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Using an LSJ-coupling scheme and a configuration-interaction wave function, the relativistic en-

ergies, transition wavelengths of the 1s2s2p P and 1s2p' S', are studied. The relativistic correc-
tion, Breit-Pauli operator, and mass polarization correction are calculated for ions from Bet to
Ne vII. Very good agreement with experiment is obtained in many cases. For example, the calculat-
ed transition wavelengths for Be I, N vI, 0 v, and Ne vie are 1910.15, 825.45, 694.75, and 526.57 A.
It is to be compared with the corresponding experimental data of 1909.5+0.6, 825.55+0. 1,
694.75+0. 1, and 526.65+0. 1 A. The calculated fine-structure values agree reasonably well with
other theoretical results and with experiments. Some interesting comparisons between the existing
theoretical data will also be discussed.

I. INTRODUCTION II. THEORY

In the past ten years, encouraging progress has been
made on the energy spectra of Li-like quartets. This pro-
gress is made possible by the close interaction between
experiment and theory. ' ' These quartet states are core
excited but they do not couple to the continuum through
the Coulomb potential. Hence optical emission is the
main stabilization mechanism for the higher-excited
quartets. Experimentally, a high-resolution beam-foil
technique has been carried out which determines the ob-
served wavelength to well within 0.1 A in the ultraviolet
region. Theoretically, large LS-coupling wave functions
are used with relativistic corrections to calculate the en-
ergy accurate to a few meV. With the help of theoretical
data, the emission spectral lines in the experiment are
unambiguously identified. Therefore the spectra of Li-
like quartets are considered to be well established for
some low-Z systems.

For four-electron systems, the corresponding core-
excited states would be the quintets. There are consider-
ably fewer theoretical data available. In 1980, Bunge"
identified the 3489-A line in the Li spectra to be the tran-
sition between Li 1s2s2p P and 1s2p S . This has
stimulated considerable interest in searching for similar
transitions in the isoelectronic sequence. This is done for
Be) ' B yy,

' ' F y), '
Ne gyes ' C (yy, N )y, and 0 v. ' '

Theoretically, the transition energies are calculated with
various versions of the multiconfiguration Dirac-Fock
methods, ' ' ' ' multiconfiguration Hartree-Fock
method, ' and others. ' In this work, an attempt is
made to calculate the transition wavelengths and fine
structures with multiconfiguration-interaction wave func-
tions. The relativistic correction, mass polarization, and
Breit-Pauli operators are included using first-order per-
turbation theory. The procedure is similar to the earlier
work on Li-like 1s2s2p P ls2p2p P transitions. In
Sec. II the perturbation operators and the basis set of
wave functions will be presented. Sections III and IV
give the computation procedure, results, and discussions.
Section V is a brief summary and conclusion.
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is the electron Fermi contact term, where M is the nu-
clear mass in a.u. and c =137.036. The spin-orbit, spin-
spin and spin-other orbit operators are given by
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The Hamiltonian for the berylliumlike system in atom-
ic units is given by

H =HO+H1+H2+H3+H4+H5+Hso+Hsoo+Hss
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The spin function g&& is a quintet which is the eigenfunc-
Z

tion of the total spin angular momentum with the eigen-
value of S =2. Each choice of 1(i) represents a particular
partial wave for which a set of nonlinear parameters a is
chosen through energy optimization. The linear parame-
ters C are then determined by solving the secular equa-
tion from

(14)

This secular equation also determines the nonrelativistic
zeroth-order energy Eo. The relativistic and mass-
polarization corrections are obtained by using the first-
order perturbation theory. That is,

and

SE„,=&elH, +H, le&,

aE,„=& +lH, le &,

aE„,=&+IH, I+& .

(15)

where 1, and s; are the orbital and spin angular momen-
tum of the ith electron. The wave function is a linear
combination of basis functions which are the eigenfunc-
tions of L, S, L„and S, . L and S are the total orbital
and spin angular momentum of the atomic system.
Hence

+LsMs, = A g C„'I';I9'„(;)(R) Y((, )
(R )Xss,

1{i)
n{i j

where 3 is the antisymmetrization operator and C„'{',
&

are
the linear parameters. R represents, collectively, the ra-
dial parts of r], r2, r3, r4, and R represents their angular
part. y„{,~ represents the set of all possible radial func-
tions and Yt{;~ represents the set of all possible orbital an-
gular functions. In actual calculation, truncation is
necessary. The radial function is given by the product of
the Slater-type orbitals:

and

(EEf )J &QIsJJ lH„+H„,+H„l+LsJJ & (20)

