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The nonlinear dynamics of dissipative quantum systems in periodic fields is studied in the frame-

work of a Oisin-like nonlinear Schrodinger equation with deterministic nonunitary quantum fric-

tion terms describing the system-bath couplings. The virtue of this nonunitary evolution is that it is

compatible with Dirac s superposition principle and the Hilbert-space structure of quantum kine-

matics. Floquet theory and the generalized Van Vleck nearly degenerate perturbation method are
used to facilitate both analytical and numerical solutions. Closed-form analytic solutions can be ob-

tained in the long-time average approximation or within the rotating-wave approximation. The
methods are applied to the study of dissipative quantum dynamics of two-level systems driven by in-

tense periodic fields. It is found that the system asymptotically approaches a limit cycle |,'whose

orientation is subject to the quantum friction constraint), regardless of the strength of the perturbed
fields and the nonlinearity constant, indicating quantum suppression of classical chaos. Further,
each point of the limit cycle is found to be an attractor and g(t) exhibits a fractal-like evolution pat-

tern in the course of time. The structure of the limit cycle depends strongly upon field intensity and

frequency as well as the order of nonlinear multiphoton transitions. The power spectrum of the

Bloch vector trajectory exhibits a dynamical symmetry inherent in the dissipative system and in the

asymptotic limit cycle. A theoretical analysis is presented for the understanding of the origin and

the role of the dynamical symmetry.

I. INTRODUCTION

Nonlinear Schrodinger equations with the generic form

[Ho+ V(Q)]f=Ef
have been used to describe quantum-mechanical systems
that interact with their surroundings. ' Through its
wave function lt, the system interacts with its environ-
ment by inducing a net field which then acts back on the
system itself. This "self-dependent" interaction can be
described by appropriate choice of the effective potential
V(P). In general, one can assume V(P) depends on the
wave function g through the expectation value of an
operator. This assumption leads to

(0,+k&q~J ~q&a)q=F(i )q,
where 2 and B are operators depending upon the physi-
cal model and k is a parameter characterizing the
system-bath interaction strength. One physical example
leading to such an equation is the problem of a molecule
in a polarizable medium, treated by the classical Kirk-

wood and Onsager interaction model. In this case,
3 =B =M, the dipole-moment operator of the system.
The parameter k could describe the solute-solvent in-
teraction which depends upon the mean dielectric con-
stant of the environment.

It should be noted that the problem of the nonlinear
Schrodinger equation of type (2) is quite general; the
treatment of the interaction of a molecule with its envi-
ronment represents only a special application. Recently,
for example, Gisin ' has used the master equation for-
malism to develop nonlinear dissipative Schrodinger-like
equations for a large class of problems with time-
independent Hamiltonians that involve friction. The
oisin-like equation has been recently reviewed by one of
us.

The nonlinear dissipative quantum evolution equation
proposed by oisin has the following simple form: '

dt
= —tHl((t)+I (&0 &,

—8)l((t),

where
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&H &, =&it(t)IHlit(t)& . (4)

H is the time in-dependent Hamiltonian and k ()0) is the
"quantum" friction constant characterizing the strength
of the system-bath interaction. This deterministic nonun-
itary friction term is motivated by a natural generaliza-
tion of Wigner's theorem or, equivalently, of Dirac's su-
perposition principle. It can be applied to any spins as
well as to spatial degrees of freedom (or to any quantum
system described by a Hilbert space). An example of the
classical counterpart of this quantum friction term is the
Landau-Lifshitz frictional resistance in the motion of
classical spins. The difference of the Gisin-like formal-
ism with the traditional approaches, such as the Pauli
master equation, arises from the fact that in the former
case the reduction of the system-bath couplings is done
by a pure state preserving projection, in opposition to
the conventional partial trace projection. Thus the
nonunitary evolution described by Eq. (3) has the merit
that it preserves the superposition principle. Oisin found
that Eq. (3) has the unique formal solution

exp[ —(i +k)Ht]lit/(0) )

[( i//(0)
I exp( —2kHt)

I g(0) ) ]'~

Two important properties of Eq. (3) are the following: (a)
The norm of g(t) is conserved even though the system is
dissipative, and (b) the following relationship holds true:

d(H), = —2k((H ), —(H), ) ~0 . (6)
dt

Gisin has applied this formalism to spin systems in a
magnetic field and to the motion of damped harmonic os-
cillators. '

