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For a two-electron system the Kohn-Sham potential of density-functional theory is equal to the
effective local potential V,.~(x, ) occurring in the one-electron Schrodinger equation that is satisfied

by the square root of the exact many-electron density, p' -'(x, ). Making use of the theory of margin-
al and conditional probability amplitudes, it is shown that V,,il-(x, ) is the sum of three potentials,
each of which has a clear physical interpretation and will be studied in detail. The correlation part
of the Kohn-Sham potential in a two-electron system can then be obtained by subtraction of the
Coulomb and exchange potential, and it is shown how we can express this correlation potential as
the sum of three physically meaningful contributions. The connection between the Kohn-Sham po-
tential in a many-electron system and V„& is also discussed. Calculations of the various potentials
from highly accurate configuration-interaction wave functions are presented for the helium atom
and for the hydrogen molecule at various distances of the two hydrogen nuclei.

I. INTRODUCTION

The local one-electron Kohn-Sham pote' tial of
density-functional (DF) theory'-' is of great potential util-
ity for the description of complex electronic systems in
that it offers a simple route to obtaining the exact
ground-state density and ultimately, it is hoped, the total
energy. The exchange-correlation part of the total ener-

gy, E„depends on the density through a universal but
unknown functional E„.[p], as was proven by Hohenberg
and Kohn. The Kohn-Sham (KS) potential is, apart
from a Coulomb term, equal to the functional derivative
of E„.with respect to the density'

V (x, )= f [p(x~)/r„]dx, +DE„,[p]/6p . ,

Considerable effort is currently being spent to model the
unknown functional E„. or the related exchange-
correlation potential. An analysis of accurate correlated
potentials, calculated from nearly exact wave functions,
should lead to a better understanding of the correlation-
potential relationship, which may prove to be very help-
ful in the search for good model potentials. However, in
DF theory exact relationships between ground-state wave
functions and their corresponding exchange-correlation
potentials have been nonexistent. So the exact KS poten-
tial cannot be studied simply because it cannot be calcu-
lated, not even if the exact wave function is known. An
important exception is two-electron systems, where there
is only one occupied Kohn-Sham orbital, equal t o
p' /&2, and V is equal to V,,z, the effective one-
electron potential that occurs in the Schrodinger-like
differential equation that is satisfied by the square root of
the exact ground-state density p(x, )

[ 2 VJ+ Vv(x f )+ V ff(x f )]p' (x, )=op' (x, )

where V+(x, ) is the external (usually the electron-

nuclear) potential. For this reason we will, in this article,
calculate and analyze V„&, and therefore V for two-
electron systems using Eq. (3) below. The relation be-
tween the Kohn-Sham potential and V„& in systems with
more than two electrons will be analyzed in a similar
way, cf. Eqs. (4) and (5) below.

Hunter derived Eq. (1) within the theory of conditional
and marginal probability amplitudes and subsequently
used V„z for the interpretation of the electronic structure
of some small rnolecules [on the Hartree-Fock (HF) lev-

el]. ' He showed that the total potential in (l) can be ex-
pressed as an expectation value

V~. (x, )+ V ff(x, )=f 4"(x, xvlx, )

XH'&P(x, n, x, )dx, dx, ,

(2)

where H' is the full ¹ lectron Hamiltonian and the
"wave function" +, called the conditional amplitude, is
the amplitude related to the probability distribution of
the N —1 electrons associated with positions x 2 . .x ~,
when one electron is known to be at position x]. The
wave-function —potential relationship (2) was noted (and
used) by several other authors, looking at Eq. (1) from
different perspectives. " It not only creates the possibil-
ity to calculate V,z directly from the wave function, but
it also enables one to prove and understand various as-
pects of V,~. For instance, Levy, Perdew, and Sahni
proved that V,,z(x] ) ~0 for all x] and that (for atoms)
V,,&(r) decays like (N —1)/r in the limit r ~. They
also showed that the eigenvalue c in (1) is equal to the
negative of the ionization potential c =E~t —E&&'

In this article we will further analyze the effective po-
tential with the purpose of obtaining a better insight into
the nature of the relationship between correlation and the
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potential. We will show that each of the three contribu-
tions that arise naturally in the derivation of (2) has a
clear physical interpretation

If necessary, we distinguish by writing V'H"(pH") or
V (p'""'). Using Eq. (3) we have, for two-electron sys-
tems (V,s= V ),

V,tr(x, ) = V„„d(x,)+ V„;„(x,)+ V '(x, ) . (3)
V„„„(x,) = [ V„„d(x, )

—V "(x, )]
The first term V„„d(x, ) is the conditional potential; it is
the exact average repulsion that an electron at position
x, experiences from the other N —1 electrons in the sys-
tem. This potential is different from the average
Hartree-Fock potential primarily in that it incorporates
the effect of Coulomb correlation (the Coulomb hole in
addition to the Fermi hole). The second term V„;„(x,) is
a correction accounting for the difference in kinetic ener-

gy density between an electron in the orbital
N '~ p'~ (x, ) and an electron in a "real" N-electron sys-
tem. The last term V '(x, ) is the (x, -dependent) total
energy (kinetic plus potential) of the system of N —1 elec-
trons that are described by the conditional amplitude N
(parametrically dependent on x, ) minus the ground-state
energy of the N —1 electron system. Because of the quite
different origin and nature of these three contributing po-
tentials, studying them individually is probably more il-
luminating than to study their sum, the total effective po-
tential.

In a many-electron or extended system the effective po-
tential will not be equal to the KS potential. There is,
however, a close connection between the two, as was not-
ed by several authors: '

KSV = Vea' VPauli

The so-called Pauli potential is defined as the functional
derivative of the difference between the Kohn-Sham ki-
netic energy T, [p] and the full von Weizsacker kinetic
energy T~[p]. As mentioned before, this difference, and
therefore also VP,„];, is zero in the case of a two-electron
system. In a recent article Levy and Ou-Yang studied
this Pauli potential in detail. We will show that we can
write VP,„]; in terms of contributions similar to the ones
that enter Eq. (2),

VKS + VKS, N —1

Pauli kin

and that the KS potential can be expressed as

VKS V +( V VKs)+( Vx —
1 VKs, N —1)

The two terms V&;„and V ' ' can be calculated from
the KS wave function, defined as the one-determinantal
wave function containing the Kohn-Sham orbitals, in
precisely the same way as Vl,;„and V ' are calculated
from the exact wave function.

It is customary to distinguish Coulomb, exchange, and
correlation contributions to V

V (x ) ) = Vc,„), b(x ) )+ V (x, )+ V„,„(xi )

= v""(x, )+ v,".'„(x, ) .

