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We present a theory that describes the random sequential adsorption of a two-component mixture
of hard disks of greatly differing diameters on a flat surface. The jamming limit of the large disks
can be obtained from a numerical solution of two coupled first-order differential equations. In the
special case of a mixture of disks and point particles the equations take on a simple form, and the ki-
netics and jamming limit can be determined essentially exactly for certain ranges of the adsorption

rate constants.

I. INTRODUCTION

The random sequential adsorption (RSA) model is
defined by the following rules: (i) objects are placed at
random in a d-dimensional volume; (ii) if the last placed
object overlaps with any of those already present it is im-
mediately removed; and (iii) otherwise it is permanently
fixed (i.e., no diffusion is allowed). The process usually
begins from an empty volume and continues until the
jamming limit, that is until it is impossible to place fur-
ther objects.

The model has a long and interesting history.! > In
the early days of computer simulation it was believed that
equilibrium configurations could be generated with a
RSA algorithm. However, it was quickly realized that
the RSA configurations are fundamentally different from
their equilibrium counterparts.® Although inapplicable
to equilibrium fluids, the RSA model in two dimensions
does have important applications to the adsorption of
proteins® and latexes’ on solid surfaces. Like many
statistical-mechanical problems, exact solutions for the
jamming limit and kinetics of the RSA process exist only
in one dimension.!”* In two dimensions most of our in-
formation comes from numerical studies. In particular,
the jamming limit for disks adsorbing on a flat, uniform
surface has been determined as 54.7%.° In any dimen-
sion d, the coverage 6, close to the jamming limit, varies
with time as 6 —0(t)~t 4 a result first conjectured
by Feder® and later proved by Pomeau® and Swendsen.'°
At low to intermediate coverages the rate of adsorption
can be expressed as a power series in the coverage. Re-
cently we have found the exact values for the coefficients
of this series up to the third order for the one-component
hard-disk system.!! Our expression is accurate up to a
coverage of about 30% -35% (i.e., 55% —64% of the cov-
erage in the jamming limit).

To our knowledge there has been only one study of the
RSA of mixtures. Barker and Grimson investigated the
adsorption of mixtures of lattice objects of different
shapes but with the same size on a square lattice by
means of computer simulation.'> In this paper we
present a theoretical analysis of a continuum case, name-
ly, a two-component mixture of hard disks adsorbing on
a flat uniform surface. The theory is applicable when the
disks are very different in size. An interesting feature of
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this system is that it is possible to determine the jamming
limit of the large disks from the numerical solution of
two coupled first-order differential equations. In the
one-component case, or when the two radii are similar,
the nature of the adsorption process undergoes a distinct
change in character as the jamming limit is approached.
This can be understood in terms of the subdivision of the
available area into small disconnected pieces (“‘target
areas™) at high coverage.’ As a result of this complica-
tion there is, as yet, no theory that predicts the jamming
limit coverage for the single-sized hard-disk systems.
However, for a mixture of large and small particles, as
long as the small ones do not adsorb too slowly compared
with the large, it turns out that the large particles are
prevented from ever reaching a density where the the
asymptotic kinetics (for them alone) are applicable. The
small particles continue to adsorb after the large disks
have reached their jamming limit. It is a simple matter
to determine the remaining fraction of the surface that
will be covered by the small disks, since in this region
they behave almost like the one-component system, for
which we know from simulations that the jamming limit
is 54.7% of the available surface.

Our analysis is, in general, approximate. However, in
the limit case of disks and point particles the results are
essentially exact as long as the point particles adsorb
sufficiently rapidly.

II. THEORY

Consider a mixture of disks of radii r, and rg, with
r 4 <<rpg, adsorbing on a flat uniform surface of area A.
At time t =0 the disks adsorb onto the empty surface at
rates k, and k; per unit area. Let N ,(z) and Ng(1)
denote the number of each species adsorbed at time ¢.

