ free from small disks.

In the limit r~ ((r~, the large particles only slightly
influence the correlations of the smaller ones; their effect
is simply to reduce the available surface area. At time t
the A disks are contained in a surface of approximate
area

The distribution of centers of small disks is nearly ran-
dom as long as their effective density is not too high (for
point particles r„=O, the distribution is always random).
From our previous study of the RSA of a one-component
system of hard disks, it turns out that, as long as p~ is
smaller than 5%, the exclusion circles of the A disks do
not overlap to an appreciable extent. Therefore the asso-
ciated "spare surface" (i.e., the fraction of the surface
available to the center of a new disk) P is accurately given
by /=1 N„m.r—„„~A', and the probability of finding a
circle of radius r~~ free from the centers of A disks is

Q„~ =(1 err„ii/A—')

This equation is easily interpreted as follows: ~r~~/A'
is the probability of finding one A disk within the circle
of radius r„z. One minus this quantity is then the proba-
bility that this single disk lies outside the region. Taking
the N~ th power gives the chance that all N~ particles lie
outside the region.

By combining Eqs. (1) and (5) we find the following ex-
pression for the adsorption rate of 8 disks:

dN~ —A kiiP~~ 1—
dt

2

A(1 WrABPB )
(6)

dp
kAW(0A )(1 ~rABPB )

dt
(9)

where 0~ =mr~ p'„and P. (0) is the one-component RSA
function given in Ref. 11.

Equations (8) and (9) are coupled first-order differential

or in terms of the surface densities p~ ( =Ne IA ) and p„
( =N„ /A ),

dPI, 7Trqgp A2

=kiiP~~ 1—
dt 'tr" aapa )

For large systems (N„~ ~ ) this may be conveniently
expressed as [using the well-known result that
e"=lim„„(1+x/n )"],

dpi' ~r~ap~2

=k&P» exp
dt 1 —~r~I,P~

The adsorption rate for the small disks is determined as
follows. For one of these disks to adsorb it must first
land in an area unoccupied by large disks, which together
exclude roughly a fraction p~~r~~ of the total area to the
smaller disks. This approximation becomes more accu-
rate as r~ /r~ decreases and is exact in the case of point
particles. Now, assuming that it does not land on top of
a B disk, the incoming small disk sees an effectively
monodisperse RSA configuration of A disks at a density
p'~ and will adsorb at the appropriate rate. Combining
these two factors we obtain
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escribin the kinetics of the RSA of two kinds
of disks of greatly differing diameters. ey ca

d in terms of the dimensionless vari-

x [(rg + ra )/ra ] aild 1 rrl B~arXB—

dOA
=Ir(r„ /ra ) P(0'~ )(1—xa0B ),

d7 A B

dOB xA OA

d1, =Naa(0~ 0a)exp
XB B

here we have introduced ethe relative rate constantw ere
=k /k . Numerical integration yiellds O and OB. We

ex ect the jamming limit of the largee disks 0 ( oo ) to be
i 1 as the disk diameters are very

On the other hand„Eqs. (10) and (11) cannot
hted to give an accurate value or j

we onl know the sur-limit of the small particles, since we on y
~~(0) to third order in the cover-face exclusion function +~',

remarked, thed any case, as we have already remar e, eage, and in any ca
n es near the jam-f the adsorption process changes nearnature o e a

11 disks behavemin limit. However, since the smalming lm1 .
ne-corn onent system in the re-

the follow-duced area A' it is a simple matter to deduce the o ow-
t ression for the final (combined jam-ing approximate expression

ming limit from a knowledge of 0B( oo ):

0~+a( )=0a( )+(1—
~ravana 0

=0B( oo )+(1—
xa0B )0

where O is the one-component value ddetermined from
.547.

e rate e uations (8)There is a simple limiting form of the rate equa
and~ w en

~0. The oints have no effect on eac o
once adsorbed, they exclude the centers o gof lar e disks

d . The coupled differential equa-from a circle of radius rB. e
tions describing the adsorption become

The geometrical factor a(r~ /ra q.r ) E . (Al 1)] is rigorously
equal to zero in this case.

III. DISCUSSIQN

We see from Eqs. (10) and (11) that the RSA of a mix-
f d k on a surface is characterize by two parame-

ters: v =k A /kB and the ratio r A /rB. In the lim' g
case of a mixture o is s anc f d k d points we are left with only
the parameter ~.