In this paper, we shall explore the detailed nonlinear
dynamics for dissipative quantum systems based on an
extension of Eq. (3) to the time-periodic Hamiltonian
H(t) =H(t +2~/co). As will be shown in Secs. II and
III, the solution of the Gisin-like equation, Eq. (3), with
H(t) periodic in time, can be facilitated by the use of the
time-independent Floquet matrix method' ' and the
generalized Van Vleck nearly degenerate perturbation
theory. ' '' It is found that g(t) approaches asymptoti-
cally to a limit cycle with orientation subject to quantum
friction constraint. In Sec. IV, we present a detailed
analysis of the dissipative dynamics in terms of the trajec-
tory of the Bloch vector. The structure of the limit cycle
is found to be (field) frequency and intensity dependent
and exhibits an inherent dynamic symmetry. The origin
and the role of this dynamical symmetry is analyzed in
Sec. V. This is followed by a discussion and conclusion in
Sec. VI.

where

I+(t)) =P+(t)lf(t)), (8)

and the periodic operator P(t) satisfies the equation" '

r

H(t) i — P(t)=P(t)Q, (9)
dt

with g being the quasienergy operator. Equation (9) can
be transformed into an equivalent infinite dimensional
time-independent matrix eigenvalue problem, '

g &anlHFIPm»/3k q/&P k (10)

(alH(t)IP) = y H(~)e'" ' (12)

The eigenvector associated with the quasienergy eigenval-
ue q/, „(—:q/, + n co), denoted by I X/, „), has components
defined by

P~„=(Pm I X,,),
and satisfying the following periodicity relation:

(/t3, m +il/(, „~/ & =(/3, mls, „) .

Equation (7) can be further transformed into

(13a)

(13b)

where

=k [&y(t) IB(t) ly(t) &
—B(t)]Iy(t) &,

dt
(14)

(15)

and

B(t)=e'&'P +(t)H(t)P(t)e (16)

In the quasienergy state basis [lk/, o) ), the matrix ele-
ments of B(t) are

B„„.(t) = y y Hg& Ran & &/3m, lk„

where HF is the time-independent Floquet Hamiltonian
defined in the Floquet-state basis lan ) =

I
a ) X

I
n ),

(anlHFIPm ) =Hl"/3 l+nco6 /3'„

Here [Ia&, lp&, . . . ] are eigenstates of the unperturbed
system, n and m are the Fourier indices (ranging from
—oo to + oo ), co is the field frequency, and k is the index
of quasienergy states in the reduced zone (n =m =0). In
Eq. (11),H() is obtained from the Fourier expansion

II. FLOQUET TREATMENT OF NONLINEAR
SCHRODINGER EQUATION IN PERIODIC FIELDS

a, /3 l, n, m

(1+ —
) tXe (17)

For a time-periodic Hamiltonian, H(t)=H(t + T), Eq.
(3) can be transformed into the following form: where we have used the relation

dI&P(t) ) .-I )
dt

+k[(N(t)IP +(t)H(t)P(t)IC (t) )

P+(t)H(t)P(t)]I&&(t) ), — (7)

P /, (t)= g P"„e'" '= g (an I/(. „o)e'" ' (18)

Up to now, no approximation has been made. Equation
(14) possesses no closed-form solution. However, an ap-
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Bkk = g 1&an leuko&I (gk ncL @kk
a, n

(19)

proximate analytic solution can be obtained if we take a
long-time average on B(t),

As will be shown later, this approximation is valid only
when the nonlinearity constant k is small. In this case,
[B,Q]=0, and the solution of Eq. (3) has the following
analytic form:

~@(t) & =P(t)[e '~'e ' e 'P +(to)~@(to) &][&P(to)~P(to)e 'e ' e 'P +(to) ~ttj(to) &]

From Eq. (19) we can construct the density matrix

p 13
——&a~&(r)&&&(r)~P&

(20)

k, k' n, rn
g Ck ~'e

k

(21)

where we have set to =0 and bk =Bkk. The coe%cient Ck
is given by

C„=g & k„~an &&a~tt(0) & .
a, n

(22)

For near resonance processes, further simplification of
Eqs. (10) and (11) is possible by invoking the use of the
nearly degenerate perturbation theory. ' ' This will be
treated in Sec. III.