There is an ambiguity in the definition of Vc,ul, b and V
and therefore in V„„,. The Coulomb and exchange po-
tentials may be obtained from exact densities (c.q. , densi-
ty matrices), or they may refer to Hartree-Fock densities.

+ Vq;„(xi )+ V '(xi ) .

This expression displays explicitly three physically mean-
ingful contributions to V„,„. These will be the main
focus of this paper.

It has been recognized, of course, that the calculation
of (almost) exact effective potentials from accurate corre-
lated ground-state wave functions for a number of sys-
tems, making use of the wave-function —potential rela-
tionship (2), may prove very helpful in the current search
for good model potentials. However, calculations of ac-
curate Kohn-Sham potentials have been published for a
few light atoms only (the He isoelectronic series, Li, and
Be), ' ''' and never for a molecule. In these calculations
numerical techniques were used to obtain the potential
from an accurate density, e.g. , transformation of Eq. (1)
into an equation for V,tr(x, ). ' But these numerical
methods only give the shape of V,s(x, ); in particular,
they do not clarify the structure of V,s(x& ) in terms of
wave-function expectation values as in (3). Hunter and
Tai' calculated the total effective potential in (2) from a
(essentially exact) ten-term Hylleraas wave function for
the He ground state and compared this potential with
effective potentials obtained from approximate wave
functions. However, they did not analyze the potential in
terms of the various components that build V,s(x~ ) in
Eq. (3). Such an analysis will be carried out in this paper
for He and H2 at various bond distances.

The organization of the paper is as follows. In Sec. II
we will derive an expression for the effective potential
directly from the Schrodinger equation. We will show
how this potential comes out naturally as the sum of the
three potentials in (3) and we will interpret these poten-
tials in detail. Also, a connection is made with propaga-
tor theory. In Sec. III we report on calculations of the
effective potential for the He atom and for the H2 mole-
cule at various distances of the two hydrogen nuclei. Be-
cause He and Hz are two-electron systems, the effective
potential is the same as the total effective Kohn-Sham po-
tential.

H2 is an interesting system for several reasons. We can
demonstrate and study the behavior of the effective and
KS potential in the bonding region and by changing the
internuclear distance we can analyze the effect of bond
formation or bond breaking. The H2 molecule is also a
classical example for which the Hartree-Fock model
breaks down at large internuclear distances. While in H2
at equilibrium distance (and also in the helium atom) the
effective potential is expected to resemble the HF poten-
tial, as in those cases the HF model is fairly accurate, the
effective potential may differ from the HF potential con-
siderably at large internuclear distances. This will allow
us to study the effects of correlation on the effective po-
tential and its components in precisely the interesting
case where they become large.
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II. THEORY AND METHOD

In this section we will derive an expression for the
effective local potential V,]i(x]) directly from the N
electron Schrodinger equation. Although we limit our-
selves to ground-state wave functions and densities, it is
not necessary to do so. The derivation is valid for any ex-
act eigenstate of the ¹ lectron Hamiltonian. It is only if
we want to identify the effective potential with the total
Kohn-Sham potential (in two-electron systems) that we
must return to the ground state because the Kohn-Sham
potential is defined for the ground state only.

In 1975 Hunter developed the theory of the conditional
probability amplitudes. In this theory the wave function
4 is expressed as a product of a marginal and a condi-
tional amplitude

H+ '+ g 1!r] + V]v(x] )
—

—,)V']
p)1

Xf(x] )+(xz xNlx] ) EOf(x] )+(xz

Now multiply both sides by @*(xz x]vlx]) and in-

tegrate over the coordinates x2 . xN. Making use of
the normalization requirement (10), we get, writing N for
C) ( x z x]v l

x ] )

f(x, )f 4*H '4dxz . dx~

+f(x, ) g f 4* 4dxz dx~, + V~(x] )f(x, )

p)1 r1

+ 4 2V1 x1 Pdx2 ' ' ' dxN:Eo
]ld(x] . x]v)=f(x])N(xz ' ' x~lx]) . (9)

(17)
The conditional amplitude N(xz . x]vlx, ) describes the
system of the N —1 electrons with positions x2 xN,
when one electron is known to be at position x, . It plays
a key role in the subsequent development, and in the ex-
pressions for the potentials of Eq. (3) [cf. Eqs. (28) —(30).]
If we require the conditional amplitude to be normalized,

f+ (xz ' ' x]vlx] )+(xz ' ' ' x]vlx )dxz ' ' ' dx]v= 1

f(x )
—N ]/2 ]/2( ) (12)

The one-particle density associated with the conditional
amplitude is called the conditional density

p'(xz lx] )=(N —1)f@*(xz x]vlx] )

x]v I
x ] )dx 3

= r'"(x, ,x, )/p(x, ), (13)

where r' (x],xz ) is (the diagonal part of) the two-
particle density matrix associated with +.

Let 4'o(x] x]v) be an exact ¹lectron ground-state
wave function

IINy EN' (14)

We now partition the N-electron Hamiltonian H as

for all x], (10)

then the square of the marginal amplitude is determined
by

lf(x])l —f+ (x]

=N 'p(x, ) .

Because p(x]) is, in general, a nodeless function, we can
choose f(x] ) to be the positive square root of the density

Equation (17) is a one-electron Schrodinger-like equation,
satisfied by the orbital f(x, ). To show this more clearly
we simplify and interpret the various terms in (17) and
reach an expression for the effective potential.

The first term on the left-hand side (LHS) of (17) is

f(x, ) times the energy expectation value of the system of
N —1 electrons described by the conditional amplitude
&P(xz x]v lx ] ). This energy expectation value is
parametrically dependent on x1, the position of the refer-
ence electron. It is this term that determines the value of
the effective potential in the limit x, ~ ~. In an interest-
ing paper, Katriel and Davidson proved' that the condi-
tional amplitude N, if calculated from the exact ground-
state ¹ lectron function Oo, becomes equal to the exact
ground-state function of the N —1 electron system if
x]~ ~. Consequently, the first term on the LHS of (17)
is, in this limit, equal to f(x] ) times Eo ', the ground-
state energy of the N —1 electron system. If we require
the effective potential to approach zero in the limit
x, ~~ we must subtract f(x]) times Eo ' from both
sides in Eq. (17). The potential obtained in this way will
be denoted V '(x, ):

V '(x )=f &P*H 'Ndxz dx E' . (l8)—

We note that this potential is positive for all positions of
x, . Its value at general positions x, depends on the de-
tails of the correlation embodied in the conditional ampli-
tude 4. It is, however, interesting to observe that taking
the expectation value of the potential f&P*H' 'Wdxz

dx~ for the one-electron wave function f(x ] ), which
is equivalent to taking the expectation value of H ' for
the complete wave function +, gives the total energy of
the ¹lectron system minus the (average) energy associ-
ated with one electron, i.e., 1/N-th of the total kinetic
and nuclear attraction energies (Ex and E~„re-
spectively) and N —1 pair repulsion energies
E„/[N(N —1 ) /2],

