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Nonrelativistic quaternionic quantum mechanics in one dimension
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We present a formalism for treating one-dimensional problems in quaternionic quantum mechan-
ics. As an example, we derive an explicit form for the T matrix for scattering from a square (quater-
nionic) barrier, and use this result to calculate the transmission and reAection coefficients. We show
that the qualitative form of these coefficients is the same as in complex quantum mechanics, even
when the barrier has a nonzero value for the quaternionic components of the potential.

I. INTRODUCTION

Quaternionic quantum mechanics (QQM) has been
considered as a general structure by a number of au-
thors. ' Adler has recently described scattering theory in
QQM, and has shown that the quaternionic part of the
wave function does not contribute to the spatially asymp-
totic states. ' In particular, he has shown that the opti-
cal potential describing scattering restricted to the com-
plex projection of the wave function (where the complex
projection is defined by the kinetic Hamiltonian) is a Her-
mitian operator, and thus that the S matrix on the com-
plex states is unitary. No flux is lost to the quaternionic
states. In this paper we analyze the one-dimensional
scattering problem in QQM.

We begin with the Schrodinger equation of QQM

where H is an anti-Hermitian quaternionic operator, and
4 is a quaternionic wave function. It is easy to show that
in the time-independent case there always exists a suit-
able choice of quaternionic phase such that the solution
of (1) may be written in the form

with the probability density p and current density J given
by

p(x, t) = qt*W, J(x, t) =qt*i
(3x ax'

where c and c&
I(:( l, i)], and j
(j =k = —l, ij =

We then write

are complex [i.e., are elements of
is the usual quater nionic unit
ji =k).—

V =i ( V +jVt3 ),
where, because of the anti-Hermiticity of H and thus V,
V is real for local potentials, and V& may be complex.
(This ensures unitarity, since the i component of the po-
tential is set to zero. The j and k components of V do not
act as sources and sinks of flux since we have chosen the
unit i to describe the time dependence. ) We similarly
write the wave function

where the asterisk represents quaternionic conjugation.
We now rewrite the Schrodinger equation using the

symplectic representation of quaternions, writing a gen-
eral quaternion q as

q =c +jc&,

lEt

(we set h l2~= 1 throughout) for real E, which satisfies

H+=CiE .

(2) +jap .

The time-independent Schrodinger equation may then be
rewritten as a pair of coupled complex equations

Note that the order of multiplication in these expressions
is important due to the noncommutative nature of
quaternionic multiplication. For a one-dimensional prob-
lem we may write the Hamiltonian as (we have set the
mass in the problem equal to —,

' in appropriate units )

d2
+ V N —

Vp Np=EN
dx

d —V Np
—VpN =E+13,

dx

(8)

H= —i +V,a'
Bx

(4)

so that the kinetic terms and the eigenvalues of H are
both in the complex subspace C( l, i). It is possible to
construct conserved currents from Eqs. (1) and (4) in a
manner entirely analogous to the usual complex case.
One obtains in this fashion the continuity equation

0p BJ
Bt

where the reality of V has been used. Adler has dis-
cussed the scattering theory of (8) in the general case.
Here we specialize to the one-dimensional problem, and
rewrite (8) as a system of first-order equations:

Here Il, is the column vector (N, @',d&&, 4&), where the
primes indicate differentiation with respect to x, and A is
a matrix given by
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0 1 0 0

V.—E 0 —V~ 0

0 0 0 1

0 V+E 0Vp

(10)

1+ 3 sds
Xo

x S)+ —f A (s1)ds1 f A (sz)dsz+ Q(xo) .
0 0

We can apply the general theory of linear differential
equations to (10). The general solution may be written
using spatially ordered exponentials:

Q(x) = P„exp f A (s)ds Q(xo)
0

We now make some comments regarding the limit of
these equations as V&~0. One sees from Eqs. (8) that
the differential equations for the symplectic components

and 4& decouple when the potential has no j or k
component. Thus 4, which is the part of the wave func-
tion in C( l, i ), is independent of the purely quaternionic
part 4&. In a region of free space, where V =0 as well,
Eqs. (8) have the solutions

eik&+ C e
—ikx (P C e kx+ C e

—kx (17)P 3 4

where k =&~E~ is the wave number. From the form of
the solutions (17) we see that the quaternionic parts fall
off exponentially in the free-space regions, justifying the
statement that the asymptotic states are in C(1,i). When
V&=0 the matrix P given above takes the block diagonal
form (the subscript denotes the free-space case)

(1 1)

This solution must be used for potentials that are a func-
tion of space, but for the piecewise constant potentials we
will henceforth be concerned with there are more
straightforward methods available.