HGvv=

coo

2

2.3

(CO+ Qlo)

x3

( CO+ COO)

~o
CO+

2 co+ Q)o

(25)

Similar GVV Hamiltonians can be constructed for multi-
photon processes. ' ' The GVV quasienergies q+ can be
readily obtained from Eq. (24),

III. NEARLY DEGENERATE PERTURBATIVE
TREATMENT OF NONLINEAR

SCHRODINGER EQUATION

H(t) =Ho —p.E cos(cot), (23)

Consider the Gisin-like nonlinear Schrodinger equation
in Eq. (3) for a two-level system with the periodic Hamil-
tonian given by

CO

q+ = ——+0,
2

where 0 is the Rabi frequency given by
2 1/2k3

6 +
(co+coo)

and 6 is the detuning parameter,

6=
—,
'

( co —coo) —A, /( coo+ co ) .

(26)

where Ho is the unperturbed Hamiltonian with eigenval-
ues (E = —coo/2, E& =coo/2) and eigenvectors (~ a &,

~P&); p is the dipole moment and c. the electric field am-
plitude of the laser field. H(t) can be rewritten, in matrix
form, as

b = —b = ~Q — 1+2cok

2Q

2

The long-time average of B, Eq. (19), in the GVV approx-
imation reduces to (b+ =B++,—b =B ),

—coo/2 2X cos(cot)
Ht=

2k cos(~t) coo/2
(24) X 1+

2 —].

(27)

where A, is the coupling strength

Resonant transition between ~a & and ~P& occurs whenev-
er coo=E& E=—(2n + 1 )co, —n =0, 1,2, . . . . In this case,
the nearly degenerate perturbation method such as the
generalized Van Vleck (GVV) theory' ' can be em-
ployed to reduce the infinite dimensional Floquet matrix
H~, Eq. (11), into a two-by-two time-independent
effective matrix. In addition, the GVV method has the
merit that if the wave function is accurate to the mth or-
der, the corresponding eigenvalue will be accurate to the
(2m +1)th order. Thus, for example, to the first order in
wave function and to the third order in quasienergy, the
GVV Hamiltonian has the form (when coo=co)

It is interesting to note that there exists a field frequency
co=~, at which b+ =b =0 and the effect of quantum
friction disappears. Figure 1(a) shows the time-average
transition probability P

& as a function of coo/co for a
two-level system with the physical parameters set at
coo=1.0, k =0.01, and X=O. leo (arbitrary units). Both
the one- and three-photon transitions are shown. The
most distinctive feature is that P

& can exceed 0.5 (i.e.,
antipopulation). This is contrary to the nondissipative
case (k =0), where P

&
~

—,'. Figure 1(b) shows the be-
havior of B++(b+) and B (b ) as a function of coo/co.
Notice that b+ and b cross each other every time there
is a resonance transition between the two levels. Howev-
er, the crossing points (at which b+ =b =0) need not
coincide with the resonance frequencies (at which P



4174 YOUHONG HUANG, SHIH-I CHU, AND JOSEPH O. HIRSCHFEI. DER 40

reach maxima).
The dynamics of the two-level system can be represent-

ed by the rotation of the Bloch vector S = ( u ', tt ', w ') in
three-dimensional space in the laboratory frame, where

and

u
' = ( p t3+ pg ),

~'= —t(p. i
—pt. »

I

Ppp P~n .

(2&)
0.5

I$4

It is often convenient to work in the rotating frame de-
scribed by the transformation

cos(cot) sin(cat) 0 u
'

Q.t j ——

0.0 1.0 2.0 3.0 4.0

u = —sin( tat ) cos(cot) 0 v
'

0 0 1

(29) (b)

In the following, we shall first discuss the nonlinear dy-
namics of the dissipative two-level system when the non-
linearity k is small. In this case, the long-time average of
the operator B(t) is a valid approximation, and an ap-
proximate analytic solution can be derived for the Bloch
vector S(t).

0.0
I&

A. Dissipative nonlinear dynamics in the case of small
nonlinearity (friction) —long-time average approximation

-OP
0.0

I

1.0
I

2.0
I

3.0 4.0

The components of the Bloch vector S(t), in the rotat-
ing frame, can be obtained analytically in the GVV ap-
proximation if the long-time average is performed for the
operator B ( t) before Eq. (14) is solved. For the one-
photon dominant frequency region (co —coo), for example,
we obtain

Frequency I/fo

FIG. 1. {a) Time-average transition probability P„.& and (b)
B {dotted line) and B++ {solid line) as a function of c~(i/u for
a dissipative two-level system (f/f„=co„/co). The physical pa-
rameters used are ~(l=1.0, k =0.01, and A=0. lcd (arbitrary
units).