H =H '+ g 1/r] + V~(x])—,'Pz],
p)1

and we get, writing %0 in the product form (9),

(15)

N 1 1 2=E ——E ——E ——E,o N ~ N Ne N
(19)
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This will be demonstrated explicitly below [see Eq. (33)].
Using (13), the second term on the LHS of (17) can be

written as

p (xi~xi )
f(x, ) g f4* Wdx, dxv =f(x, ) f dx2

p&1 1p 12

=f(x, ) V„„„(x,), (20)

where V„„d(x, ), the conditional potential, is the average
repulsion that an electron at position x, experiences from
the other N —1 electrons in the system. It is the major
part of the total effective potential V,&. In 1953 Slater'
discussed this potential and argued that it is to be pre-
ferred in one-electron calculations over the Hartree-Fock
potential. In the limit xi~ ~, V,„„d(x,) decays like

(N —1)/r Since th. is is also the decay rate of the total
elt'ective potential V,~(x, ), as demonstrated by Levy, Per-
dew, and Sahni, the other terms in V,z(x i ) vanish more

rapidly than (N —I)/r in this limit.
To simplify the fourth term on the LHS of (17) we first

write down an expression for the density matrix,

y(xi, xi)=N f 'Po(x', . x~)iIIO(x, x~)dx, . dx~

=Nf(x', )f(x, )G(x', ,x, ) . (21)

This equation defines the function G(x'i, x, ), which we
can also write as

G(x', , xi )= f4 (xq x~~x i )

XC&(x2 ' ' ' xi~xi )dx2 dx~ . (22)

The function G(x ', , xi ) is the overlap between two condi-
tional amplitudes, with the reference electron at positions
x i and x~, respectively. From (21) and (22) it is easy to
derive the result G(x, , xi ) = 1 and ViG(x i,x i )

~ i. i
=0.

Because f(x, ) is equal to the square root of the diago-
nal density p(x i ) =y(x i,x, ), we see from (21) that all the
off-diagona1 density-matrix information ends up in the 6
function. In a Hartree-Fock system 6 describes ex-
change effects only. The Hartree-Fock two-electron den-
sity matrix„

)=y "(x,,x, )y "(xz,xz) —y "(x,,x, )y""(x2,x, )

=p "(xi)p "(xz)—p (x, )p (x2)G "(x, ,x2)G "(x~,x, ), (23)

2
)71 x1 +dx2 dxA'

'f '(x
i )( —

—,'&i)y(x i,x i ) li =i

=
I
—

—,'~i —[—,'~i«x i, xi)li =i]If«i )

=[—
—,'72i+ V„;„(x,)]f(xi )

The conditional amplitude N depends on the reference
position xi. The average rate of change of N, given by
the potential

{25)

V„;„(x,) = fN*{—
—,
' V', )d&dx2 . dx~

= + —,
' f I

T i+ I
dx z

. dx~,
can be interpreted as a measure of how strongly the

leads to an expression for the conditional density in the
Hartree-Fock approximation,

p' "(x~~x, )=1" "(x x )/ "(x )

=p "(x2)—p (x2)G (x, ,x2)G (x~, x, )

=p (x~ )+p'(xz ~x, ), (24)

which defines the exchange or Fermi hole, with the refer-
ence electron at position x i, as p (x~ ~x, )

= —p "(x2)~G (x, , x2)~ . The Fermi hole is evidently

definite negative. If we go beyond the HF approximation
the exact G will differ from G "due to correlation. The
expression —p(x& )

~ G(x, , x i )
~

is a possible definition of
the exchange hole in the case of a correlated wave func-
tion.

Using Eqs. (9) and (21) we can rewrite the fourth term
on the LHS of (17) as

motion of an electron at position x, is correlated with the
other electrons in the system, in the sense that it reAects
the magnitude of the change in the conditional amplitude
N with changing reference position x, . For instance, in
the limit x, ~ ~ the conditional amplitude wi11 become
independent of x, and V„;„(x,) =0. Another region
where the correlation of the reference electron with the
other electrons in the system becomes independent of the
position x, is the near neighborhood of a nucleus. Here
the electron moves in a potential that is dominated by the
field of the nucleus. Intuitively, one expects the (correlat-
ed) probability distribution of the other electrons to be al-
most independent of the position of the reference elec-
tron. That indeed 7,0&=0 and therefore Vk;„(xi )=0, if
x, is at a nucleus, can be derived rigorously from the
electron-nuclear cusp conditions for the (exact) wave
function. ' The derivation is given in the Appendix.

A third example of the connection between Vk, „and
the rate of change of the conditional amplitude is provid-
ed by the recent investigation of Vk;„ for Hartree-Fock
wave functions of atoms by Sierraalta and Ludena. ' In
the HF case we have only exchange correlation, as a re-
sult of the antisymmetry of the wave function, and G
describes the exchange hole only. It has been observed
on several occasions' that the shape of the exchange
hole in atoms is relatively insensitive to the position of
the reference electron when it moves within one atomic
shell. The hole function "jumps, " however, to the one
appropriate to the next shell if the reference electron
moves over to that shell. From the interpretation of Vk;„
given here we would then expect VP„"(xi ) to be small for
x, within a shell and significant when x, is in an inter-



4194 BUIJSE, BAERENDS, AND SNIJDERS

shell region. This is precisely what Sierraalta and Ludena
observed in their plots of

VkH" (x, ) = —,
' v, V, .G "(x, ,x, ) I,

for rare-gas atoms. '

From Eq. (25) we see how the kinetic energy density
can be expressed as a sum of the kinetic energy density of
the orbital f(x

&
) and a correction term

(
—

—,'V', )y(x', , x, )I, =, =Nf(», )( —
—,'V', )f(x, )

+ Vk;„(x, )Nf (x i )f(x i ) . (26)

In DF theory, the kinetic energy is sometimes written as
the functional T[p]= T~[p]+ T„,[p]. The first term in

this expression is the traditional Weizsacker term, a func-
tional of the diagonal density p given by T~[p]
= J [(Vp) /8p]dr. Now T~[p] is equal to the energy as-

sociated with the first term on the right-hand side (RHS)
of (26). The kinetic energy correction, coming from the
second term in (26), can be identified with the exchange-
correlation energy

V„;„(x,)= f4*(x, x~lx, )( —
—,'V~)

X@(xq ' ' »~lx) )dx~ dx~

= +— V1+ dX2 ' ' dXN

= —
—,'V, G(x', , x, )I,

V '(x, )= fQ*(»2 . x~ x, )H

x e(x, x~ lx
&

)dx2 dxQ EQ

EN EN —1

0 0

and

V,tr(x i ) = V„„d(x,)+ Vq, „(xi )+ V '(x, ) .

