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The Schrodinger equation for the two-dimensional simple harmonic oscillator is solved using el-

liptic coordinates where it is separable. The separability of the problem in such coordinates is in-

dependent of the selection of the focal distance. The solutions are labeled by the total number of
quanta X and by a set of characteristic values b corresponding to the eigenvalues of an observable B,
which does not commute with L, the total angular momentum or 8„,the energy associated with the
x degree of freedom. The well-known quantum energies as well as the characteristic values are ob-
tained by imposing physical polynomial solutions.

I. INTRODUCTION

The harmonic oscillator (HO) is one of the most dis-
cussed problems in physics. There is a large number of
quantum systems which can be approximated, at least in
the limit of small amplitudes, by the HO equations. On
the other hand, there are "quasiclassical" states for the
quantum HO (coherent states) which illustrate the rela-
tion between quantum and classical mechanics when the
limit A~O is studied (semiclassical limit). ' Thus, the
separability of the HO problem in different coordinate
systems as well as the corresponding eigenfunctions and
eigenvalues are points of considerable interest.

The procedure to establish the bound states of any
physical Hamiltonian generally starts with the choice of
an adequate coordinate system in which the time-
independent Schrodinger equation can be separated. In
fact, the separation constants will be the eigenvalues of
different physical observables and will lead to a set of uni-
dimensional differential equations. Finally, physical
boundary conditions (or periodicity conditions in the case
of angular variables) will restrict the number of allowed
eigenvalues which will label the corresponding eigenfunc-
tions.

It is very well known, for example, that Cartesian or
polar coordinates are systems where the Schrodinger
equation of the two-dimensional simple HO (2D HO) be-
comes separable. In the former case, one may choose the
eigenfunctions

+~ „(~,y) =P„(x)ttr& „(y),
where N and n are the total number of quanta and the
number of quanta associated with the x degree of free-
dom, respectively.

In polar coordinates since [B,L ]=0, one may choose

+w, l(C»V» =&a, I(n W t(V )

where I is the quantum number associated with the angu-
lar momentum operator L =xp —yp, .

Since both families of eigenfunctions have well-defined
energies, one may find the relation between them, for in-

stance, by diagonalization of L on the subspace corre-
sponding to each X in the Cartesian base (I).

The aim of the present paper is to analyze the 2D HO
interaction in a different system which also separates the
Schrodinger equation: the elliptic coordinate system.
The separability of the problem in such coordinates has
been discussed from the point of view of group theory
and it was shown that the Schrodinger equation reduces
to the Ence equation. However, an exhaustive analysis of
the physical observables associated with this separation,
as well as of the allowed eigenvalues, is still lacking and
will be done in this work. This analysis can be very use-
ful when one studies problems with elliptic symmetries
such as the elliptical billiard problem.

Clearly in the new eigenstates neither L nor H, the en-

ergy associated with the x degree of freedom, are well
defined, but we will show that there exists an observable
B associated with a new separation constant b. The ei-
genvalue b of B label the resulting eigenfunctions

+X,b(k n)=&X,b(k)~, b(n»
which are solutions of the Schrodinger equation in ellip-
tic coordinates.

In Sec. II we study the problem from the point of view
of classical mechanics. Section III is devoted to the
quantum-mechanical analysis and to the solutions of the
Schrodinger equation in elliptic coordinates. In this sec-
tion we will find a complete set of commuting observables
for the problem constituted by H and the mentioned
operator B, which in the quantum limit does not com-
mute either with L or H . In Section IV we show the be-
havior of the eigenvalues of the observable B and con-
cluding remarks are given in Sec. V.
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II. THE CLASSICAL PROBLEM

The elliptical coordinates are defined such that

g = ( r ~ + r, ) /2o, g = ( r ~
—r, ) /2cr,

where r, and r2 are distances from the two foci placed
at x = +0.. g =const defines confocal ellipses while
g=const defines confocal hyperbolas. The relation with
the Cartesian coordinates is

x =cry/, y =+o(1—tt )' (g —I)'~ (5)

In this coordinate system the classical Lagrangian
L= T—Vis

—V(g, r)),
T being the kinetic energy and V the potential energy.