Po=

1 1 0 0
ip —ip 0 0
0 0 1 1

0 0

(18)

II. CONSTANT POTENTIAL SOLUTION

=exp( Ax)B, (12)

where B is a constant vector selected to satisfy the initial
conditions. One may then diagonalize A

3 =PyP

exp( Ax)=P exp(yx)P

where y=diag(ip, ip, v,——v), with p and v the eigen-
values of 3, given by

—[(E2
~
V ~2)l/2 V ]1/2

[(E2
] V (2)1/2+ V ]1/2

P

This leads to the expression

Q(x) =P exp(yx)C=—e(x)C

(14)

(15)

for some suitable coefficient vector C=(C„C2,Cz, C4).
The matrix P may be written as

In a region of constant potential we may write the solu-
tion (11) as

A(x)=exp[A (x —xo)]A(xo)

We shall see in Sec. III how the results of complex quan-
tum mechanics are retrieved from this form. One other
point requires comment. With V&=0 and V %0 the ei-
genvalue v in (14) depends on the sum of E and V,
whereas p depends on the difference E —V . In complex
quantum mechanics (CQM) only the quantity p appears,
and any results derived do not depend on the zero of en-
ergy, only the difference of energies. The origin of the
dependence on E+V has been commented upon by
Adler, and may be traced back to the signs in the
Schrodinger equation (8). ' In CQM a shift in the zero
of the energy can always be compensated for by shifting
the phase of the wave function. No such freedom exists
in QQM, since the net result of such a phase shift is to in-
troduce a time-dependent phase into the potential. That
is, shifting the zero of the energy is not consistent with
the time-independent theory. We follow Adler and take
the value of the potential to be zero at spatial infinity,
and measure the energy E of the particle relative to this.

III. TRANSFER MATRIX

Using the results of Sec. II we are now in a position to
calculate the transfer matrix for a square barrier in
QQM. We take the most general case of a square barrier
with

0, x&a
V(x) = V +jV&,

0, x&b
a &x(b, (19)

P= '

—ipV&
R+E

i@V&

R+E

where R =(E
~ V&~ )'

(16)
with V a real constant and V& a complex constant. The
matching conditions at the boundaries may be written as

II(a )=Q(a+), Q(b )=Q(b+) .

To calculate the reAection and transmission coefficients
for a wave incident from the left of the barrier, we take
the wave function in the potential free regions to be of
the form
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ikx+ —ikx (
N (x)= '

a te ikx

re, x(a
NP(x)= ', k„b

(21)

0 IT' T=—1 0
0 1

—1 0 (26}

Now the first of Eqs. (23) and Eq. (25) may be used to
derive the necessary condition on T for current conserva-
tion on either side of the barrier:

Note the appearance in (21) of the extra coefficients r'
and t', which represent the exponentially decaying parts
unique to QQM. In the region a &x (b the solution is
given by Eqs. (15) and (16). Denoting by 60(x )

=Podiag(e'"", e '"',e",e "") the matrix 6 in the poten-
tial free region, the matching conditions (20) may be writ-
ten as

t

0
0=6 (b)6(b)6-'(a)6, (a)

.t'.
We can now identify the quantity

60 '(b)6(b)6 '(a)60(a)

r
r
0

(22)

C, = C; =—TC;,

as the transfer matrix for this problem. Before proceed-
ing we briefly review the transfer matrix for the corre-
sponding CQM problem.

Following a procedure analogous to that outlined
above, using the complex Schrodinger equation one may
derive the relation

T12

t
0
0

—T r
r'
0,

(27)

The current is given by

1 0 0 0
0

J(x)=C

0

—1 0 0
0 0 . C=C MC

0 i 0

(28)

Equations (27) and (28) together yield the result
~ r~ +

~
t~ = 1, showing that the incoming flux is entirely in

the outgoing complex parts of the wave function. Using
the current conservation condition (5) in the time-
independent case, and the relationship (27), we obtain the
current conservation condition

We shall see that there exist analogous quaternionic re-
sults. The complex T matrix of (23) appears in the limit
as V&~0 as the upper left 2 X 2 sector of the QQM T ma-
trix to be presented below.

We'introduce the QQM T matrix via the relation

T~~ =e '"'" ' cos(b —a)p T MT=M . (29)

i u k+ — + —sin(b —a)p
2 k p

(23)

T =—~ ——e ' +'ksin(b —a)p .i k
2 k p

Here p, =V E —Vo is the wave number in the region of
the potential, where Vo is the height of the barrier, and
the coefficient vectors for the incident and transmitted
wave functions, respectively, are given by

The current conservation condition (29) leads to some re-

lationships between the elements of T. One may derive
further relationships by setting a = —b for the positions
of the barrier steps, and then using the invariance of the
Schrodinger equation under the reflection x~ —x. (See
Chap. 6 of Ref. 6 for the corresponding treatment in

CQM. ) In the QQM case we cannot impose further rela-
tions from time-reversal invariance, since the
Schrodinger equation does not admit a time-reversed
solution 4'(x, —t) when V& is nonzero.