2A,
u (t) = 3 . sin(20) — cos(20)cos(2tat)—

(~+cue) sin(20)cos(4cot) BM+ COO

+2 cos(20)cos(2At)+ sin(20)cos(2cut)cos(2$lt)—
( CD +Ci)() )

2

cos(20)cos(4cot)cos(2At )

sin(4cot)sin(20t) C+ C . D, (30a)

v(t)= 3 . 2A,
cos(20)sin(2cot)+

CO+ Cc)O

2

sin( 20)sin(4cot ) B

—2 sin(2flt)+ si (20n)si (2cnot)cos(2$lt)—
CO+ Cc)O

cos(20)sin(4cot)cos(2A, t)
+~O

c s(o4cot)si (2n0t) C+ C . D, (30b)

w (t) = 3 cos(20) 1— 2k+ si (2n0)c s(o2cut) .B
+~O

—2 sin(20) 1— cos(2At)+~o

2k
[ s(c2o0)c s(2o$lt) s(c2ot)t+asi (2Ant)si (2cnot) j C+ C D,

Cc) + COO
(30c)
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where

A= 1+
2 —]

B =C e ""'—C e ' C = [(II+b, )/2Q]'

/[2'(Q+ Q)]
—1/2 D C2 e

—2kbt+ C2 e 2kbt

and

cosO = [ ( Il +6 ) /211 ]
'

2k cos(2O)cos(2cot)—
CO+ COp

u (t)= — 1+
CO+ COp

From Eqs. (30a)—(30c), we see that after some long time, t &) I /2kb, the Bloch vector will settle down to a simple pre-
cession around a fixed vector (limit cycle). Assuming b )0, we have asymptotically

2 —
1 2

+ sin(2O)— sin( 2O) cos(4' t ) (31a)

v (t) = — 1+
2 —]

CO+ CC)p

2A.
cos(2O)sin(2cot )+

CO+ COp

sin(2O)sin(4cot)
CO+ COp

(31b)

w (t) = — 1+
2

A.
2

2A,1— cos(2O)+ sin(2O)cos(2tvt)
(co+ coo) CO+ CC)p

(31c)

Equations (31a)—(31c) show that the limit cycle structure
is k independent if a long-time average approximation is
made for B(t) Furth. er, the Rabi-frequency (II) contribu-
tions to S(t) decay out completely after S(t) settles down
to the limit cycle.

Figure 2 shows the time evolution of the Bloch vector
in the w-v plane for three different time intervals (in field
oscillations, T =2n/co): (a) [0,50T], (b) [600T,650T],
and (c) [5000T, 5050T]. The physical parameters used
are ct)p=1 M=1 ~ 0390cop A =0.1~, and k =0.01. It is
seen that the Bloch vector components exhibit quasi-
periodic and shrinking motion simultaneously and reach

0.5

a limit cycle asymptotically. Similar phenomena are also
observed in the m-u and u-v planes.

B. RWA analytic solution

In this section we show that the Gisin-like equation,
Eq. (3), with H(t) periodic in time can also be solved
analytically in closed form within the rotating-wave ap-
proximation (RWA) without the need of using the long-
time average approximation for B(t). Under the RWA,
the total Hamiltonian H(t), Eq. (24), is replaced by

HRWA(t) =
—cop/2 be '"'

be '"' cop/2
(32)

where b = —(a~p E~p)/2 is the coupling strength. We
now consider the solution of the transformed equation,
Eq. (7). The periodic operator P(t) allows the transfor-
mation of HRwA(t) into a time-independent matrix B,

B:P (t)Hgwp (t)P(t) (33)

0.0.

To see this we need to first work out P(t). In RWA, the
quasienergy eigenvalues q+ can be obtained easily as

q+ = —e/2+0, ,

where

-0.5

and

b =(co—coo)/2 .

(35)

—1 .tl-1.0 -0.5 —0.0

v(t. )

0.5 1.0 The corresponding eigenvectors are

FIG. 2. Time evolUtion of the Bloch vector S(t) in the w-v

plane. The trajectories labeled 2, B, and C correspond to the
time intervals in [0,50T], [600T,650T], and [5000T,5050T], re-
spectively, where T=2m/co is the period of field oscillations.
Physical parameters same as Fig. 1 except M/cop= 1.0395.