The canonical conjugated momenta result

21'
] ~2

g2

Therefore the Hamiltonian is

~(p„p; '9 P)=p„it(p„rt k)+prk(pt 'rt k) &(rt k p„pt)
1

[(g —1)p +(1—g )p'„]+ V(g, r)) . (9)
2mo (g —g')

It is easy to see that a sufficient condition to separate a given problem in elliptical coordinates is that the potential takes
the form

«I t))=[f (K)+f (9)]/(k' —r)'»
where f, (g) and f~(q) are arbitrary functions. As

2 2(g2+ 2 1)— 2(g4 4 g2+ 2)/(g2 2)

the HO interaction satisfies (10), leading to
2 2

H(rt k p„pc)= . . . [(K —1)p;+(1—
r) )p'„]+ (k'+rt'

(10)

(12)

The g and g degrees of freedom can be decoupled in the
following way:

(g —1)p -+m cr co (g l)g —2m a—Eg = —Ao, (13a)

(1 —g )p„+m cr co (1—q )g +2mo Eq = Ho, (13b)

where E (=H) and A~ are the constant energy and the
separation constant, respectively.

To explore this further we eliminate E of (13a) and
(13b) and we obtain

n'(k' l )p (+4'(I—n')p'„—
( g' —q')

On the other hand, we know that

AO=L, L~+mo (p„g+p(g)+m~cg2cr~g~rt2

=L, L +22m Tcr+m cu cr g rt

=L&.Lz —m co cr (g —1)(1—tt )+2m cJ E
L —2mo E +2m~ E

where

L, Lz=[(xy —yx) —cr y ]m =L —2mcr T

where L& (Lz) is the angular momentum with respect to
the focus at x =cr ( —cr), L is the angular momentum
with respect to the origin, and we have defined
T = 2Plp

Therefore

T= —,'m(x +y ), E =
—,'my + —,'me@ y

Thus we conclude that

AO=8+2mo. E=L +2m' E
As E is constant we can ensure that

8 =L —2mo E

is a constant.
We will use B instead of Ao in (13a) and (13b) to

reduce our two-degree-of-freedom problem to two unidi-
mensional equivalent problems:

2(2+ E
2mo 2 2mcr (g —1)

2 2

mcus

2 2 80 7j'
2mo 2 2mcr (1 —rt )

(Isa)

(15b)

The solutions g( t ) and g( t) can be easily obtained
through the Cartesian solutions x (t) and y (t) and the re-
lations (5). However, there are some properties of (15)
that are worthwhile remarking upon.

It is well known that the Poincare sections (x,p ) and
(y,p ) of our problem are ellipses for any initial condi-
tion. When we work in elliptic coordinates we have two
regions in the Poincare sections and one separatrix vary-
ing 8 with E fixed. This fact originates from the depen-
dence of the equivalent unidimensional potentials on 8,
displayed in Fig. 1. In Fig. 2 we show the Poincare sec-
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FIG. 2. Poincare sections (a) p& vs g; (b) p„vs g.

tions (g,p&) and (r),p ). For B )0 there are two turning
points for g, while rI takes all possible values
(
—1 r) 1). For B (0, there are two turning points for

r), and g varies from 1 to g,„. For B =0, the hyperbolic
potential vanishes and —1 ~ g ~ 1 and 1 ~ g ~ g,„which
correspond to the separatrices.

Finally we show (Fig. 3) some trajectories in the real
plane for each case. We remark that the separatrices cor-
respond to B =L —2mo. E =0. When the particle
crosses the x axis (y =0) this becomes

L 2 —m 2o 2y 2 (16)

Therefore the particle passes over the foci [Fig. 3(b)].
There is one particular case of separatrix which in ad-

dition to (16), the condition

E=—'mes o.
2

is fulfilled. This corresponds to linear oscillations on the
x axis just between the foci [Fig. 3(d)].