III. COMPUTATION

We started the calculation with the BI? system by
selecting a number of orbital angular partial waves. To
achieve high accuracy, one usually needs to include a
larger number of linear parameters in the wave function
with each linear parameter corresponding to a set of n (i).
However, there is advantage to keeping the size of the
wave function small for many reasons. Hence a term-
selection process is installed to test the contribution of
each term and to select a much smaller wave function
without compromising the energy appreciably. For ex-
ample, for the BI? P state, a 134-term wave function is
selected from a 239-term wave function. Fourteen partial
waves are adopted for this state. Some other partial
waves are also tried, but their contributions to the energy
are too small. The convergence pattern for this state is
shown in Table I. In this table, hE gives the contribution
to the binding energy when the corresponding partial
wave is added. For example, the energy for the wave
function with the nrst two partial wave (51 terms total) is
—17.208 241 a.u. The nonlinear parameters in each par-
tial wave are individually optimized. A few of the u] are
fixed to be 5.0 since they are very close to the optimized
value and further optimization will not change the energy
at the eighth digit. Each term in 2V corresponds to a set
of n(i), the powers of r in the Slater orbital. It is too
complicated to give the 134 sets of n (i) in this table. It
will be supplied to the interested reader on request.

For the S state calculation, it converges comparative-
ly faster. An 89-term wave function is selected from a
139-term wave function. Eleven partial waves are used
for this state. Once the partial waves and terms for
B II P and S states are selected, the same partial waves
and terms are also used for all other Z ions. For Be I,
C iver, N rv, and 0 v, the nonlinear parameters are reop-
timized for each ion. This is actually quite laborious.

Since the spins of the individual electron are all parallel
in a quintet, the spin function g&& is symmetric with

Z

respect to the exchange of any pair of spin coordinates.
To have an antisymmetric total wave function, the spatial
part of the wave function must be antisymmetric with
respect to interchange of electron coordinates. Hence the
wave function vanishes when r, =r and the expectation
value for 5(r; ) vanishes for any pair of i,j A. s a conse-
quence, the operator H5 does not contribute to the ener-

gy of a four-electron quintet system. We now have the
"center of gravity" energy E

g

Ecg Eo +LaLEI e] + LakEmsp +ALE I et

The fine-structure energy levels are obtained by con-
structing the wave function with the LSJ scheme

& LSMSZ
l JJz

M, S
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TABLE I. Convergence of nonrelativistic energy and wave function of 1s2s2p'-'P B Ii (in a.u. ). N is
the number of linear parameters (the corresponding power of r will be supplied on request) and n, are
the nonlinear parameters. hE is the binding energy contributed by adding the corresponding partial
wave.

1

2
3
4
5
6
7
8
9
10
11
12
13
14

[(l„l~)l,~, l3] ]23p 4

[(0,0)0,1]1,1
[(0,0)0,2]2,2
[(0,1)1,2] 1,1

[(0,1)1,2]1,1
[(0,0)0, 1]1,1
[(0,2)2,3]1,1
[(1,1)0,1]1,1
[(0,0)0,3]3,3
[(2,2)0, 1]1,1
[(0,0)0,4]4,4
[(0,3)3,4]1,1
[(0,2)2,3]2,1

[(0,1)1,2]2, 1

[(0,2)2,3]1,1

37
14
24

5
10

8
6
7
3
3
5

3
5
4

4.90
5.00
5.00
1.75
2.5
5.0
4.90
5.0
4.9
5.0
5.0
5.0
5.0
1.75

2.0947
1.764
2.88
5.28
2.035
2.8
3.78
1.323
5.67
1.029
4.2
2.52
2.4
2.52

2.268
2.376
2.588
3.3644
4.52
2.8468
1.43
3.24
1.43
2.808
2.8468
2.562
4.374
2.562

1.869
2.61
1.875
1.50
1.869
1.875
2.04
3.132
2.04
3.654
1.6875
2.5
1.8
5.0

17.202 659 5

0.005 581 7
0.006 229 5

0.001 337 6
0.001 300 1

0.000 738 8
0.000 624 6
0.000 429 1

0.000 081 6
0.000 061 5
0.000 099 3
0.000 053 5

0.000 031 2
0.000 012 9

Total 134 17.219 243 9

For large-Z systems, we expect the nonlinear parameters
to vary linearly with Z. Therefore, the results for F vr
and NevII are obtained by simply scaling the nonlinear
parameters from the wave functions of 0 v.