A+0) =(cosO)~a, O)+(sinO)~P, —1),
o) = —(sinO)~a, O)+(cosO)~P, —1),

(36a)

(36b)

where ~a, 0) and ~P,
—1) are the two unperturbed Flo-

quet basis states, and
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cosO= [(0+6, )/211 ]' (37) The result is

The matrix elements P,,k(t) (y =a or f3, k =+ or —
) can

now be constructed according to Eq. (18), P(t)=
cosO —sinO

(sinO)e '"' (cosO)e
(38)

P k(t)= g (yn ~Ako)e'""' Substituting Eq. (38) into Eq. (33), we find

(
—co o/2)c os(2 0) +bsin(20) (coo/2)sin(20)+ b cos(20)

B = I B,1=
(co„/2)sin(20)+b cos(20) (coo/2)cos(20) —b sin(20) (39)

which is indeed time independent. Equation (7) now becomes

d~4(t) ) ldt = i Q ~—4(t) )+k [(d&(t) ~B ~@(t)) 8]0—(t),
which allows for a closed-form solution similar to that in Eq. (5). Using the relation in Eq. (8),

lP(t) & =P(t)l+(t) &,

we arrive at the desired RWA solution

iig ikB)tj+(0) q(p))
lP(t) ), „=P(t)

[t'q(p)ip(p) ii'+ik'it —i Qi—ik'ip+(p)~q(0))]&"

(40)

(41)

Note that the quasienergy operator Q is diagonal in the
~k~o) basis. That is,

q+ 0

0 q
(42)

Further, Q and 8 do not commute. The operator
Q = Q

—ikB is non-Hermitian and possesses complex ei-
genvalues. Care should be taken to obtain correct eigen-
solutions by using the biorthonormal relationships. ' It
can be shown' that in the rotating frame, Eq. (29), the
RWA Bloch vector SR~A=(u, v, m) reaches asymptotical-
ly to a (time-independent) axed vector rather than a limit

. cycle. The RWA solution is valid, in general, only for
weak-field and near resonant one-photon transition pro-
cesses. For stronger fields and/or multiphoton processes,
higher-order GVV and/or numerical methods are re-
quired to obtain the correct solutions as described in Sec.
IV.

u (t)+v (t)+w (t)=1. (43)

Thus only two independent variables are required to
specify the motion of the Bloch vector. We shall choose
the population difFerence w (=pt t

—
p ), and the angle

P=cos '[u/(u +v )' ] (44)

as our variables.
Figure 3 shows a typical trajectory in the P-w plane

from t =0 to 100T (T = 2m/co). The physical parameters
used are coo= 1.0, co= 1.0395coo, X=O. leo, and k =0. 165
(arbitrary units). Only the points at each time interval

in time, the length of the Bloch vector S(t) is invariant in
the rotating frame, namely,

IV. DISSIPATIVE NONLINEAR QUANTUM
DYNAMICS IN TWO-LEVEL

SYSTEMS—NUMERICAL SOLUTIONS

In this section we present a detailed study of the dissi-
pative nonlinear dynamics of a two-level system per-
turbed by periodic fields. Particular attention will be
paid to the (field) frequency- and intensity-dependent dis-
sipative dynamical evolution and the structure of the lim-
it cycle. When k is not small or the field intensity strong,
the long-time average or the RWA solution described in
Sec. III is not valid and numerical techniques such as the
Runge-Kutta method will be used for the solution of Eq.
(14). For nearly resonant multiphoton processes, the
operator B(t) defined in Eq. (17) can be simplified by
means of the high-order GVV approximation of the Flo-
quet Hamiltonian HF.

Since the norm of the wave function P(t) is conserved

. :~ '

O. OG

FIG, 3. Typical one-photon dominant Bloch vector trajecto-
ry in the P-w plane from t =0 to 100T, where the angle P is

defined in Eq. (44). The trajectory points are recorded at every
At =2~/30co. The physical parameters used are ~o = 1.0,
co= 1.0395coo, X=O. 1', and k =0.165.
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At =2m/30co are recorded. This reveals several interest-
ing dynamical features. First there are points scattered
over the P-w plane. Second, there are 15 point attractors
(in the center portion of the graph) forming a limit cycle-
like structure. Third, each point attractor is surrounded
by a similar spiral substructure. The fact that there are
15 point attractors means that it takes 156,t =15(2n/
30co) =2m/2' amount of time for the system to travel
around the limit cycle once. In other words, the system
exhibits a 2' frequency in its time evolution. This is re-
lated to the dynamical symmetry inherent in the system
to be discussed in Sec. V.