We want to remark that the HO is the only central po-
tential (apart from the case V=const) separable in ellipti-

(e)

FIG. l. Equivalent unidimensional potentials. (a) V(g),
8 )0; (b) Vip), 8 =0; (c) V( g), 8 (0; (d) V(r) ), 8 )0; (e) V(r) ),
B =0; (f) V(gj, B &0.

cal coordinates. Moreover, in opposition to other physi-
cal situations which are also separable in elliptical coordi-
nates (two-center problems, elliptic billiards) in the
present case the parameter o. is not determined by the
geometrical properties of the system and the separability
exists whatever the focal distance. This fact can be easily
understood since the HO potential is a second-degree
homogeneous function. Thus changes in the focal dis-
tance by a factor 5 (i.e., o'=5cr), change the coordinate
system (g, r))~(f, r)') so that according to (6) the new
Lagrangian becomes

X'(g', r)') =5 X(g', r)'),

conserving the separability.
That is, o. is not a global scale factor [which would im-

ply X'(g', g') =5 X(g, rI)] but an arbitrary parameter
which defines a determined coordinate system. As a par-
ticular case, in the limit cr~0, g~(x( we obtain the
well-known polar coordinates, cr(~r, rI~coscp, B~L

III. THE QUANTUM-MECHANICAL PROBLEM

In elliptic coordinates the Laplacian can be easily writ-
ten and the time-independent Schrodinger equation re-
sults:

(g2 1 )1/2 (g2 1 )1/2 +( 1 2)l/2
( 1 2)1/2

2m o (g2 —r)~) c)g c)g c)r) c)q

+ V(g, q) VF(g, rl)=E!I/-~(g, q) . (17)

We can assume eigenfunctions

!I/(g, rj) =R(g)8(r)),

resulting in

(g2 1 )1/2 (g2 1 )1/2
dg dg

2 4 2 2 E
g (g —1)+ (g —1) R(g)=bR(g), (19a)

( I 2)l/2 ( 1 2)1/2
d~ " dn

r)2(1 —g )+ (1 —r) ) 0(g)= b8(r)), — (19b)
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(a) (b) A. Diagonaiization of k in the Cartesian basis

X X

Let us first discuss the general results of the diagonali-
zation procedure in order to establish the solutions of (19)
in a more simple way.

We recall that

(c) (d)

at=2 '» (/H+iP /PR),

a "=2 '
(Py + iP» /Pfi),

with p= (m co/A')' so that

(21)

,
' X

I.=i%(a a a—a»),
H =fico(a»a + —,') .

(22a)

(22b)

FIG. 3. Trajectories of the two-dimensional harmonic oscil-
lator. (a) B)0; (b) 8 =0; (c) B (0; (d) B =0 and E= —'m co o .

Then

B = fi [(a )—a +(a„) a +(2cc—1)a a —a a„
—2a„a a a +a], (23)

where b is the separation constant. The allowed values of
b are the eigenvalues of a quantum operator B which is
just the physical observable corresponding to the classical
magnitude defined in (14). So that

B=L. —2mo. H (20)

Since [H, B]=0, the eigenfunctions (18) will have F. (i.e.,
the total number of quanta) and B well defined.

According to the discussion of Sec. II, it is not surpris-
ing that the eigenvalues of the observable B [see Eq. (20)]
depend not only on the intrinsic properties of the system
(i.e., the mass m and the frequency co) but also on cr In.
the cylindrical limit the eigenvalues of B are A m, m be-
ing an integer number.

We can obtain the eigenfunctions and the correspond-
ing eigenvalues of B by means of diagonalization of B in
the Cartesian basis. On the other hand, we can solve (19)
by using standard techniques of numerical analysis.

where a =p cr . The matrix elements are

&n„2,n»—+2lBln, n» &

= —A' [(n +1)(n +2)(n )(n —I)]'~

& n„+2,n, —2lB ln„, n, &

= —A' [(n +1)(n„+2)(n )(n —1)]'

&n„n lB ln„, n &
= —A' [(2cc—1)n —n„—2n„n +a] .