~ 11 we know thatFrom the derivation of Eqs. (10) and ( ) we n
valid it is required that (i)for our theory to be va i

ains valid((l,ii) 0 (oo ) &35% so that paa remains va i

up to irth d order in the coverage; an iii
at E . (5)0B(r) , ~ . e0 ( ) Th last condition ensures tha q.

scribes the adsorption of the smaller disks.d
For given values of ~ and rA /rB v e so ve qs.

n the fourth-order Runge-Kutta algorithm.(11) using t e our -o
Ic Ir (a function ofTh is a minimum value of ~, ~;„a unere

which the large disks adsorb sufficien yntlr„/ra) below w ic e
ver 5 o. We have'dl so that their final coverage is over 35%. e averapi y so a

oints ~ - isdeter mine d that when the 3 particles are p
1 0.7. Figure 2 shows the jamming cover-

a e of the large particles as a function o r~ rBage o e a
rom 1 to 5. Note first thatdifferent values of ~ ranging rom

oo ) is a highly insensitive functionnofr /r fora8
- =0.7 is the lower limit ofg iven I-. This implies that ~,-„=

for our theory, for any value of rA / B pr u tovalidity or our
s that as ex-0.2. Moreover, Fig. 2 also illustrates a,about . . ore
oth r /r forpecte, B i.u, 0 ( oo ) is a decreasing function o o

thata given value o ~ an vicf d e versa. For the values of ~ a
we considered (0.7 (x.& 5!, Eqs. (10) and (11) do not con-
verge to a con stant value for 0a( oo ) when r„ra is

b 0.3. %'e conclude that our theory isgreater than a out
definitely invalid when the size ratio is greater t an is
value.

d termine whether requiremenent ii) is satisfiede can e
nd O —seethe time dependence of 0 4 andby examining e

0 (r) and 0 (r) weFig. 3. From the observed values of 0~ (r an
can show that

aild

=1~(1—0B )
d7

dOB
PBB(0B ) e"P

d~ B

(13)

(14)

035

030

0.25

=err 0 If we knew paa(0B) rigorously wewllel'e

could determine the exact kinetics or any va ue
atel if ~ is not too small it suffices to know

r the s ecial case of(0B ) to second or third order. For e sp
h the Appendix that the expan-oint particles, we s ow in e

O the same as in the one-componentsion of Paa In a is e
case up to t e or er oh d f O'. Thus for points we have

0.20—

8
In O. I 5—

CD

Q. I 0—

0.05—

0.05
I

O. I

rA /rg

I

O. 15

3

4

0.2

Itiaa(0B ) =1—40B+ 0B

40 176 3 4

~&3

FIG. 2. Jamming limit of the large disksisks 0 ( ~ ) as a function
of the radius ratio r,, /r„obtained by so ving q .solvin E s. (10) and (11).

fer to the relative raie con-Th bers labeling each curve refere num
e . r e to a 'amming= k //k . The equations do not converge jstant ~=

limit for r,, /r„) 0.3.



425QF MIXTUR. ESRpTIQN oRANDQM S QUENTIAL A

0.30— I.O

0.25

0.20

0 i5

3.0

5.0
5.0

I I I

rAS

(a)

I

I

rAB

(b)

O. 10

0.05

—3.0

l.O

eometries:le adsorption g5 i e- of two possib e
erical model{a) t e

'
de r»h disk mode r» =

~ r
i" 2+pg i'g.rgB

0

small (dashedsolid line) and sma
line) disks as a
taine g

r =0.1andt evhe values a e
tive rate con tnstant v=

8' r =8„(~)l[1 x~8~(~—]

has almost reac hed its0.05 when 8ii(r) asis indeed less than

up to third ordere s. 10) and (11) with Piiii up to

1 fF' 3 Tdistinguis a
When ~ is smal,

8 " '"1it while ~ i
e 3 disks a sohen K is large, the

th 1

er hand, w en ~
s so that

ecessary to
more rap y

1There ore iy
a e, sot aUse fiick to second or er in

t of 8ii(~)
an be neglected.

t the variationi 4 we representFinally, in Fig. w

A, $(8' )(1—4A, 8ii)d7.

and

es of r~jrii.ree different values
e a ain we observe

theory does notAlthough our
h

r .
x

'
in limi(0.7, we knnowt eex

We can obta'ain an es
'

curve
onent system .

lating the known c7b t o1 t c8~( oo ) for 0
olations are a soto K'=

sment of t e
t simulation,ison ith

lete assessm
computer

s definitely accurate.which
We con elude y m

diameters.
enconsi er

d 1 ithly two-dimen

pe the best mo
ases (e.g. , or m

b
ro

o af 1 tex partic e
g.the adsorbing spe

'

h h
() ()we let A, =r~/ ~,

16

0.5

—40' /X
(8 )-p

1 4A8d7.
(17)

8 0.3—

0 I

6
K

not as useful as Eqs.ations are not as
eres are

to consi er
The mos

nstructive

are maxi-
odel this is

r and r~~ ar
d A, :&A,:I,

or A, =O, i.e.,

odel we fin
hi hly unfavora

arated). In t e
ble 001. e"

l. Al'h u hgives —,':—,':l.
bl well in this case,e kinetics reasona y his caseht describe the me imig

verge to a va uethey do not conver

disks 0B( ~ ) as a functiong
=k„/k, ob i dbof the relative

( ) o po ."/.. .h. -{10)and (1
each curve

the numerica ra olations of t e nare extr p
component value of

ACKNOWLEDGM ENTS

na1 Scienceb the Nationawork wasThis
HE-86-under ra

F 1812-21383, and CHE-85-0



426 J. TALBOT AND P. SCHAAF

the Centre National de la Recherche Scientific. We are
grateful to Professor Bill Gelbart, Professor Daniel
Kivelson, Professor Charles Knobler, and, in particular,
Professor Howard Reiss for helpful comments.