(29)

(30)

(31)

(32)

T„,[p]= fp(x, ) Vk;„(x, )dx, .

From the fact that the function G(x', , x& ) has a max-
imum of 1 in the point x1=x] we can deduce that
Vk;„(x, ) ~0 for all x, . It follows that T„,[p) always
makes a positive contribution to the total kinetic ener-
gy-

Hartree-Fock theory often does very well in describing
the diagonal part of the density matrix. As a conse-
quence, the change in kinetic energy, when going from
the HF approximation to exact, will mainly be due to a
change in the off-diagonal part of y(x'~, x, ). In atoms
and molecules at equilibrium geometry, where the virial
theorem (almost) holds for both the HF and the exact
case, this kinetic energy difference is about equal to
minus the total correlation energy. This means that, in
contrast to the diagonal density p(x, ), the off-diagonal
part of y(x &, x& ) is not well described by HF theory. It
is, therefore, interesting to study the changes in the func-
tion G(x', , x, ) when correlation is introduced.

After carrying through the various simplifications, we
can rewrite Eq. (17)

[—
—,'V, + V~(x, )+ V„„d(x,)+ V„,„(x, )

+ V '(x, )]f(x, )=rf(x, ), (27)

where

The eigenvalue c, which is the negative of the first ioniza-
tion potential, in the one-electron Schrodinger equation
(27) can be expressed as a sum of orbital expectation
values

=(fl —
—,'v'+V„,„If)+(f v lf)

+ (f I v,„„,If &+ (f I
v"-'lf

&

= (1/N )Eq + ( I /N)E~, + (2/N )E„
+ (f I

v' 'lf & .
- (33)

where E~, EN„and E„are the total kinetic energy,
electron-nuclear attraction energy, and electron repulsion
energy of the ¹ lectron system. Now the sum of the first
three terms on the RHS of (33) is just the negative of the
ionization energy that would be obtained if removing one
electron were equivalent to removing 1/Nth of the kinet-
ic and nuclear attraction energy and N —1 pair interac-
tion energies. The difference (f I

V 'If ) between this
"average" ionization energy and the true first ionization
potential of course incorporates relaxation effects in the
ion which make its average kinetic, nuclear attraction,
and pair repulsion energies different from those in the
neutral molecule.

At this point it is interesting to note that we can ex-

press V~ '(x, ) and also V,„„d(x, ) in a different way and
make contact with propagator theory. First write the
ground-state ¹ lectron function as

1
,~nd( ]) f (x2 ' ' 'x~lx))

p)1 1pT
4'o(x, . »~)=N ' gg;(x) )+; '(x2 x~) . (34)

X P(xp ' ' ' »~lx) )dxp ' dx~

p'(x, Ix, )
X2 (28)

The 4; ' are eigenfunctions of H ' and the g, are the
so-called Dyson orbitals.

By making use of (9), (30), and (34) we can write
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p(x, )V '(x, )=gg;*(x, )g (x, ) f ql, ' H '+ 'dxz dxN —p(x, )EO

=pig;(x) )I'E; ' —p(x, )Eo ' = . f (E—co)G(x, ,x, , co)des .
'/Tl c

(35)

1 f (co —h )G(x„x,, co)des,
2%1 c

(36)

with h(1)= —
—,'V, + VN(x, ) and E, =Eo E, —

Equations (35) and (36) are interesting because they
show how the potentials V '(x&) and V„„d(x, ), which
both contain correlation information, can be calculated
directly from the Dyson orbitals and ionization energies.
Recently, Holleboom et aI. showed how to calculate
V„„d(x, ) within the Green's-function formalism, and
they proposed an approximation method for the one-
particle propagator, making use of this potential.

There is a close connection between the effective poten-
tial and the total Kohn-Sham potential, as was shown by
several authors. ' In the terminology of this section, we
can illustrate this most clearly by deriving an expression
for V,fr, not from the Schrodinger equation, Eq. (14), but
from the KS equation H 4 =E +, where H is
the total KS Hamiltonian given by H =g, [h (i )

+ V (i)] and 4 is the total KS wave function, con-
structed from the first N KS orbitals
'P = l((), pz pN l. If we start from this KS equa-
tion instead of Eq. (14) and proceed along the same lines,
we derive an expression for the effective potential,

V,a(x, ) = V (x, )+ V„;„(x,)+ V '(x, ), (37)

and, making use of Eq. (32), we reach an expression for
VKs

VKs V +( V VKS )+( VN —1 VKs, N 1)—
(38)

It is reasonable to assume that the differences
( Vk;„—Vk;„) and ( V ' —V ' ') will be small. It will

be shown in Sec. III, however, that the difference between
V and V, „d is not negligible in general.

In the case of a two-electron system the orbital f(x
&

) is
the same as the Kahn-Sham orbital and V,~= V (the
potentials V„;„and V ' are zero in this case). We
can then calculate the Kohn-Sham correlation potential
V„,„(x, ) directly from the effective potential V,tr(x, ).
The total effective Kohn-Sham potential in DF theory is
usually written as a sum of the Coulomb, the exchange,
and the correlation potential:

VKs(x, ) = f dx~+ V (x, )+ V„„,(x, ) .
r&2

(39)

The function G(xI, x, , co) is the Fourier transform of the
one-particle propagator (c is a contour enclosing all ion-
ization poles of G). After some algebraic manipulation of
Eqs. (27) and (35), and making use of the density-matrix
equation y(x &,x &

) =g;g;(x
& )g, (x

&
), we reach an expres-

sion for V„„d(x&
),

p(x, ) V„„d(x, ) = —h (1)y(x ', ,x, ) l &
= &+g lg;(x &

) l'e;

l

In a two-electron system only one orbital is doubly occu-
pied, the exchange potential is just the self-interaction
correction, and the Hartree-Fock potential is local (and
equal to the negative of the exchange potential):

V, (x, )= —— dxz= —V "(x, ) .
112

(40)

+ Vk,„(xi )+ V '(x, ) . (41)

There is a slight ambiguity in the definition of the corre-
lation potential as it has not been specified whether V "
is to be evaluated with the HF or with the exact one-
electron density. We will always use V "[p'""']. The
first term in V„„may of course be split into a HF contri-
bution and a correction term ( V„„d—V [p ] )

HF HF

—V "[hp], where b.p
—p'""'—p, but it will be ob-

served in Sec. III that the correction term is always small

with respect to the difference between conditional and
HF potentials. In cases where HF is a good starting
point Ap is small, and in cases where there are strong
near-degeneracy effects Ap becomes large, but so does

V„„d—V ". In Sec. III we will report on and discuss
calculations of the various potentials for the helium atom
and the H2 molecule.