Figure 4 illustrates yet another striking phenomenon in
nonlinear dynamics. Here the time interval is cut finer to
At =2~/70co. We now see 35 point attractors forming
the limit cycle; each one of them is again surrounded by
similar spiral structure. The number 35 again arises from
the 2' frequency period. If we cut the time interval finer
and finer, we see more and more point attractors. Each
one always exhibits self-similar spiral structure. The in-
variance of this self similarity under changes of
magnification suggests the system exhibits fractal-like
characteristics during its time evolution. In Fig. 5, we
plot the same trajectory data in Fig. 4 but only from
=50T to 100T (T=2~/co). We see all the scattered
points disappear and only the point attractors and their
spiral structures remain. This clearly indicates that the
dissipative system evolves asymptotically to a limit cycle,
with each point of the limit cycle being a point attractor.

Figure 6 shows another example of the spiral pattern
near by the limit cycle for a three-photon dominant pro-
cess. (The physical parameters used are co =coo/3,
coo=1.0, A. =O. Icoo, and k =0.01.) In this latter case k is
rather small, .and Fig. 7 shows the corresponding result
generated from the long-time average analytical formula.
Apart from a slight shift in the position, the two struc-
tures agree rather well, indicating the validity of the
long-time average approximation for small nonlinearity
cases.

We now discuss the intensity-dependent limit cycle
structure. Figures 8 —10 show the limit cycle structures
for one-photon dominant processes (at fixed coo= 1.0,

Q

Q- QQ—

0.685
—Q. 1 5

I

n. GQ G '5

FIG. 5. Same as Fig. 4 except only the data from t =50T to
100T are recorded. It shows clearly the spiral structure around
each point (attractor) of the limit cycle.

1.25

k =0.1, and co=coo) for coupling strengths A, /coo=0. 1,
0.5, and 1.0, respectively. The main feature changes as k
increases are the gradual increase in size of the limit cy-
cle. While the shape of the limit cycle also changes in
shape considerably as A, varies, it remains a single folded
structure. The situation for the multiphoton transition
case is more involved. Figures 11—13 depict the limit cy-
cle structures for three-photon dominant processes (at
fixed coo= 1.0, k =0. 1, and co =coo/3) for 1,/coo=0. 1, 0.5,
and 1.0, respectively. In addition to the change in size as
A. varies, the limit cycles exhibit multifolded structures at
high-field intensities. Clearly, the structure of the limit
cycle depends upon the order of nonlinear multiphoton
transitions. An interesting question now arises: Can the
dissipative quantum system exhibit bifurcation or even
chaos at very high laser intensities? We have performed
several high intensity calculations (up to A. /coo= 10.0). In
each case, while the structure of limit cycle is getting

5

Q. , QQ

0.75
—1.00 —0.94 —0.88

G.685
—Q. ' 5 Q.QQ

FIG. 4. Same as Fig. 3 except ht =2'/70co.

FIG. 6. Spiral pattern nearby the limit cycle for a three-
photon dominant process. The results are obtained by "exact"
numerical solutions. The physical parameters used are coo= 1.0,
co=no/3, A, =0.1coo, and k =0.01.
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1.25, 1.25

1.00

0.7
—1.00 —0.94 —0.88 0.75

—1.00 —0.50 0.00 0.50

FIG. 7. Same as Fig. 7 except the results are obtained by the
long-time average approximation.

FIG. 9. Same as Fig. 8 except X=0.5co0 (medium strong
field).

more complicated as A, increases, it always remains quasi-
periodic. Thus for a dissipative quantum system under
periodic perturbation, there is no stochastic motion ob-
served. This is an example of the so-called quantum
suppression of classical chaos 'Wh. ile the corresponding
classical systems can exhibit chaotic motions, the quan-
tum interference eff'ects tend to suppress the irregular be-
havior. The absence of quantum" chaos, however, does
not prevent the existence of fractal-like behavior.