The only nonzero off-diagonal elements verify

An =+2, An =+2 . (24)

&gqlNb &=y C„"",&gzln„, n, =N —n. &,
n

X

(25)

and using (5),

As a result of the diagonalization we obtain the
coefficients C~'b that determine the eigenfunction (18) as
a linear combination of Cartesian eigenfunctions:

&gi)ln„n =N —n„& =
P exp ——( g + i) —1 )

2
' H„( ai)g)H~ „(a'» [(g —1)(1—i) )]'~ ),

[ir2 n„!(N —n„)!]'
(26)

where H„(z) is the Hermite polynomial of degree n.
As expected from the parity of the potential, the eigen-

functions (25) will have well-defined x parity and y parity.
This fact will be used to establish some properties of the
wave functions (18).

We may distinguish the even-N and odd-N cases. For
even N the 8 matrix can be reduced to two blocks. Gne
corresponds to n, and n even (namely, ++ states) and
the other to n and n odd (namely, ——states). Let us
consider one ++ state. All Cartesian eigenfunctions ap-
pearing in the expansion (25) have the same asymptotic
form:

& gglNb &++ =~ e ""~ "W++(g)

Xe " B++(g) (27)

where Az b (g) and Bibb+(q) are even polynomials of de-
gree N and JV~ b is a normalization constant.

exp[ —(a/2)(g +i) —1)] .

On the other hand, each term of (25) is a product of two
even polynomials in rIg and in (g2 —1)'~ (1 —i) )'~, re-
spectively. We conclude that the eigenfunctions (18) cor-
responding to + + states are of the form
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Similar considerations for the ——states lead to eigen-
functions

where A)v+b (g) and B~ b (rl) are even polynomials of de-
gree N —1 and

(28)

(7@~i))rb ) —Jv e ' ""& "(g' —1)'"A (g)
—avP/2( 1 2)1/2B ——

( XBbr, b ( l) (30)

( ilg~~b ) + =~ e (a/2)(g —1)(g2 1)1/2g + —
(g)

Xe —aq /2(1 ~2)1/2B+ —
( ) (29)

where A)v b (g) and Bb(b (g) are odd polynomials of de-
gree N —1.

For N odd the B matrix can be also reduced to two
blocks. One corresponding to n even and n~ odd (name-
ly, + —states) and the other corresponding to n„odd
and n even (namely, —+ states).

In the same way as in the ¹ ven case, we conclude
that

where A~ b+(g) and Bbr b+(rl) are odd polynomials of de-
gree I)I. In fact, as will be shown, Abr b(g) and B& b(g),
are the Ince polynomials and in the following will be
called IN, b(z).

B. The difFerential equation in elliptic coordinates

Now, we will 6nd the eigenvalues and eigenfunctions of
the problem by solving the di6'erential equations which
are solutions of (19a) and (19b}. In fact, both are the
same equation

(z —1) +z —a (z —1)z +cr k (z 1) bF(z——)=0,
dz~ dz

(31)

where k =2mE /A and a =m coo. /A .
The solutions of (31) can be written as

F(z) =exp( —az /2)I'(z),
F(2)=exp( —az /2)(z —1 )

' I (z),
where

I'(z)= g a&z' (first kind)
l=O

I (z) = g c(z (second kind) .
l=o

(32a)

(33a)

(33b)

As expected, these solutions are consistent with the results of the previous discussions where only the symmetry proper-
ties of B were invoked.

The recurrence relations for the coe%cients are

a&(l +a(21+1) ok b)+a—, 2.[o k—+2a(1 —l)]=a&+2(1+2)(1+I),
c&[21 +a(21+1) ok b+1+—I]+c&—2[2cr k +b+3a —1 —l(l+4a —2)]+c( ~[2a(l 2} cr—k ]—

(34a)

=c,+2(l +2)(l +1) . (34b)

If k and b are given, these recurrence relations deter-
mine the solutions for I(z). However, we are interested
in physical solutions which are bound states. This fact
implies that I' and I must be polynomials to ensure con-
vergence as z~00. In other words, we need k and b
values such that (2( (or c() must vanish for all 1 greater
than a given n.