III. RESULTS

Accurate full configuration-interaction (CI) ground-
state wave functions were calculated for the hydrogen
molecule at the following internuclear distances (a.u. ):
0.0( = He), 1.0, 1.401(=R, ), 2.0,3.0,5.0. For the helium
atom a 5s, 4p, 3d Slater-type-orbital basis was used. The
Slater functions were expanded in 6 G. For the H2 rnole-
cule, we used a basis consisting of five s-type and two p-
type contracted Gaussian-type functions on each nu-
cleus. An extra d-type Gaussian, with +=1.0, was add-
ed on both nuclei. In Table I the full CI energies are list-
ed as well as the (almost) exact ground-state energies.
The difference is never more than 0.002 hartree and more
than 95% of the correlation energy is recovered by the
calculated CI functions for all distances.

Also listed in Table I are the ionization energies
Eo ' —Eo. The energies of the He+ and H2+ ions were
calculated in the same basis that was used for the calcula-
tions on He and H2. From the full CI wave functions the
one-particle density matrix y(x', ,x, ) and the two-particle
density matrix I (x', , x2, x, , xz) were calculated, using a
program developed at our laboratory, and these density
matrices were used for the calculation of the various po-

Because now the total KS potential is the same as the
effective potential, we can write down an expression for
the correlation potential,

V„„(x,) = V,tr(x, )
—V "(x, )

=[V„„d(x,) —V (x, )]
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TABLE I. Total energies and ionization energies (IE) (in hartree atomic units) for the ground state of
the hydrogen molecule at various internuclear distances. E refers tof the dift'erence E ' —E"". The
"exact" values are from Ref. 26 (He, R =0.0) and Ref. 27 (all other distances).

R (a.u. )

0.0 (He)

1.0
1.401
2.0
3.0
5.0

EHF

—2.861

—1.085
—1.133
—1.092
—0.989
—0.859

Ecl

—2.902

—1.122
—1.172
—1.136
—1.056
—1.0035

Eexact

—2.904

—1.124
—1.174
—1.138
—1.057
—1.0038

Ecori

—0.041

—0.037
—0.039
—0.044
—0.067
—0.1445

IE

0.902

0.671
0.603
0.534
0.479
0.480

tentials.
Concerning the accuracy of the calculated potentials

we want to point out that the only approximation that is
made in the procedure is the use of a truncated basis.
The best possible (full CI) wave function was calculated
in this basis and no further approximations were made in
the calculation of the density matrices and the various
potentials.

Note that for the calculation of V„;„(x,), Eq. (29), we
can avoid taking the second derivative (which can be ex-
pected to lead to inaccurate results, especially when
Gaussian basis functions are used) if we write this poten-
tial, making use of Eq. (21), as

C3

V(a.u. )

CD

C3

y.rr

yN-1

ct)

V„;„(x,)=[VI .V, y(x'I x~ )l ~ =~]/2p(x ~
)

—[V'P(x I )]'/8P'(x, ) . (42)

Now Vk, „(xI ) is dependent on the first derivative of the
basis functions only. At a nucleus the first derivative of a
1s Gaussian orbital, centered at that nucleus, is zero.
This leads to a wrong behavior of the density near a nu-

cleus so that in this region the two terms on the RHS of
(42) may still be inaccurate, e.g. , in the He atom these
terms both vanish at the nucleus, which is incorrect.
However, as demonstrated in Sec. II Vk, „(xI ) =0 at a nu-

cleus. So although both terms in (42) individually behave
wrongly in the vicinity of a nucleus, when calculated in a
GTF basis, a cancellation of errors occurs and the calcu-
lated potential VI„„(x,) correctly goes to zero.

In Figs. 1(a)—4(a) the calculated potentials are
displayed for the He atom and for the H2 molecule at
some values of the internuclear distance R. The poten-
tials were calculated and plotted along the bonding axis
(z axis). The origin of the plots is the midpoint of the hy-
drogen molecule [or the He nucleus in Fig. 1(a)]. For the
H equilibrium distance R =1.401 bohr we also calculat-2 equ
ed the potentials along two axes perpendicular to the
bonding axis, going through the midpoint of the molecule
and through one of the nuclei, respectively (Figs. 5 and
6).

For comparison we plotted the sum of the Coulomb
and exchange potential

C3

C3

V(a. u. )

Lr3
C3

I

LA

C3
I

Lr3

0

C3
I

0 ' 0

I
I

I
I

/

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I

I

1.0 2.0 3 ~ 0
R(a, u. )

I

0.0

KS
cor r

yN-1

y yHF'

I

3.0 %.0
R (a.u. )

Vc,„„b(x,)+ V (x, ) = —,
' f [p(x~)/r, 2]dxp .

This potential can be regarded as an exact analog of the
Hartree-Fock potential because it is calculated from an
exact density. On the scale of the plots shown the true

FIG. 1. (a) Potential values for the He atom as a function
from the distance from the He nucleus. (b) Kohn-Sham correla-
tion potential for the He atom as a function from the distance
from the He nucleus. Also shown are the three contributions
that sum to the KS correlation potential, Eq. (41).
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HF potential, which is —,
'
J p "(xz)lrI~dx2, would be al-

most indistinguishable from this exact independent-
particle potential, except for the distance R = 5.0, and for
this case the HF potential is displayed explicitly [Fig.
4(a)]. In Figs. 1(b)—4(b) the Kahn-Sham correlation po-
tential is displayed as well as the three components that
build it [Eq. (41)].

In Table II we list the various orbital expectation
values from Eq. (33) that sum to the negative of the ion-
ization potential c.. For completeness, the Hartree-Fock
values are also listed. The marginal amplitude f is, in

this case, simply the 1s and o orbitals, respectively,
while the expectation values of the potentials Vk;„and
V ' are zero, due to the two-electron character of the
He and H2 systems.

IV. DISCUSSION

A. He

For the helium atom, the Hartree-Fock approximation
does extremely well, as far as the density p is concerned.
The kinetic energy and nuclear attraction energy expecta-

V(a.u. )

Q3

C3

(a)
VN-1

V(a. u. )
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------ Vcon

P
VHF ( exact )
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FICx. 2. (a) Potentials for H2, RH H =1.401 bohr. Potential
values along the bond axis. The origin is at the midpoint of the
molecule. (b) Kohn-Sham correlation potential and contribu-
tions [Eq. (41)] for Hz, R„H =1.401 bohr. Potential values
along the bond axis. Origin is at midpoint of molecule.