IV. RESULTS AND DISCUSSION

Although there have been many theoretical works on
transition wavelengths in the literature, ' ' ' very
few energies have been given for either the P or S state.
The only available data are given by Mannervik et al. '

for B II and Agentoft et al. ' for Be I where a
rnulticonfiguration Hartree-Fock method is used. For
B II, they obtain —17.213 540 and —16.866147 a.u. for
the P and S' states, respectively. Compared with the
nonrelativistic energies —17.219 244 and —16.875 801
a.u. obtained in this work, our results are lowered by 155
me V for P and 263 meV for S'. Since our results are
upper bounds to the true nonrelativistic eigenvalues, the
lower value should be considered as more accurate. In a
very recent work by Brage and Froese-Fischer, ' they
have improved their agreement with experiment
significantly. The energies of these states are not given in
this reference, but based on the nonrelativistic-energy
data Brage communicated to me, their results are higher
by about 0.0006 a.u. for the P states and about 0.001 a.u.
for the S states. '

The relativistic and mass polarization corrections to
the energy are calculated by Eqs. (15)—(17). The rela-
tivistically corrected energies together with the nonrela-
tivistic energies are given in Table II. Our method is
somewhat different from that of Refs. 13 and 21 where
perturbation operators are included in the matrix diago-
nalization and thus the energies are corrected to much
higher order. The reason that we use strictly first-order
perturbation theory is because the H, , Hz, H4, H~, H„,

H„„and H„ in Eq. (1) are only correct to first order by
themselves. For the ions of interest in this work, the two
methods will give essentially the same result for all per-
turbations except for H, +Hz. In the case of H, +H2,
the difference in the perturbation energy increases with
Z. For 0 v, this perturbation energy differs by 0.000969
a.u. for S and 0.000901 a.u. for P when the two
methods are compared. Also included in Table II are the
transition wavelengths from previous theory and experi-
ment.

The best theoretical data on these transition wave-
lengths are by Brage and Froese-Fischer. ' Our result
compares well with their result. However, in making this
comparison, two more important differences should be
noted. First, the retardation effect (orbit-orbit interac-
tion) is not included in Ref. 21. We find this effect rather
important. The contributions to the transition-
wavelength range from —0.21 A for Be I to —0.55 A for
F vI and —0.61 A for Nevis. Second, in both Refs. 13
and 21, the contact term from the spin-spin interaction is
included. This corresponds to the s; s term in Eq. (7).
From our discussion in Sec. III, it should not make a con-
tribution to the quintet energy. As a check, we calculat-
ed the energy contribution of H5 to both P and S' and
found none.

Comparing our wavelengths with that of the experi-
ment, the results for 0 v and Ne VII lie within the experi-
mental uncertainty. The results for Be I and N IV lie at
the edge of the experimental uncertainty. Our B II result
agrees with the result of Martinson et al. ' but lies out-
side the uncertainty quoted more recently by Mannervik
et al. ' For C III and F vI, our results lie outside of the
experimental uncertainty. In making these comparisons,
one should keep in mind that the Lamb shift is neglected
in the present work. Hata and Csrant' have noted strong
configuration mixing beyond the LS coupling states in
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TABLE II. Energies and transition wavelengths of the ls2s2p P and 1s2p S' (E in a.u.).

Z
10

Nonrelativistic
Relativistic

5p

Nonrelativistic
Relativistic

0

1 a.u. ~A

—10.184 155 1

—10.185 941 0

—10.422 509 5
—10.424 488 4

455.661

—16.875 801 1

—16.880 273 2

—17.219 243 9
—17.224 255 0

455.657

—25.322 8160
—25.332 337 6

—25.769 826 4
—25.780 569 0

455.656

—35.522 557 5
—35.540 562 6

—36.072 1195
—36.092 567 2

455.653

—47.473 945 1

—47.505 367 7

—48.125 508 9
—48 ~ 161 216 9

455.649

—61.176 333 6
—61.227 552 0

—61.929 427 0
—61.987 681 4

455.646

—76.629 413 2
—76.708 731 5

—77.483 822 5
—77.574 036 3

455.646

Ref. 19
Ref. 20
Ref. 21

This work

Experiment

1907.8
1910.15

1909.46+0.6'

1323.1
1324.65
1323.92+0.07b

1324.5+0.5

0

Center-of-gravity transition wavelength (in A)
1003.7 816.4 688. 1

1008.1 820.0 690.9
1015.8 825. 1 694.7
1016.56 825.45 694.75

1016.06+0.05' 825. 55+0. 1' 694.75+0. 1'

596.6
599.6
599.43
599.67+0. 1

524.5

526.9
526.57

526.65+0. 1'

'Converted from air wavelength in Ref. 12.
"Reference 13.
'Reference 17.
Reference 15.