V. DYNAMICAL SYMMETRY
OF THE LIMIT CYCLE

Figure 14 shows the power spectrum

W(f)= f ui(t')e' 'dt' (ai=2rrf), (45)
0

for u~ (t) in the time interval (0, 100T) for the one-photon
dominant process at coo = 1.0 M = coo k =0. 1 and
1=1.0uo (strong-field case). One sees that besides the

sharp peaks at 2', 4', 6', and 8', etc. , there are broader
peaks inbetween them. Figure 15 shows the power spec-
trum for the same process in the longer-time interval
(100T,200T). Here all the broadened peaks disappear
and only the sharp peaks at 2nco (n =1,2, 3,4) remain.
This corresponds to the power spectrum of the limit cycle
shown in Fig. 10. Similar behavior is observed for the
three-photon dominant case (coo= 1.0, ai =coo/3,
=0. Icoo, k =0.01) as shown in Figs. 16 and 17. One thus
sees clearly that there is a 2m fundamental frequency in-
herent in the dissipative dynamics as well as in the limit
cycle in the rotating frame of coordinates.

The origin of this fundamental frequency 2' can be un-
derstood from an inspection of Eqs. (30) and (31). During
the earlier dissipative temporal evolution, Eq. (30) shows
that w (t) contains two different dynamical components:
One is characterized by the cos(2na~t) [or sin(2ncot)] os-
cillations and the other by the Rabi oscillations [cos(20t)
or sin(20t)]. The Rabi oscillation component is associat-
ed with the appearance of the broadened peaks during
the evolution and gradually decays away. After the sys-

0,645

2.00

1.00t.

0.82
—0,220 -0.110 0.000

0.00
—1.00 1.0G

FIG. 8. Asymptotic limit cycle structure for a one-photon
dominant process at cu0=1.0, k =0.1, co=~0, and coupling
strength A. =0. 1co0 (weak field). FIG. 10. Same as Fig. 8 except k= 1.0co0 (strong field).
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1.25 2.00

1.00 1.0

0.75
—1,00 —0.94 —0.88 —1.00

I

0.00 1.00

FICi. 11. Asymptotic limit cycle structure for a three-photon
dominant process at cop= 1.0, k =0.1, co= up/3, and X=O. loop.

FIG. 13. Same as Fig. 11 except A. =1.0~p.

p(r) =i [p(r), H(r)]+k[[p(r), H(r)], p(r)] .
dt

(46)

The Hamiltonian in the current study of two-level sys-
tems, Eq. (24), possesses the following properties:

H(t+T)=H(r), T=2~/co (47)

and

tern settles down to the limit cycle, only the 2nco frequen-
cy component remains [Eq. (31)].

In classical nonlinear dynamics, a system driven by a
periodic force F(x, t+T)=F(x, t) is said to be a sym
metric system' if x(t) is a solution so is —x(t+ T/2).
We call x(t) a symmetric solution' of period T if
x(t) = —x(t+ T/2). The possession of dynamical sym-
metry leads to the suppression of period doubling and
classical chaos. ' We now examine whether this idea can
be extended to a nonlinear quantum system. The Gisin-
like equation, Eq. (3), in density-matrix formulation can
be written as

where

i 0 = —J0 —i (49)

Jp(t+T/2)J+=p(t) . (50)

We found this relation is indeed satisfied once the system
has reached the limit cycle. Let us analyze the conse-
quence of this equality. In the rotating frame of coordi-
nates, defined in Eq. (29), Eq. (50) leads to

u (t+ T/2) u (t)
U(t+T/2) = U(t)
w(t + T/2) w(t)

(51)

It can be shown' that if p(t) is a solution of Eq. (46),
Jp(t+T/2)J+ will also be a solution. In general,
Jp(t+ T/2) J+ need not be equal to p(t). Following the
classical analog, ' we shall call a nonlinear quantum sys-
tem dynamically symmetric if

H(r + T/2) =JH(r)J+, (48)

2,00,

0.0

bd0

1.00

—2.0'

—4.0
0.0

I

2.0 4.0 6.0 8.0 10.0

0.00
—1.00 0.00

FICs. 12. Same as Fig. 11 except A, =0.Set)p.

1.00

Frequeacy f/fo

FIG. 14. Power spectrum W( f) of the w(t) trajectory for a
one-photon dominant process in the time interval t =(0, 100T).
The physical parameters used are cop=1.0, co=cop, k =0.1, and
A, = 1.0cop.
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'0.0 2.0 4 0 6.0 8.0 1 0.0 0.0 6.0 8.0 1 0.0

Frequency f/fo

FIG. 15. Same as Fig. 14 except the power spectrum is ob-
tained in the longer time interval t =(100T,200T).