FIG. 3. (a) Potentials for H~, R„„=3.0 bohr. Potential
values along bond axis. Origin is at midpoint of molecule. (b)
Kahn-Sham correlation potential and contributions [Eq. (41)]
for H2, R H H

= 3.0 bohr. Potential values along bond axis. Ori-
gin is at midpoint of molecule.
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tion values of the (exact) orbital f are almost equal to the
HF values for the ls orbital (Table II). This is also illus-
trated in Fig. 1(a) where we can see that the effective po-
tential and the HF potential are very similar.

In a two-electron system G "(x ', ,x, ) = 1, regardless of
the values of r', and r, , if the spins are equal, s', =s, and
zero when s', WsI. This agrees with the well-known fact
that in a two-electron Hartree-Fock atom or molecule the
exchange hole —p(xz)~G "(xI,xz)~ is identical to the
electron density of the same spin and independent of the
position of the reference electron. It follows that
Vk;„(x, ) =0. So in a way, we can use Vk;„as a measureHF

of the independent-particle character of an electron. As

V(a.U. )

U3

C3

ct)

PQ

C3

V(a.U. )

E3

C3

y.~r

yN-1

ycond
yHF [ exact. ]

yHF( HF )

C3

C3
I

1 ' 0 2.0 3 ' 0
R (a.U. )

I

0.0

FIG. 5. Potentials for H2, R„„=1.401 a.u. Potential values

along axis perpendicular to bond axis and going through middle

of bond.

tO

C3

C3

C3

0 ' 0
I

1 ' 0 2.0 3 ' 0
R (a.u. )

I

0.0

we have already noted, Vk;„ is always zero at the nucleus
and also in the limit xI ~ ~ [Fig. 1(a)], and in these re-
gions the electron moves as an independent particle. At
about 0.4 a.u. a maximum is reached in Vk;„, and this is
the region where the movement of the electron is corre-
lated most with the other electron in the system. This
maximum in Vk;„still does not differ much from zero,
rejecting the fact that in this system, the off-diagonal
correlation corrections in the density matrix are small.
For the energy, however, these off-diagonal corrections
are not unimportant. They lead to a change in kinetic en-

C3 yKScorr

C3

V((j.u. )

C3

C3

V ( a.u. )

E3

C3

yN-1

ycond
yHF (

exact.
)P

C3

C3

C3
I

C3

C3

Y3

C3
C3

C3
I

FIG. 4. (a) Potentials for H2, RH H =5.0 bohr. Potential
values along bond axis. Origin is at midpoint of molecule. (b)
Kohn-Sham correlation potential and contributions [Eq. (411]
for H„RH H =5.0 bohr. Potential values along bond axis. Ori-
gin is at midpoint of molecule.

C3

C3

0 ' 0
I

1 ~ 0 2.0 3.0
R(o.U. )

4.0

FIG. 6. Potentials for H&, RH H
= 1.401 a.u. Potential values

along axis perpendicular to bond axis and going through one of
the nuclei.
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TABLE II. Expectation values of kinetic and potential-energy operators, Eq. (33), for He (R =0.0)
and H„ in the exact and HF case. Energy values are in hartree atomic units.

R (a.u. ) (fIV f& &f1 v „, f) (f v' 'lf &

0.0 (He)

1.0
1.401
2.0
3.0
5.0

1.433

0.706
0.570
0.463
0.415
0.478

—3.376

—2 ~ 121
—1.824
—1.542
—1.310
—1.192

0.947

0.676
0.589
0.488
0.359
0.203

0.018

0.016
0.016
0.017
0.021
0.011

0.076

0.052
0.046
0.040
0.036
0.020

—0.902

—0.671
—0.603
—0.534
—0.479
—0.480

0.0 (He) 1.431
Hartree-Fock (f=o.~)—3.373 1.025 —0.918

1.0
1.401
2.0
3.0
5.0

0.703
0.563
0.444
0.356
0.325

—2.117
—1.815
—1.521
—1.249
—1.036

0.744
0.658
0.564
0.463
0.364

—0.671
—0.595
—0.514
—0.430
—0.348

ergy, given approximately by 2(f Vk, „ f ) =0.036 a.u.
(Table II) since (f I

—
—,
'V' If ) is almost the same for the

HF and exact calculation. This is about equal to the total
correlation energy, as it should be since the virial
theorem holds for both the Hartree-Fock and the exact
wave function.

In a many-electron system Vz;„"(x, ) is not zero
everywhere. The Hart ree-Fock kinetic en-
ergy g, n, ( P,

—
—,
' V' P, ) will be different from

&(f " —
—,
' &

If "). The difference is
A'( f "

Vk;„" f ") [see Eq. (25)]. If the system is such
that Hartree-Fock is a good approximation, f""=f""'

~(fHF q2lf HF ) ~(fe at: q f e ac

indeed shown in Table II for He. When we go to the ex-
act wave function the difference between
X(f'""'I V'"'" If'"") and X(f " V.„, If ") will then
be approximately equal to the total change in kinetic en-
ergy due to correlation, which again, by the virial
theorem, will be approximately equal to the total correla-
tion energy. Sierraalta and Ludena analyzed Vg (x, ) for
a few HF atoms. '" For the neon atom they also calculat-
ed Vz„,(x, ) from a highly correlated CI function and

compared it with the HF resul t. The two potentials
looked very much the same, which led these authors to
the conclusion that the function G(x ~, x ~) was essentially
only the correlation function for exchange interactions.
However, the arguments presented here and in Sec. II
and also the calculations on helium show th st this con-
clusion cannot mean that changes in G caused by
Coulomb correlation are negligible, at least not as far as
the correlation energy is concerned.

The potential V '(x, ) is the difference between the
energy of the conditional amplitude N with reference
electron at x, and the ground-state energy of' the N —1

electron system. In Fig. 1(a) we see that this difference is
largest at the nucleus and becomes smaller if the refer-
ence electron is further out. In the limit x, ~ ~ the
difference is zero; this is an "experimental" example of
the asymptotic collapse of the conditional amplitude + to

the ground state of the N —1 electron system, as was
proven by Katriel and Davidson. '

It is clear from Fig. 1(a) that the HF potential does not
very well represent the average electron repulsion, given
by the potential V,„„d(x,). Only if we add the two poten-
tials V„;„and V ' does the difference between the
effective and HF potential become small. This difference,
which is equal to the Kohn-Sham correlation potential (if
we use the exact density for the calculation of the HF po-
tential), is magnified in Fig. 1(b). It resembles very closely
the correlation potential calculated by Smith, Jagan-
nathan, and Handler, ' who calculated the potential
directly from a very accurate density, making use of Eq.
(1). We note that none of the three terms V,„„d—V ", V&;„and V' ' is negligible for the total V, „„,
which is relatively small as the three contributions partly
cancel. V„„d—V " is negative, as the probability of
finding another electron close to the reference electron is
smaller in the correlated system. V„.,„d

—V " is dom-
inant close to the nucleus and causes the KS potential to
reach a minimum at the nucleus. This rejects the fact
that correlation allows for a slightly greater probability of
finding an electron in the neighborhood of the nucleus.