We first consider the probability Pz(N ,,Ng) that a
large disk arriving randomly on the surface will adsorb
given that there are already N, and Ny adsorbed parti-
cles of type 4 and B, respectively. For this event to
occur the center of the closest adsorbed particle must be
at least a distance r 3 =r, +ry or rgp=2r; from the
center of the incoming particle, depending on whether
this nearest adsorbed particle is small or large, respective-
ly. The exclusion circles corresponding to the latter situ-
ation are illustrated in Fig. 1. In geometrical terms the
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FIG. 1. Illustration of the concept of exclusion circles. For
the particular configuration shown, the shaded area cannot be
occupied by the center of an incoming large (B) disk. r,5 and
rpp denote the radii of the 4B and BB exclusion circles, respec-
tively.

required probability Pp(N 4,Np) is equal to the fraction
of the total surface that the unshaded area in Fig. 1
represents. To calculate Pgz(N ,,Np) imagine first remov-
ing all the small particles from the surface. The fraction
of the area now available to a new B disk ¢gp can be ex-
pressed as a power series in the coverage 5 =Np7r} /A,

¢58(N 4 ,Ng)=3 S, 505 . (1
i=0

In general the S; p are functions of N4, r,, and rp (al-
though we are imagining a situation in which the small
disks have been removed, they could have influenced the
placement of the B’s). Equation (1) is simply a generali-
zation of our result for the one-component system.!! In
the Appendix we demonstrate that S,z =1, S| ;= —4,
S, p=6V3/m+alr,/rg)6,+0(6%), and S; 5, =1.4069
+0(60 ), where 8 , =N ,7r’ /A represents the coverage
of the large disks. We further show that a(r, /rz)—0 as
r, /rg—0.

Now consider the original configuration (including the
small disks) once more. The adsorption probability is less
than ¢ g as a result of the presence of the small particles.
Precisely we have

Pg(N 4,Ng)=6¢ppQ 4p - (2)

Q 4p represents the conditional probability that, given
that the center of the large incoming disk lands in the
area A ¢pgp, it lands in an area containing a circular re-
gion of radius r ,; free from small disks.

In the limit r , <<rp, the large particles only slightly
influence the correlations of the smaller ones; their effect
is simply to reduce the available surface area. At time ¢
the A4 disks are contained in a surface of approximate
area
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A'=A—mripNy(t) . (3)

So we can define the effective density of 4 disks within
this area,

pT=N (1) /A" . )

The distribution of centers of small disks is nearly ran-
dom as long as their effective density is not too high (for
point particles » , =0, the distribution is a/lways random).
From our previous study of the RSA of a one-component
system of hard disks, it turns out that, as long as pef is
smaller than 5%, the exclusion circles of the A4 disks do
not overlap to an appreciable extent. Therefore the asso-
ciated ‘“‘spare surface” (i.e., the fraction of the surface
available to the center of a new disk) ¢ is accurately given
by ¢=1—N  7r? |A’, and the probability of finding a
circle of radius r 45 free from the centers of A4 disks is

Q p=1—mriy /AN . (5)

This equation is easily interpreted as follows: mr%g /A’
is the probability of finding one A disk within the circle
of radius r 5. One minus this quantity is then the proba-
bility that this single disk lies outside the region. Taking
the N ,th power gives the chance that all N ; particles lie
outside the region.

By combining Egs. (1) and (5) we find the following ex-
pression for the adsorption rate of B disks:

dNyg
dt

Ny

2
mwr
A8 , (6)

=Akgpgp |1—

A —7rigpp)

or in terms of the surface densities pg (=N /A ) and p 4
(=N, /A),
NA

dpg mrisp A

dt

=kpdpp |1— 7

NA(I_’TTrinB)

For large systems (N ,— ) this may be conveniently
expressed as [using the well-known result that
e*=lim, _, ,(1+x/n)",

dpg

o kgdpp exp

)
TV ABP 4

2
l—mryppp

(8)

The adsorption rate for the small disks is determined as
follows. For one of these disks to adsorb it must first
land in an area unoccupied by large disks, which together
exclude roughly a fraction pz7r?y of the total area to the
smaller disks. This approximation becomes more accu-
rate as r , /rp decreases and is exact in the case of point
particles. Now, assuming that it does not land on top of
a B disk, the incoming small disk sees an effectively
monodisperse RSA configuration of A4 disks at a density
T and will adsorb at the appropriate rate. Combining
these two factors we obtain

dp 4
dt
where 0°T=7r%p and ¢(8) is the one-component RSA

function given in Ref. 11.
Equations (8) and (9) are coupled first-order differential