Let us first consider (34a). There are even and odd
solutions (with even and odd n, respectively). Assuming
n even (n =2p, p =0, 1,2. . . ) we will have one even poly-
nomial of degree n and a&=0 for all 1&n. Then, using
(34a} for 1 =n+2, and as we will establish a„+2=0,

a„[cr2k —2a(n +1)]= „(2(+n4+4)(n +3), (35)

with a„&0 (for hypothesis); therefore in order to ensure

I

that a„+4 vanishes:

cr k =2a(2p+1),
E =fico(2p+ 1),

(36)

for p=0, 1,2, . . . , which is the well-known quantum en-
ergy for the two-dimensional simple HO. Condition (36)
provides a„+4=0 and it is independent of b.

We must ensure a„+2=0 now. For this we insert (36)
in (34a) and we obtain

a2~(4p —a b)+a2~ 24a=O .— (37)

By recurrency, starting from a0=1 a polynomial expres-
sion can be found whose roots give the allowed values of
b. We will call them characteristic values b +. It is easy
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o k =2a[(2p+1)+1],
E =fico[(2p+1)+1] .

(38)

In this case, starting from a
&

= 1 and using (34a), another
(p + 1)-degree polynomial can be obtained which corre-
sponds to the eigenvalue equation of the Hermitian ma-
trix B in the —+ subspace. As in the even-n case there
exist p + 1 characteristic values b,

' for each n =2p+ 1.

to see that there are p+1 real characteristic values for
each n =2p. It is important to remark that the resulting
polynomial is just the equivalent to the eigenvalue equa-
tion of the operator B in the + + subspace, as described
in Sec. III A. In this way the quantification condition for
the observable B is obtained.

A similar analysis of (34a) for the odd solutions
(n =2p+ 1, p =0, 1,2, . . . ) leads to

We turn about (34b) now. As before, there are even
solutions and odd solutions. Assuming n even (n =2p,
p =0, 1,2, . . . ) so that c, =0 for all I) n, using (34b) for
l =n +4 and taking into account that we will require
c„+z=c„+4=0,we obtain

c„[2a(n +2)—cr k ]=c„+6(n +6)(n +5), (39)

with c„XO (for hypothesis); therefore, for p =0, 1,2, . . . ,

o k =2a(2p +2)=2a[(2p + 1)+1],
(40)

E =fico[(2p+1)+ I ] .

This is the same condition (38). However, (38) leads to
odd polynomials of degree 2p + 1, while (40) leads to even
polynomials of degree 2p times the factor (z —1)'~ [see
(32b)].

We want c„+&=0now. That is, using (34b) and (40)

cz (8p~ —3a+2p+1 —b) +zc„z(1la+b —1 —4p +4p) —cz 48a=O . (41)

By recurrency, starting from co = 1 we obtain the equa-
tion that determines the p+1 real characteristic values
b;

+ which is equivalent to the eigenvalue equation of B
in the + —subspace.

Let us remark that the condition c„+4=0, that is,

cz [3a+b —4(p + 1)p —1]—cz z4a =0, (42)

is automatically fulfilled by the characteristic values b,
+

determined through (41).
Analyzing (34b) for odd-n values (let us write

n =2p —1, p=1, 2, . . . ) and requiring c„+z=c„+4
=c„+6=0 it can be concluded that the allowed energies
must satisfy, for p = 1,2, ~ . . ,

o k =2a(2p+1),
E =fico(2p + 1),

(43)

which is the same condition (36). However, (36) leads to
even polynomials of degree 2p, while (43) leads to odd po-
lynomials of degree 2p —1 times the factor (z —1)' [see
32(b)]. As in the previous cases the condition c„+~=0
leads to a p-degree polynomial whose roots will determine

I

the characteristic values b;
Table I summarizes the results of this section.