The plots in Figs. 1(a) and 1(b) demonstrate the relative
insignificance of V,.„„„compared to V (which is equal to
—V "). If approximations are made to the exchange po-
tential considerable care has to be taken that errors
made in that approximation are not larger than the whole
rats

corr

B. H2

The H2 molecule is a classical example of a system for
which the Hartree-Fock approximation breaks down at
large internuclear distances. In Table II we see that the
total electron repulsion energy, which for a two-electron
system is equal to the expectation value (f I V„„dlf ), is
too high in the HF case and the error increases with the
internuclear distance. This error is, of course, a conse-
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quence of the near-degeneracy correlation error. If an
electron is in the neighborhood of one of the hydrogen
nuclei then the probability for the second electron to be
found at the other nucleus will increase, depending on the
internuclear distance. This correlation is absent in the
HF model and at larger internuclear distances the HF
potential is much too repulsive at the nuclei. Not only is
the electron repulsion energy too high, the much too
repulsive HF potential also leads to a wrong density.
Especially at larger internuclear distances the expectation
values of the operators —

—,
' )7' and V~ over the density or-

bital f are very different in the exact and HF case.
In Figs. 2(a) to 4(a) the various potentials are displayed.

At equilibrium distance (R = 1.401 bohr), where the
overlap between the two 1s hydrogen orbitals is not
small, the effective potential resembles the HF potential,
although not as much as in the He case. At large dis-
tance (cf. 5 bohr) there is no resemblance at all. The
maximum in the HF potential shifts from the middle of
the bond at small or intermediate distance to the nuclei at
larger distance. This is a direct consequence of the
Hartree-Fock error: The ionic contributions to the wave
function are much too large and there is too much elec-
tron repulsion around the nuclei. The Hartree-Fock den-
sity becomes too diffuse and at R =5 bohr the exact
Ev,, ( =2(f ~ V~ ~f ) ) differs, according to Table II,
—0.312 a.u. (more stable) from the Hartree-Fock value of
E~, . This is to be compared to a total correlation energy
of —0. 1445 a.u. The lack of electron-electron correlation
in the Hartree-Fock approximation does not just lead to a
large error in E„(+0.161 a.u. compared to exact) but
to even larger errors in the one-electron terms in the en-
ergy: +0.312 a.u. in E~, and —0.328 a.u. in E&-.

The considerable difference between the Hartree-Fock
and the exact one-electron densities that is obvious from
these energy terms, also leads to a difference between
V "(p'""') and V (p ). It is clear from Fig. 4(a) that
using the more diffuse p "in V "leads to a lowering of
the repulsive maximum at the nucleus compared to
V "(p'""'). This effect, however, does by no means can-
cel the strong repulsion that is present in V " anyway
due to the large weight of ionic terms in the wave func-
tion. Only the exact electron repulsion potential
V„„d(x, ) correctly exhibits a strong reduction of the
repulsion around a nucleus. V„„d(x

&
) does not have

maxima at the nuclei, but it has a maximum in the mid-
dle of the bond. This is true not only for small but also
for large internuclear distances. This leads to a consider-
able contraction of the exact electron density around the
nuclei compared to p . As V„„d is so much lower than
V " in that region, the exact electron-electron interac-
tion energy E„,( = (f ~ V,.„„~f ) ) is still 0.161 a.u. lower
than in the Hartree-Fock approximation. We have noted
already that the effect of the contraction is (understand-
ably) much more stabilizing for the electron-nuclear term
E~, (

—0. 312 a.u. ).
It is obvious from Fig. 4(b) that contrary to the situa-

tion in He and Hz at equilibrium distance, where
Hartree-Fock is a good approximation, V„„„—V "dom-
inates the Kohn-Sham correlation potential for the near-
degeneracy situation in H, at large distance. (The contri-

bution of Vk;„at the bond midpoint is relatively unimpor-
tant, see below. ) It is clear from the foregoing analysis
how the use of VQQnd rather than V " in the effective
one-electron potential leads to the required improve-
ments in the one-electron density and in the various ener-
gy terms.

Turning now to the remaining potentials in V„„„we
first note that the kinetic energy correction potential
Vk;„(x

&
) is zero in the limit x& ~ ~ and on the nuclei (it

differs slightly from zero at the nuclei since the basis set
fails to describe the electron-nuclear cusp exactly). It has
rather low maxima at the outer regions of the molecule,
in the regions R /2 ~

~ r, ~

~ ~, but it reaches a maximum
of considerable height in the middle of the bond. This
maximum increases with increasing internuc1ear distance.
In the limit of infinite internuclear distance it reaches the
constant value 0.5. This result can easily be obtained
from Eqs. (21) and (29) if we insert the (exact)
density-matrix expression y(x t, x, ) =s& (x

&
)s, (x

&
)

+s2(x', )s2(x, ), where s, and sz are the hydrogen-atom
orbitals on the two nuclei. The kinetic energy density
correction, however, given by p(x, ) V„;„(x,), will still be
small, so this maximum in Vk;„at larger internuclear dis-
tances does not lead to a large contribution to the corre-
lation energy, This is also clear from Table II. The ener-

gy expectation value associated with Vk;„at first slightly
increases with increasing bond distance, so that it
remains in the order of 30—40% of the total correlation
energy, but from R =3.0 a.u. it goes down again, whereas
the correlation energy strongly increases, (f ~V„,„~f)
will be zero in the limit of infinite internuclear distance.

We note that the shape of Vk;„ is in agreement with our
previous finding that the magnitude of Vk, „ is connected
to the rate of change of the conditional amplitude. For
positions x, of the reference electron some~here around
one nucleus the conditional amplitude reduces to the H
1s wave function for the second electron around the other
nucleus, and Vk;„(x &

) =0. Only when the reference posi-
tion moves from one nucleus to the other, i.e. , around the
bond midpoint, does the conditional amplitude change
and does Vk,„attain a significant magnitude. This situa-
tion is reminiscent of the one in intershell regions in HF
atoms (cf. Sec. II).

The potential V ' has its maximum at the nuclei, as
in helium. At large internuclear distances the whole
V ' becomes very Aat with low maxima at the nuclei
and a very shallow minimum at the bond midpoint. The
energy of the conditional amplitude W is therefore almost
equal to the Hz+ ground-state energy, independent of the
position of the reference electron. The reason is physical-
ly clear. The energy of H2+ at large R is the energy of a
H atom slightly perturbed by a proton at large distance.
If the reference electron is close to the bond midpoint or
at infinity, it is far removed from both nuclei and the con-
ditional amplitude will "collapse" to a wave function
describing the other electron in the field of two protons at
large distance, i.e., Hz+ with large R. If, on the other
hand, the reference electron is close to one proton, the
conditional amplitude will describe the other electron as
being (almost) certainly close to the other proton and the
energy will again be close to that of Hz It will actually
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be slightly higher as the stabilization from the VB config-
uration with electron 2 around proton 1 (where the refer-
ence electron is) is lacking.