APPENDIX

In this appendix we wish to prove the following asser-
tions: (i) assuming that the term Sz z in Eq. (1) takes the
form

We know that the previously adsorbed B disk excludes a
circular region of radius r~z to the centers of A disks.
Let A~~(r) denote the area common to two r„~ ex-
clusion circles with their centers separated by r. It
should be obvious that there cannot be a center of A disk
in the overlapping region. Therefore event (ii) occurs if
there is no center of an A disk in the remaining area
~r~g —A „s(r). Hence2

p2 =1—~r~~ —A „s(r)
S2 a

= +a(ra Ir~ )0„+0(|„),
7T

(A 1)
+O(N„) . (A3)

then a(r~ Irz )~0 as rz Irz ~0, and, (ii) that the expan-
sion of Ps~ in a power series of H~ is identical to the one-
component function $ up to third order when the A par-
ticles are points r~ =0. For convenience, and without
loss of generality we set A =1 in what follows.

The demonstration of the above results require us to
determine how the number density of pairs of large disks
N2 (r, N~, Ns ), characterized by the center-center dis-
tance r, varies with N~. A pair BB can be defined as fol-
lows: Each B disk excludes a circle of radius r~~ to the
center of another B disk. Two B disks form a pair of sep-
aration r when their exclusion circles overlap. Let
Azz(r) denote the area common to the two exclusion cir-
cles of the pair —see Fig. 6. To determine

[BN& ( r, N„,N& ) Ir)N& ]z
we follow the same arguments as in Ref. 11. Consider a
particular B disk which is already adsorbed. Place the
origin of a polar coordinate system (r, 8) at the center of
this particle. If a new disk is to adsorb in a surface ele-
ment r dr d0 the following conditions must be satisfied:
(i) There should be a circular region centered on r dr d 8
of radius at least r~~ free from the centers of B disks,
and, (ii) there must exist a circular region of radius rzz
devoid of A disks.

It can be shown that the probability p &
for event (i) is

When r„=0 (point particles), A„z(r)=0, and p~ is then
rigorously equal to

P2= 1—
2

7Tfp

1 —~r~N~2
(A4)

4B EBB

2
7Tl'g

1 ~r~ Ns—
(A5)

whereas in the case rz %0 we have to lowest order in N~
and N~

Pq = 1 —7rr~sN~ —err„s N„+ O(N, N~ ), (A6)

where i = A, B and j = A, B.
Finally the probability that the new B disk forms a pair

of separation r with a previously adsorbed B disk is

2.0

The quantity N~![1 nr„+—N&+O(N& )] represents the
effective density of A disks on the surface not occupied
by B disks. Let Pz denote the probability that a particle
of type B adsorbs anywhere on the surface. In the case of
point particles we have

p& =1—[nrzz —Azz(r)]N&+O(N&) . (A2)

Let us now determine pz, the probability of event (ii).
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FIG. 6. Illustration of the quantity A»(r) —the area com-
mon to two BBexclusion circles separated by a distance r.

FIG. 7. Geometrical factor a(rA /rz ), Eq. (A15) as a function
of the radius ratio r, /r&. Note that u(r, , /r~ )~0 as
r A /r~~0.
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r)N2 (r, N„,N& ) 1
dr =Ntt2nrp. ,p, dr .

B B
(A7)

Using expression (1) for p~~ up to order N~, we have
for point particles

This equation is identical to the equation describing the
evolution of pairs in the one-component system. It fol-
lows directly from Ref. 11 that P~~(N„, N~) has the
same expansion in 6& up to third order as in a one-
component system.

When rz&0 we obtain, using Eqs. (A2), (A3), (A6),
and (A7),

t)N~ (r, N„,N~ )
=2~r[1+Nq A~~(r)

BX~

+N„A„~(r)]N~+O(NN, ) .

AN& (r, N~, N& )
=2nr[1+Nz Azz(r)]N& +O(N83 ) .

B

(A8)

N2 (r, N„,Np)=17rN~[1+Ng /I gg(r)]

x~3
+2vrl Agg(r)

3
(A10)

Using Eqs. (1) and (3) in Ref. 11 we then obtain

Qgg =1—48tt + 9~+ 1. 40696 ~+a(r„ lr~ )9~0„

where

(Al 1)

~ma(r) =2rBBarccos(r/2raa ) r(rBB r l4)' . (A14)

By taking the limit r~ /r~ ~0 it can be shown that

8 I p~ +2f'~

a(r„ /rz ) = J 2rrr A zz(r) Azz(r)dr .
7T kg rg BB

(A12)

Simple geometric considerations show that

Azz(r)=2r~zarccos(rl2r„z) —r(r„z —r /4)' (A13)

and

Integration leads to

(A9) a(r„ lr~ )~0 .

Figure 7 shows a(r„ /rz ) as a function of r~ Ir~.

(A15)
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