=k (0D (1 —7rippp) 9
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equations describing the kinetics of the RSA of two kinds
of disks of greatly differing diameters. They can be con-
veniently expressed in terms of the dimensionless vari-
ables 0 =murip,, Op=mrapg, x,=[r +ry)/r 1%
xg=[(r +rg)/rg) and T=mrikyt,

40 4 - 2 1 geff

=u(r, /rg) ¢4 1—x56p), (10)
dr
do, —x40 4
5 — 11
dr d5p(0 4,05) exp [ x,0, an

where we have introduced the relative rate constant
k=k 4 /ky. Numerical integration yields 8 ; and 85. We
expect the jamming limit of the large disks 8z( o) to be
highly accurate as long as the disk diameters are very
different. We return to the question of accuracy in the
discussion. On the other hand, Egs. (10) and (11) cannot
be expected to give an accurate value for the jamming
limit of the small particles, since we only know the sur-
face exclusion function ¢(8), to third order in the cover-
age, and in any case, as we have already remarked, the
nature of the adsorption process changes near the jam-
ming limit. However, since the small disks behave
effectively almost like a one-component system in the re-
duced area A’ it is a simple matter to deduce the follow-
ing approximate expression for the final (combined) jam-
ming limit from a knowledge of 65 ( 0 ):

0415(0)=0g(c0)+(1—7rippy)0.,
=0g(0)+(1—x505)0., , (12)

where 6_ is the one-component value determined from
simulation 0.547.

There is a simple limiting form of the rate equations (8)
and (9) when the small disks shrink to point particles
r 4—0. The points have no effect on each other, but,
once adsorbed, they exclude the centers of large disks
from a circle of radius rz. The coupled differential equa-
tions describing the adsorption become

dy ,
dr

=x(1—8p) (13)

and

dOpg
7:4553(93)6’413

Y4
1_93

) (14)

where ¢ , =7r}6 ,. If we knew ¢p5(6,) rigorously we
could determine the exact kinetics for any value of «.
Fortunately if « is not too small it suffices to know
¢ 55(0p) to second or third order. For the special case of
point particles, we show in the Appendix that the expan-
sion of ¢z, in 65 is the same as in the one-component
case up to the order of 63. Thus for points we have

e
¢Bs<63)=1-463+6—739é

_40 176 | 4

Y 03+0(6%) . (15)

The geometrical factor a(r , /r;) [Eq. (A11)] is rigorously
equal to zero in this case.

II1. DISCUSSION

We see from Egs. (10) and (11) that the RSA of a mix-
ture of disks on a surface is characterized by two parame-
ters: k=k ,/ky and the ratio r,/rz. In the limiting
case of a mixture of disks and points we are left with only
the parameter «.

From the derivation of Egs. (10) and (11) we know that
for our theory to be valid it is required that (i)
ry/rp <<I1; (ii) O5(0)<35% so that ¢, remains valid
up to third order in the coverage; and (iii) 8°T < 5% when
0p(7)—05( ). The last condition ensures that Eq. (5)
accurately describes the adsorption of the smaller disks.
For given values of « and r, /rz we solved Egs. (10) and
(11) using the fourth-order Runge-Kutta algorithm.

There is a minimum value of k, «_;, (a function of
r 4/rg) below which the large disks adsorb sufficiently
rapidly so that their final coverage is over 35%. We have
determined that when the A particles are points, k;, is
almost equal to 0.7. Figure 2 shows the jamming cover-
age of the large particles as a function of r,/rp for
different values of « ranging from 1 to 5. Note first that
Op() is a highly insensitive function of r,/rp for a
given k. This implies that «,;,=0.7 is the lower limit of
validity for our theory, for any value of r,/rg up to
about 0.2. Moreover, Fig. 2 also illustrates that, as ex-
pected, 0z(oc) is a decreasing function of both r , /r, for
a given value of k and vice versa. For the values of « that
we considered (0.7 <k <5), Egs. (10) and (11) do not con-
verge to a constant value for 6;(c) when r,/ry is
greater than about 0.3. We conclude that our theory is
definitely invalid when the size ratio is greater than this
value.