In Fig. 2(b) the Kohn-Sham correlation potential for
H2 at equilibrium distance is displayed. As in helium, a
negative minimum is reached at the nuclei while a posi-
tive maximum exists in the middle of the bond, making
this region less attractive for the electrons. In contrast to
the He atom, the potential approaches zero from the neg-
ative side in the limit x, ~ ~. At large distance [R =5.0
bohr, Fig. 4(b)] V„,„ is much larger, as expected from the
strong correlation effects, but has, for the reasons dis-
cussed above, the same overall shape: Attractive close to
the nuclei and repulsive in the middle of the bond. It is
not possible to conclude from the investigation that any
of the contributions to V„„,can be neglected. Only at
large R is there one dominant term V„„d—V " and is
V ' so Hat that it will have very little effect on the
eigenfunction f. So when the Hartree-Fock approxima-
tion is grossly in error, important improvement may re-
sult from taking only, or only approximately, the
Coulomb correlation embodied in V„„d into account.
For real quantitative accuracy, however, the contribu-
tions from both V„;„and V ' cannot be neglected.
Even if their expectation values over the orbital f (see
Table II) are small compared to those of —

—,
' V', V~, and

V, „d, they are not negligible compared to the differences
of those expectation values of their Hartree-Fock coun-
terparts, i.e., to the correlation energy.

V. SUMMARY AND CONCLUSIONS

A one-electron Schrodinger equation, which has the
square root of the exact many-electron density p(x& ) as a
solution, can be derived directly from the X-electron
Schrodinger equation. The effective potential V,& in this
differential equation is local and can be expressed as a
wave function expectation value. ' This wave-function
potential relationship makes V, ft- an interesting object to
study. It creates the possibility to analyze in detail the
origin and the nature of the various potentials that con-
tribute to V,z and enables one to study correlation in
terms of exact local potentials. It is shown in Sec. II how
we can distinguish clearly three different contributions to
V,z and how we can give physically meaningful interpre-
tations to each of these three terms, making use of the
concept of the conditional amplitude 4. The three con-
tributions are (a) V„„d(x,), the potential at x, due to the
conditional density of the other electrons in the system
given one electron is at x, (the Hartree potential plus
Coulomb and Fermi hole corrections); (b) Vk;„(x &

), a po-
tential which, when multiplied by p(x, ), corrects for the
difference between the exact kinetic energy density and
that due to (N times) an electron in the orbital
f(x

~ ) =N ' p' (x, ) [Eq. (26)]. This potential has
been shown to provide a local measure of the indepen-
dent-particle character of an electron: It is small when
the probability distribution of the other electrons is in-
sensitive to changes in the reference position x, . (c)
V '(x& ), a potential that reflects the deviation of the
conditional amplitude 4&(xz, . . .x~ x, ), considered as an

(N —1)-particle wave function parametrically dependent
on the reference position x, , from the ground-state wave
function of the X —1 particle system.

We calculated and analyzed these potentials for the
helium atom and for the hydrogen molecule at various in-
ternuclear distances. These systems are also interesting
from a DF point of view because, for two-electron sys-
tems, the effective potential is equal to the total Kohn-
Sham potential; the KS correlation potential V„„can
then be obtained simply by subtracting the Coulomb and
exchange potential and we can again distinguish three
physically meaningful contributions to V„,„[Eq. (41)].

The relative importance of the three potentials that
contribute to V„„,or V,~ is different for He and H2, due
to the different nature of correlation effects found in these
systems. In H2 at longer internuclear distance, correla-
tion is mainly of near-degeneracy, or long-range type, re-
sulting in a large correlation error. In these systems the
exact density is often poorly described in the HF approxi-
mation. As a consequence, the effective potential will de-
viate much from the HF potentia1. We have found that
in this situation the conditional potential V„„d dominates
the effective potential (and V,„„d—V dominates V„„,).
The potential V ' is small and very Oat. It may prob-
ably be neglected to a good approximation. This is not so
obvious for Vk;„, although it has been observed that Vk;„
is large only in a region (around the bond midpoint)
where p(x, ) is small. It is, nevertheless, clear that in the
search for good model potentials we must, in near-
degeneracy situations, primarily focus our attention at
potentials that correctly describe the average electron-
electron interaction.

In the He atom and also in Hz at equilibrium distance
the situation is different. These are systems for which HF
does very well, although this does not make things much
easier from a correlation point of view. The correlation
is now mainly of dynamical, or short-range, character.
The KS correlation potential is small but, as has been
shown, now none of the three potentials that contribute
to V,& or V„„can be neglected. The correlation energy
in these systems is a small and subtle quantity and
remains so in the Kohn-Sham picture.

APPENDIX: CONDITIONAL AMPLITUDE
CUSP CONDITION

4'(x, , x~ x~)=%(O, x2 . x~)[1—Z r, —dr, cos(v, )]

+O(r, ) . (A 1)

Z is the nuclear charge, d a constant (not determined by
cusp conditions), r

&
the distance from the nucleus, and v&

the angle between x, and the electric field vector E (pro-
duced by the other electrons and nuclei in the system).

In 1967 Bingel' derived the cusp conditions for a
molecular wave function +(x& xv). With x& in the
neighborhood of nucleus a we can expand 4'(x, . x~)
as
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We can find an expression for the density p(x, ) from
(A 1), =O(O, x2 . xz)[ —Z —d cos(v, )], (A3)

p(x~) =p(0)[1—2Z r, —2dr, cos(v, )]+O(r~~ ) . (A2) BP =p(0)[ —2Z —2d cos(v, ) ] .
0r]

(A4)

The derivative of + and p at the nucleus, in direction v],
is then given by

The change of the conditional amplitude 4(xz x~ x, )

is given, in general by

V&N(x2 x&~x&) —Vt[+(x& . . xz)/f(x&)]
=N'~2V, [4(x, . . . x~-)/p' (x, )]

=[N/p(x, )]' [V,+(x, xy) —[V,p(x, )]'P(x, x~ )/2p(x, ) I .

dP

The change of the conditional amplitude N with reference electron on nucleus u is given by

ae =[N/p(0)]' ' 4'(0, x~ x ~ ) /2p(0)
(3p )

(A5)

=[N!p(0)]'~ {4(O,x2 . xz)[ —Z —d cos(v, )]—p(0)[ —2Z„—2d cos(v&)]4(O, xq xz)/2p(0) I
=() .

(A6)
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