'Reference 16.
Reference 14.

their work. Our result seems to support the finding of
Brage and Froese-Fischer ' that this mixing is not impor-
tant to the transition-wavelength calculation.

There is another point worthwhile mentioning. As
remarked earlier, the nonlinear parameters in the F VI

and Ne vII are scaled from 0 v in this work. Since we get
perfect agreement with experiment for 0 v, we expect
that our results may gradually get worse as Z deviates
from 8. From this standpoint, the comparison of our re-
sults with F vI and Ne VII experiments is somewhat unex-
pected.

It is interesting to compare the perturbation correc-
tions of 1s2s2p P with that of Li-like 1s2s2p P' and
similarly for 1s2p S' with 1s2p 2p P. In each case, an
additional 2p electron is added. This comparison is given
in Table III. Intuitively, one would expect the
(H, +H2 ) correction to become larger with the extra 2p
electron. This is not the case for Z =4 and Z =5 P
states and the Z =4 S' state. It may be caused by two
factors: The repulsion of the electrons reduces the con-
tribution from each 2p electron and the penetration of the
2p electron shields the 2s electron more from the nucleus.

TABLE III. Comparison of perturbation corrections for 1s2s2p 'P and ls2p''S' with 1s2s2p P'
and ls2p2p P systems (in a.u. , see Ref. 24, [—2] implies X 10 ' to the quoted number in the table).

10

1s2p S'
b,E„„[—2]
bE p, [ —4]
bE„,[ —4]

1s2s2p 2 'P
bE„„[—2)
bE„p, [ —4]
bE„„[—4]

1s2s2p P
b,E„„[—2]
bE p, [ —4]
bE„„[—4]

1s2p2p P
b,E„„[—2]
bE p, [ —4]
bE„,[ —4]

—0.180 30
—0.615

0.786

—0.198 46
—0.475

0.531

—0.2009
—0.32

0.35

—0.1806
—0.61

0.69

—0.457 52
—1.108

2.140

—0.507 40
—0.813

1.441

—0.5086
—0.51

0.85

—0.4540
—0.98

1.71

—0.979 39
—1.792

4.515

—1.091 75
—1.279

3.028

—1.0821
—0.76

1.69

—0.9619
—1.48

3.41

—1.858 53
—2.387

8.189

—2.082 74
—1.675

5.472

—2.0439
—0.97

2.96

—1.8131
—1.89

5.96

—3.246 71
—2.993
13.438

—3.639 57
—2.078

8.955

—3.537 11
—1.17

4.73

—3.1365
—2.31

9.54

—5.293 05
—3.417
20.538

—5.938 51
—2.355

13.661

(—5.7353
—1 ~ 31

7.10

—5.0803
—2.58

14.33

—8.187 26
—4.226
29.769

—9.19000
—2.892
19.755
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TABLE IV. Spin-orbit, spin-spin, and spin-other-orbit energies for the 1s2s2p 'P3 states of Be-like
systems (in a.u. , [—3] implies X 10 to the quoted number in the table).

Z

(H„)[ —3] 0.043 85 0.072 16
( H„)[ —4] —0.0363 —0.0943
(H„, ) [ —3] —0.041 54 —0.1101

0.357 12 0.743 46 1.378 59
—0.1927 —0.3418 —0.5520
—0.226 71 —0.405 41 —0.658 32

10

2.350 18 3.759 70
—0.8336 —1.1972
—1.000 84 —1.441 64

For larger Z, these effects become relatively less impor-
tant as can be seen from this table. The retardation effect
mostly comes from the interaction of the 2p-1s electrons.
It is interesting to note that the ratio of AE„, for S to
P is about 1.5 and that of P to P is about 2.0 which are

the ratios of the number of 2p electrons. In comparing
1s2p2p P with 1s2s2p2p P, one notices that the pres-
ence of the extra 2s electron reduces AE„, slightly and
this reduction increases uniformly from Z =4 to Z =9.
The ratio of hE„, for S' to P increases from 1.139 for
Z =4 to 1.433 for Z =9, showing the effect of Coulomb
repulsion which becomes relatively less important as nu-
clear charge increases. The mass-polarization corrections
behave much the same way as that of the retardation per-
turbation.

For the fine structure, the (H„), (H„, ), and (H„)
are calculated for the P3 states. These results are given
in Table IV. The results for J =1 and J =2 are obtained
using the Wigner-Eckert theorem. From these energies,
the transition wavelengths and fine-structure splittings
are evaluated. These results are given in Table V. For
the most part, the fine structures of this calculation lie be-

tween that of MCDF-OL (Ref. 17) and Hata and Grant. '

The comparison with experiments is reasonable but not
exceptional. Adding QED contributions improves the
agreement only very slightly. ' The experimental v3z of
C III and vz, of F vI in this table are computed from the
quoted wavelengths. In the case of F vI, vz& is given to be
453 cm ' in Ref. 15. However, this contradicts the quot-
ed fine-structure wavelengths and these wavelengths do
give the correct A,, in this reference.