We can determine whether requirement (ii) is satisfied
by examining the time dependence of 6, and 65 —see
Fig. 3. From the observed values of 6 ,(7) and 0,(7) we
can show that
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FIG. 2. Jamming limit of the large disks 03 ( «c ) as a function
of the radius ratio r , /ry obtained by solving Eqs. (10) and (11).
The numbers labeling each curve refer to the relative rate con-
stant k=k 4 /kz. The equations do not converge to a jamming
limit for v, /ry >0.3.
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FIG. 3. Coverage 0 of the large (solid line) and small (dashed
line) disks as a function of the reduced time r=mrjkyt, ob-
tained by solving Egs. (10) and (11). The results shown are for
r4/rg=0.1 and the values labeling each curve refer to the rela-
tive rate constant k =k , /kg.

6 r)=0 (1) /[1—x505(1)]

is indeed less than 0.05 when 05(7) has almost reached its
asymptotic value.

We solved Egs. (10) and (11) with ¢gp up to third order
in 65 [Eq. (15)]. Inclusion of the term a(r,/rg)6 6%
[Eq. (A15)] has a negligible effect on 6 ,(7) and 6g(7).
Indeed the two cases (with and without this term) are in-
distinguishable on the scale of Fig. 3. The reasons for
this result are clear: When « is small, O reaches its jam-
ming limit while 8 , is still small so that 65 >>6 ,. On
the other hand, when « is large, the 4 disks adsorb much
more rapidly than the large ones so that Oz( o) will be
very small. Therefore in this case it is only necessary to
use ¢pp to second order in the coverage, so that the terms
0 ,0% can be neglected.

Finally, in Fig. 4 we represent the variation of Oz( )
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FIG. 4. Jamming limit of the large disks 65( « ) as a function
of the relative rate constant k=k 4 /k, obtained by solving Egs.
(10) and (11) [or (13) and (14) for points]. The numbers labeling
each curve refer to the radius ratio r, /rgz. The dashed curves
are extrapolations of the numerical results to the known one-
component value of 0.547.
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FIG. 5. Side-on view of two possible adsorption geometries:
(a) the disk model r, z=r,+rp; (b) the spherical model
rag=2V'r rq.

as a function of « for three different values of r, /rp.
Once again we observe only a small variation of Og( o)
with r,/rg. Although our theory does not hold for
k<0.7, we know the exact jamming limit for k=0 (the
one-component system). We can obtain an estimate for
Op( ) for 0<k <0.7 by extrapolating the known curve
to k=0. These extrapolations are also shown in Fig. 4.

A complete assessment of the accuracy of the theory
would require comparison with computer simulation,
which we do not attempt here. What we have attempted
to do above is to identify the limits of « and r, /rg for
which the theory is definitely accurate.

We conclude by mentioning one more aspect of the
problem. Up until now we have been considering a strict-
ly two-dimensional model with additive disk diameters.
This may be the best model for some proteins adsorbing
from solution. However, in other cases (e.g., for mixtures
of latex particles) it may be more appropriate to regard
the adsorbing species as spherical—see Fig. 5. In this
case the AB exclusion circle is given by twice the
geometric mean of the sphere radii: 7,5, =2V"r rp. If
we let A=r , /rg, Eqgs. (8) and (9) become

do ,

ar =K12¢(0eff)(1—47»93) (16)
and

dOpg —460 , /A

(17)

ar PsslOs)exp |90,

Unfortunately, these equations are not as useful as Egs.
(10) and (11). The problem is that the small spheres are
not effective in excluding area from the larger ones. It is
instructive to consider the proportions 7, 4:7 45:rgg. For
the disk model this is A:(1+A)/2:1. The most favorable
case is for A=0, i.e., 0:5:1 (r 44, 7 45 and rpp are maxi-
mally separated). In the sphere model we find A:V'A:1,
and A=0 is now highly unfavorable: 0:0:1. The “best”
choice, A=1 gives 1:1:1. Although Egs. (16) and (17)
might describe the kinetics reasonably well in this case,
they do not converge to a value for ().
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APPENDIX

In this appendix we wish to prove the following asser-
tions: (i) assuming that the term S, 5 in Eq. (1) takes the
form

_6V3

SZB‘T_Fa(rA/rH)gA_}_O(GZA)’ (Al)

then a(r /ry)—0 as r , /ry—0, and, (ii) that the expan-
sion of ¢zp in a power series of O is identical to the one-
component function ¢ up to third order when the A4 par-
ticles are points r,=0. For convenience, and without
loss of generality we set A =1 in what follows.