In terms of the components of the 4X4 matrix T the
reflection and transmission coefficients are given by

C;= C t
t 0 (24)

21 33 23 31

T32 T23 —T22 T33

From these expressions one may easily check that
det(T)=1 and that ~r~ +~t~ =1. The complex current is
given by the quantity

(30}

t = T11+
T'[Q( T33 T2f T23 T3] ) + T[3( T22 T3] T32 Tq, )

T32 T23 —T22 T33

J(x)=i «d+
dx

, dV*
dx

d%*
dx

0 1

—1 0 d%
dx

(25)

with similar expressions for r ' and t '. After some
straightforward but tedious algebra, using Eqs. (15), (16),
(18), and (22), we arrive at an expression for T. We
present here only some representative elements, since we
do not require the explicit form of T. The remaining ele-
ments may be found in the Appendix.
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e
—ik(b —a)

4R
k(E+R) 2cosO+i + —sinO

k p

IV, I'

(R +E) 2 cosh/+i ———sinhP
v k

—kb +iak V
T» =e '

(1 —i)cosO+ —+t sinO —(1 —i)cosh/ — ——i —sinhP
k k . v

4R p k v k
(31)

T33
e

—k(b —a)

4R

'k
(R E)—2 cosO+

p
k v

sinO +(R +E) 2 cosh/+ —+ —sinhP
k v k

where 0=(b —a)p and P=(b —a)v. The determinant of
T can be seen to be unity by construction, and we have
also checked that Eq. (29) is satisfied.

We observe that in the CQM limit V&~0, the above
expression for T» reduces to the expression from CQM
in (23), as it must, while T3& ~0. (In this limit R ~E. )

In general, in the CQM limit the matrix T becomes block
diagonal, with the upper left 2X2 submatrix being the T
matrix of Eq. (23). The lower 2 X 2 matrix describes the
quantum mechanics of the decoupled quaternionic part
N& of the wave function, and basically is of similar form
to the upper part, with hyperbolic functions and real ex-

ponential rather than trigonometric functions and com-
plex exponentials.

IV. REFLECTION FROM SQUARE BARRIERS

Using the first of Eqs. (30) and the elements of T, we
can calculate the following lengthy expression for the
reflection coefticient for a wave incident from the left on a
general square barrier, as given in Eq. (19):

r&r=
r2

where

r, =4i
I VPI 1 cosH —cosh/+ sinhP2 R +4iaR 2 sinO cosh/

D k+ iaP r' ——
I
V I' —2iIV I'

pv
sinO sinhP,

r~=4I V
I

+2cos0. 2coshg 2RX+ —IV—I
2R sinhg f3—X+

I
V

I2 P p

2I V
I

sinO ++—2 ik
k p

(1+i)cosh/+ —+ sinhP
k iv
v k

+i sinO X +—(2 cosh/+/3sinhg) ——
I
V

I
a 2i cosh/+ ———sinhP

u k ~ D 2 k v

k p p v k
(32)

r( Vp=0)=

k
sinO

p

u k
2 cosO —i +—sinO

k p

(33)

Here we have set a =p/k —k /p, i3= v/k +k /v,
X=R +E, and D =R —E.

The expressions, while not particularly illuminating,
have some interesting features. First we check that the
correct limits are obtained. When we let V&~0, we ob-
tain the result

which is the expression for r in CQM. Also, if we set 0
and / =0, corresponding to the case of a finite height bar-
rier of zero width, r, =0 as required. We have also
checked that the results (32) reduce to the expression ob-
tained by Adler when we take the 5-function limit
(b —a) V~II„, where II is a constant quaternion, as the
width of the barrier (b —a) ~0.