Frequency f/fo

FIG. 17. Same as Fig. 16, except for the longer-time interval
t = (200T, 400T).

Equation (51) means that, in the rotating frame, the
Bloch vector S=(u, v, tt~) has a period r'=T/2. Thus the
corresponding fundamental frequency will be

tu'=2~/r'=2(2'/T) =2' . (52)

This is what we have observed earlier for the fundamen-
tal frequency of the limit cycle. Thus we conclude that
the limit cycle resulting from the Gisin-like nonlinear
Schrodinger equation does possess a dynamical symme-
try. The existence of this dynamical symmetry leads to
the suppression of the irregular or chaotic behavior in the
quantum system.

VI. DISCUSSION AND CONCI. USIGN

2.0

0.0

O

4.0 6.0 1 0.0

Frequency f/fo

FIG. 16. Power spectrum W(f) of the w(t) trajectory for a
three-photon dominant process in the time interval
t = (0,200 T). The physical parameters used are co0 = 1.0,
cu =co0/3, k =0.01, and X= 1.0cu0.

In this paper we have investigated at length the non-
linear dynamics of dissipative quantum spin systems sub-
ject to deterministic nonunitary friction term and periodi-
cally driven perturbations. The quantum friction term

can be considered as the quantum generalization of the
classical Landau-Lifshitz frictional resistance. The pres-
ence of this friction term for quantum spin motions leads
to (a) the settlement of the system to a limit cycle whose
structure depends upon external field frequency, intensi-
ty, and order of nonlinear multiphoton transitions, and
(b) the confinement of the limit cycle to ~/2(P(3 /ir2

(see, for example, Figs. 5 —13). This confinement results
in the minimization of the interaction energy between the
system and the fields. Further we found that the quan-
tum limit cycle exhibits dynamical symmetry and that
P(t) exhibits a fractal-like evolution pattern in the course
of time evolution.

The full consideration of the evolution of dissipative
quantum systems should include both a friction term V&,

and a fluctuation term F,

d (t) iH(t)p(t)+ V„„—+F . (53)

The friction term is nonlinear, nonunitary, and deter-
ministic. It forces the system to settle to some "preferred
states" (limit cycles) as we have explored in this paper.
The fiuctuation terms (not considered in this paper) are
stochastic and unitary and tend to let the system explore
the whole state space. [Spontaneous decay relaxations
are also not considered in this paper. They usually can be
safely ignored, however, in spin systems. They can be in-
cluded in the Gisin-like equation (53).] ln room-
temperature experiments, the fluctuation effects can mask
the nonlinear friction effect. Thus the nonlinear friction
effects can best be observed at very low temperatures and
for highly polarized samples. An example is given by
Redfield's solid-state NMR experiment' performed at
high radio-frequency (rf) field intensity. He found the
dispersion made [u (t)] of the NMR signal does not satu-
rate at the same level as the absorption [v (t)] but remains
roughly constant at high rf intensities. This cannot be
explained by the Bloch's phenomenological theory (in
terms of simple T, and T~ relaxations) which predicts
that the absorption and dispersion should decrease (near
resonance) at the same level. A detailed study' of our



40 NONLINEAR SCHRODINGER EQUATION AND DISSIPATIVE. . . 4181

data presented in this paper shows that as the field inten-
sity is increased, v (t) (absorption) can become saturated
and decreased while u (t) (dispersion) is not. [Note that
u (t) and v (t) are related to the angle P(t) defined in Eq.
(44).] Thus the nonlinear quantum friction effect offers a
possible explanation of Redfield's observations. ' Indeed,
Gisin ' has pointed out that the way of introducing fric-
tion at a microscopic level [Eq. (3)] leads to a natural
unification of Bloch and Redfield phenomenological
theories. As emphasized by Abragam' and others, the
problem of describing an irreversible dissipative behavior
starting from the Schrodinger equation is far from being

solved. The proper introduction of eftective dissipation
in many-body quantum systems is thus a significant prob-
lem which has fundamental bearing on the foundations of
quantum statistical mechanics. Extension of the Gisin-
like theory to many-body atomic, molecular, and optical
processes is currently underway.
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