The demonstration of the above results require us to
determine how the number density of pairs of large disks
N5%B(r,N ,,Np), characterized by the center-center dis-
tance r, varies with Nz. A pair BB can be defined as fol-
lows: Each B disk excludes a circle of radius rgz to the
center of another B disk. Two B disks form a pair of sep-
aration r when their exclusion circles overlap. Let
App(r) denote the area common to the two exclusion cir-
cles of the pair—see Fig. 6. To determine

[8N3%(r,N 4,Np)/3Ng ]y,

we follow the same arguments as in Ref. 11. Consider a
particular B disk which is already adsorbed. Place the
origin of a polar coordinate system (r,60) at the center of
this particle. If a new disk is to adsorb in a surface ele-
ment 7 dr dO the following conditions must be satisfied:
(i) There should be a circular region centered on r dr d@
of radius at least rgp free from the centers of B disks,
and, (ii) there must exist a circular region of radius r
devoid of A disks.

It can be shown that the probability p, for event (i) is
py=1—[mrjp— Agp(r)INy+O(N}) . (A2)

Let us now determine p,, the probability of event (ii).

FIG. 6. Illustration of the quantity Agz(r)—the area com-
mon to two BB exclusion circles separated by a distance r.

of the
ry /rp—0.

We know that the previously adsorbed B disk excludes a
circular region of radius r 45 to the centers of A disks.
Let A ,p(r) denote the area common to two r,p ex-
clusion circles with their centers separated by r. It
should be obvious that there cannot be a center of A4 disk
in the overlapping region. Therefore event (ii) occurs if
there is no center of an A4 disk in the remaining area
mrip— A 45(r). Hence

N4
1—7r2yNg+O(N})

P2:1’"[77"’,243“AAB(")]

+O(N?%) . (A3)

When r , =0 (point particles), 4 ,5(r)=0, and p, is then
rigorously equal to

N
mr} 4

pr= (A4)

1—7riNg

The quantity N, /[1—7r%zNz+O(N})] represents the
effective density of A4 disks on the surface not occupied
by B disks. Let ¢ denote the probability that a particle
of type B adsorbs anywhere on the surface. In the case of
point particles we have

2 N

g A

$p=dpp |1 — » (AS)

1—7r3Ng |
whereas in the case r ;70 we have to lowest order in N
and Ny

bp=1—mrggNg—mripyN,,+O(NN;), (A6)

where i = 4,B and j = A, B.
Finally the probability that the new B disk forms a pair
of separation r with a previously adsorbed B disk is

20

0.5

o) | | | 1 |

ra/rg

FIG. 7. Geometrical factor a(r, /ry), Eq. (A15) as a function
radius ratio r,/rz. Note that alr,/rg)—0 as
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ON2B(r,N ,,Np)

dr=N327Trp,p2;}~dr . (A7)
B

Using expression (1) for ¢z, up to order Ny, we have
for point particles

ANEB(r,N ,,Ny)
3N,

=27r[1+Npg Agp(r)INg +O(N}) .

(A8)

This equation is identical to the equation describing the
evolution of pairs in the one-component system. It fol-
lows directly from Ref. 11 that ¢z5(N ,,Ng) has the
same expansion in Oz up to third order as in a one-
component system.

When r,##0 we obtain, using Egs. (A2), (A3), (A6),
and (A7),

ON2B(r,N,,Np)
AN,

=27r[1+Ng Agg(r)

+N 4 A 5(r)INg+O(N,N;) .
(A9)

Integration leads to
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NBB(r,N ,Np)=mrN3[1+N 4 A4 5(r)]
3

Njp
+2mr—> Apy(r) (A10)

Using Egs. (1) and (3) in Ref. 11 we then obtain

e
bpp=1—40, +-67T—39§9 +1.40696% +alr , /ry)6360 , ,

(A11)
where
alr, /rB)=;3r387fr::BHrA27TrA 4p(r) Agp(rydr .
(A12)
Simple geometric considerations show that
A 4p(r)=2rkgarccos(r /2r 4p)—r(rig—ri/4)?  (A13)
~and
App(r)=2rjparccos(r /2rpg)—r(rjp—r?/4)V2 . (A14)
By taking the limit » , /r53—0 it can be shown that
alr,/rg)—0. (A15)

Figure 7 shows a(r 4 /rp) as a function of  , /rp.
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