IV. BEHAVIOR OF THE CHARACTERISTIC
VALUES

Table II shows the analytic expressions for the charac-
teristic values corresponding to the states with N =0, 1,
2, and 3.

The ground state is obviously a ++ state which also
has L and H well defined. In this case B can be
represented by a 1 X I matrix and the only characteristic
value bo+ is trivially obtained.

For the first excited state, the B matrix is also diagonal
in the Cartesian base. The + —state corresponds to the
n„=0, n = 1 state with a characteristic value b, +

=1—3a and the wave function is the product of two
even polynomials I» 3 (z). On the other hand, the
—+ state corresponds to the n =1, n =0 Cartesian
state and has a characteristic value b] =1—a, while the
associated polynomials are odd polynomials of the first
kind.

TABLE I. Summary of the properties of the wave functions obtained for the two-dimensional HO and their associated eigenfunc-
tions. See the Appendix for the evaluation of the normalization constants.

Parity
X Wave Functions Degree of P Characteristic values

N even I~ b ( g)I~ b ( g )exp 1$'+ g' —'1) b +, i=0, . . . , N/2

I~ ~(g)(g' 1)'~'I~ b(g)11 ——g')'~'exp (g'+g' —1) N —1 b~, i =1, . . . , N/2

N odd Iv b(g)I~ b(g)exp lg +g —1)
L

I~b(g)(g —1)' I~b(g)(1 —g )'~ exp (g +g —1) N —1

b, i =1, . . . , (N+1)/2

b~+, ) =1, . . . „(N+1)/2
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TABLE II. Characteristic values corresponding to the states with N =0, 1, 2, and 3.

Number
of states Characteristic values Cylindric values

b', =1—a
b'+ = 1 —3a

bol+ = —3~+2 —2((g~+
b, =4—3a
b', + = —3++2+2(a'+
b ,

'—= —3o.+ 5 —2((g'—
b', + = —5o, +5 —2(u'+
b2 = —3o'. +5+2(a—
O', = —S~+ 5+2(~'+

1 )1/2

1 )1/2

2&x+4) '

2++4)'
2~+4)"-'
2++4)'

The N =2 state has also a trivial solution for the ——
subspace. The corresponding Cartesian state n„= 1,
p1y 1 has the characteristic value b

&

=4 —3a and the
associated polynomials are odd polynomials of the second
kind. On the other hand, the ++ subspace has dimen-
sion 2 and the corresponding characteristic values must
be obtained by diagonalization of B which can be easily
carried out leading to the bo+ and b', +. These are the
lowest states without well-defined n .

For the case N =3, both —+ and + —subspaces have
dimension 2 and we obtain b,', b z and b, +,b 2+ by di-
agonalization of two 2 X 2 matrices.

Let us remark the correct behavior of the characteris-
tic values when the limit a~0 is taken (cylindric limit).
As B~L and the cylindric eigenstates have L well
defined (L =mfi where m =+N, +(N —2), . . . , 0 if N
even or m =+N, +(N —2), . . . , +1 if N odd) the charac-
teristic values will be as follows.

(i) N even:

and 4. One remarkable point is the increasing number of
negative characteristic values when u increases. We re-
call that o; is a measure of the deformation of the used el-
liptical system (in fact, it is a ratio between the focal dis-
tance and the size parameter P ' of the HO).

It is also of interest to note the behavior of the charac-
teristic values when they cross the b =0 axis that classi-
cally correspond to the separatrix B =0 which was men-
tioned in Sec. II. For large positive b, values (i ~N/2),
they appear to be degenerate, that is b,

' =b, for N
even and b =b; + for N odd. These values are split
near the b =0 axis and this effect is illustrated in Fig. 4(d)
where the lines of constant i were drawn. For even N,
b,

'+ ) b, and for odd N, b ) b; +. Finally for nega-
tive values of b the characteristic values corresponding to
first-kind eigenfunctions b,

'+ and b, '+& display both the
same linear dependence with N, whereas another linear
function is followed by the b,

+ and b, second-kind
characteristic values.

b,
'+ =0,4, 16, . . . , N',

b =4, 16, . . . , N

(ii) N odd:

b =1,9,25, . . . , N

b'+=1 9 25

We can see that the characteristic values (except the 0
value bo+) are doubly degenerate [see also Fig. 4(a)].