In comparing the calculated fine structures with exper-
iments, we noted that the N Iv results give the best agree-
ment, whereas the C III results differ slightly. For Ov,
the experimental result for v3z is 188+2 cm '. However,

0
for this system, the error bars differ by 0.05 A in the
quoted two wavelengths. Assuming that the fine-
structure uncertainty comes only from this difference
(most favorable case) the uncertainty in v32 would be +10
cm '. Hence the 182.6 cm ' obtained in this work
would be within the experimental uncertainty. Our v2&

for 0 v, 243 cm ', is clearly too small compared with the
252+4 cm '. In the case of FVI, our 424 cm ' com-
pares well with the revised vzi of 419+20 cm ' (from 453

TABLE V. Fine structures for the 1s2s2p 'PJ states of Be-like systems (experimental data are taken from Ref. 17 for Z=6. 7, 8,
Ref. 15 for Z =9, and Ref. 16 for Z = 10).

Z

0

Transition wavelength A,J (A)
This work Expt.

Fine-structure splitting (cm ')
This work Expt. Ref. 19 Ref. 16

10

1910.02
1910.24
1910.14
1324.74
1324.85
1324.47
1015.96
1016.57
1016.81
824.51
825.37
825.90
693.40
694.57
695.45
597.61
599.13
600.43
524.21
526.12
537.91

1015.43+0.05
1016.09+0.05
1016.3 1+0.05
824.60+0.05
825.47+0.05
826.01+0.05
693.36+0.05
694.57+0.05
695.48+0.10
597.80+0.10
599.30+0.08
600.73+0.08
524.20+0.20
526.16+0.10
528.05+0.10

0.53
0.48
0.50

—0.09
—0.10
—0.11

0.04
0.00

—0.03
—0.19
—0.17
—0.30

0.01
—0.04
—0.14

V21

V32

V21

V32

V2]

V)2

V2]

V32

V21

V32

6.09
—2.83

6.16
—21.81

58.23
23.89

126.70
77.52

242.88
182.60

424.21
361.87

692.67
644.87

63.5(1.5)
21.3'

127(1)
79.5(.8)

252(4)
188(2)

419(20)
396(20)

711(22)
680(7)

6.65
—0.52

22.98
6.13

59.63
30.21

129.19
86.72

247.34
194.95

433.19
378.50

709.46
665.17

57
21

125
73

242
176

426
354

700
633

'Calculated from wavelength.
Calculated from wavelength, quoted to be 453 cm ' in Ref. 15. See discussion in text.
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cm '). But our v&2, 362 cm ', is too small compared
with the 396+20 cm ' from the experiment. For Nevis
the calculated v2, , 693 cm ', lies on the edge of experi-
mental uncertainty, 711+22 cm '. But the calculated
v, z, 645 cm ', is substantially smaller than the 680+7
cm ' from the experiment.

The B II result in this work diff'ers drastically with that
of Hata and Grant. ' Unfortunately, no experimental
data are available to make a more critical assessment in
this case. It should be noted that the "spin-orbit opera-
tor" defined as Eq. (8) does not contain the Coulomb field
from the other electrons. Therefore the spin-orbit result
given in Table IV is not equivalent to the MCDF results
of Ref. 19 even though the total fine-structure results
agree reasonably well for Z ) 5 systems.

V. CONCLUSION

In this work, the energies, transition wavelengths, and
fine structures for the 1s2s 2p -"P and 1s2p S' are stud-
ied for Z =4—10. The wavelength results agree well with

experiments. This in itself does not guarantee that our
individual states are calculated to high accuracy since the
wavelength comes from the differenc of two energies.
However, compared with the accurate rnulticonfiguration
Hartree-Fock calculation of Mannervik et al. ,

' our B II
nonrelativistic results are better by 263 and 155 meV.
This is probably a good indication that our results are
quite accurate. The fine structure compares reasonably
with experiment, but in some cases our data lie outside of
the uncertainty quoted in the experiment.

Although the Li-like quartet optical spectra have been
well studied in the literature, the Be-like quintet data are
still very limited. I hope the accuracy provided in this in-
vestigation can be extended to higher excited quintet
states so as to help experimental identification of the Be-
like spectra in the near future.
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