The expression (33) vanishes whenever O=nw, corre-
sponding to transmission resonances in CQM. However,
putting O=n~ in (32) produces a nonzero result. To see
what is going on we look at (32) for $ large (wide barrier
or high energy), so that sinhP =cosh/ and we obtain
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r ( 0= n rr ) =
R

R+E V i4
+0

R (R +E)(2+P) E4 (34)

0.020 '- (a) i

0.010-

0.005—

18.0 18.5 19.()
energy (arbt trar& units)

19.5 20.0

0.80-

0.60-

We thus see that the transmission resonances of CQM are
"filled in" when V&%0. What actually happens is that
the behavior of the transmission function as a function of
energy is qualitatively the same as the CQM case. How-
ever, the positions of the zeros in ri are shifted in ener-

gy from the CQM case. In other words, there are still
transmission resonances (at least for relatively small
values of

~ V&i ), but they are no longer exactly at O=nrr
In Figs. 1(a) and 1(b) we present some typical numerical
results. The curves marked C are l ri as a function of en-

ergy in CQM for a square barrier. For the curves labeled

g we have taken V =10 units, and
i V& i

=1 unit and 10
units, respectively. To set the height of the barriers for
the complex cases we have taken a height such that the
threshold energy, where the energy of the incoming parti-
cle becomes equal to the barrier height, or alternately,
the wave number in the region a (x & b becomes real, is
the same for each curve. From Eq. (14) we see that in the
quaternionic case this requires

E2) ( V0 )2+
i

Vo i2 (35)

Thus for Fig. 1(a), when V" = 10 units and
~ V& ~

= 1 unit,
the threshold energy is simply &101 units. Similarly, for
Fig. 1(b) the threshold energy is /200 units. These are
then taken to be the respective heights of the barriers for
the comparative complex cases.

It is interesting to see in Fig. 1 that a value of
i V&~

equal to 10% of the real part of the potential produces an
effect in the reflection coefficient that is quite small. We
see a larger effect in Fig. 1(b) for

i VP = V, but qualita-
tively there are no obvious differences between QQM and
CQM.

One may then ask if this result carries over to the case
of a sequence of square barriers of different heights (of
both the real and quaternionic parts). In fact, this was
the initial motivation for this work. We were unable to
obtain tractable expressions for the double-barrier case.
The T matrix for such a compound barrier, as calculated
using REDUCE, resulted in an output over 3000 lines
long. We thus turned to numerical evaluation of the
reflection and transmission coefficients using products of
the T matrix we calculated for the single barrier. We
found that the reflection coefficient was, in general, phase
shifted when the order of the two barriers was reversed,
but that the magnitude was unchanged. Unfortunately,
this is also true, in general, of CQM, so we cannot make
any qualitative predictions for possible experiments to
determine the existence or otherwise of quaternionic po-
tentials in nature on the basis of these simple considera-
tions. We also investigated the effect of introducing a
third square barrier, again finding no change in the mag-
nitude of ~ri when the order of the barriers was reversed.

0.20 I-

0.
15 20 25 30

energy (arbitr'try units)
35 40

FICJ. l. (a) Refiection ~r as a function of energy for CQM
(dashed curve) with a square barrier of height &101 units, and
the same quantity in QQM (solid curve) with VII=1 unit and
V„=10units, to give the same threshold energy. Here we have
shown the curves only near one of the minima in order to show
the differences. The overall shape of the curves is similar to
those in (b). We see that the position of the minimum (transmis-
sion resonance) is shifted slightly. (b) Same as (a) with a square
barrier of height &200 units in the complex case and V&=10
units and V =10 units in the QQM case. Now the minima
have been shifted considerably, but the qualitative form of the
curves is still similar.

V. CONCLUSION

We have presented a simple formalism for treating
wave-mechanical problems in quaternionic quantum
mechanics. We have constructed the transfer matrix for
a square barrier, and shown explicitly how complex quan-
tum mechanics emerges in the case of a real potential.
We have shown how one may calculate reflection and
transmission coefficients for square barriers using the
transfer matrix, and shown some typical results.
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APPENDIX

Here me present the remaining 13 elements of the matrix T, as introduced in the text. The elements T», T31 and

T&3 appear as Eq. (31) in the main text:

T12
Ie

~ —i(b+a)k

4R
~ Vt ~' k v

(R +E) ——sinO+ —+ —sinhP
k p (R+E) v k

k(a —ib)

T =
4R
—k(a +ib)

&e

4R

—(1+i)cosO+ — sinO+ ( 1+i )cosh/+ —+—sinhPp Ik ~ v ik
k p k v

( 1 —i )cos0+ +—sin0 —
( 1 —i)cosh/+ ———sinhtb

ik V Ek

k p k v

Vp
T23

p
13 &

p

T24 T14& T32 g 31'
pT Q

T34

—k(b+a) k v
(E —R) —+~ sinO —(R +E) ———sinhp

4R p v k

V k(b+ia)
&e

T41 4R

k ip k iv—
( 1+i )cos0+ —— sinO+ ( 1+i )cosh/ — —+ stnhP

p k v k
(.

V Te T 2k(a +b)T
41& 43 34

p

e k(b —a)

4R

k ic, k v
(R E) 2 cos—O — —— sin0 + ( R +E) 2 cosh/ — —+ —sinhg

p k v k
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