Figures 4(b) —4(d) display the distribution of the
characteristic values for a wide range of N for +=1, 2,

I

V. CONCLUDING REMARKS

In the present work we have analyzed the problem of
the two-dimensional simple harmonic oscillator when it is
separated in elliptic coordinates. We have seen that this
is the only physical system, with a central potential (apart
from the case V =const) which results in being separable
in such coordinates and this property remains whatever
the chosen focal distance. We solved the classical prob-
lern finding the appropriate constant of motion that al-
lows us to display the Poincare sections. From the
quantum-mechanical point of view, the Schrodinger
equation leads to the diA'erential equation

(z —1)F"(z)+zF'(z)+[—a (z —1)z +cr k (z —1)—b]F(z)=0,

which admits physical solutions associated with polyno-
mials if the condition

cr k 2za(N + 1)

is fulfilled, N being an integer number (providing the

quantification energy condition) and the separability con-
stant b takes only certain values, the characteristic
values, that provides the quantum condition for a new
observable B which commutes with the Harniltonian.
These characteristic values, whose general behavior was
also displayed in this work, can be determined by diago-
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FICx. 4. Characteristic values b vs X. The cross corresponds to b'+, the circle to b', the square corresponds to b'+, and the tri-
angle to b' . (a) a=O, (b) a=1, (c) a=2, {d}a=4.

nalization of 8 in the Cartesian base or by using re-
currence relations and a truncation condition which en-
sures convergence when z ~~.

Let us finally remark that analogous procedures can
also be applied to other two-dimensional problems with
elliptic symmetry or even to three-dimensional physical
systems such as the three-dimensional simple HO prob-
lem which leads to separable equations if one uses prolate
(or oblate) ellipsoidal coordinates.
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APPENDIX: NORMALIZATION OF THE %'AVE
FUNCTIONS

If we want to use the discussed wave functions as an
orthonormal base of the Hilbert space, we must normal-
ize them, that is,

l) ~N, b+N, b(()~N, b( 7) (Al)

where JV&b are normalization constants which can be
determined by integration over all the space, that is,

l =f" f '
ie(g, g)i'~'(g' —g')dgdg . (A2)

However, as we will show, the normalization constants
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(ggINb ) =Jv~ bexp[ —(a/2)(g +r) —l)]I~ b(g)

XI)v b(q) . (A3)

As the I~ b polynomials have been constructed by setting
ao = 1, the independent term of the total wave function
(A3), aside from the exponential factor, is just the nor-
malization constant A~ b. On the other hand, the
coefficients Cb/"b of the expansion (25) verify

can also be determined as follows.
Let us consider states with even X whose wave func-

tions belong to the first class:

XE~ „ i( a), (A7)

where the even polynomials E (z) are defined as

and hl'"' is the I coe%cient of the n-degree Hermite poly-
nomial.

In the way we can find the normalization constants for
the even-X second-kind solutions. In this case we must
search for the term of degree 1 and therefore,

n 1 (n„)
, b

( 2)v))/2 X N, b ~ )

g Ic";I'=I .
n

X

(A4) y h (m + ) )( I ))/2

I

(A8)

Therefore we can determine JV by searching for the in-
dependent term of (25) which for N even and solutions of
the first kind results in

For the odd-X first-kind solutions we obtain

13i/'a ] (n )

b
( 2 ))v\ /p rr )v b ~ ()N ) )

)

X X'

X D~ „(&a), (A9)

XD)v „(&a),
where D„are even n-degree polynomials defined as

h (n)( I )l/2zl
~t =0

(A6)

and for the odd-X second-kind we find

P&a 1 (n )

)v, b
( 2)v))/p g )v, b ~ bo

X

XE/v „)(&a) . (A 10)
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