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A neural network with excitatory neurons for associative storage and inhibitory neurons for
control of firing rates is proposed. In distinction to attractor neural networks, which are endowed
with 6xed-point dynamics, the basic recall mode of the network consists of a relaxation to a limit
cycle originating from an inhibitory feedback loop. Nonlocal synaptic connections between exci-
tatory neurons store all the information and yield robust associative abilities of the network. Inhi-
bitory neurons with short-range connections and nonlinear interaction (shunting) are introduced
to stabilize low levels of neural activity. The mean 6ring rate per neuron ranges between 0.1 and
0.5 impulses per Monte Carlo step (MCS). The average activity of excitatory and inhibitory neu-
rons oscillates with a frequency of 0.5/MCS. The model generalizes the attractor concept for as-
sociative memory and brings logical neural networks closer to biological reality.

I. INTRODUCTION

Associative memories are among the earliest and most
successful applications of neural networks. ' Networks
of suitably interconnected simple logical units endowed
with a dissipative dynamics relax to a stable network state
which might be interpreted as a stored pattern. This basic
concept of associative storage and recall turns out to be
very robust against minor variations in the storage pro-
cedure (learning rule) and the networks dynamics. How-
ever, the concept of computing by attractors, i.e., relaxa-
tion to fixed points of network dynamics, neglects the rich
temporal structure of biological neural network behavior.
In this paper, two of these discrepancies, i.e., oscillations
in the neural activity and low average firing rates, are ad-
dressed and an associative network is proposed which
brings logical neural networks closer to their physiological
counterparts.

Recent neurophysiological findings in the visual cortex
and earlier results from the olfactory cortex suggest that
oscillations in neural activity might be an important as-
pect of neural information processing. The precise func-
tional role of activity oscillations in the cortex has not yet
been revealed in experiments, but theoretical considera-
tions based on neural modeling suggest that neural oscil-
lations might be important for expressing relations be-
tween different parts or different qualities (as color,
motion, texture, and depth in visual perception) of an ob-
ject to be represented.

The second neurophysiological observation which
stands in contrast to the dynamics of logical neural net-
works is the low temporal firing rate of neurons. Single-
electrode recordings clearly show that cortical neurons fire
between 20 and 50 impulses per second. In neural tissue
preparations, however, neurons can be stimulated to fire
several hundred times a second. This indicates that corti-
cal neurons normally fire with a low rate compared to the
saturation frequency set by membraae properties. Both
physiological observations, oscillation s and low firing
rates, are not modeled realistically in attractor neural net-
works. Logica.', neural networks with associative proper-

ties relax to stable, nonoscillating states which are charac-
terized by a subset of neurons firing with the maximal rate
and all other neurons silent.

In this paper I propose a neural network with oscillating
neural populations as a basic model for associative dy-
namics. Excitatory and inhibitory neurons play different
functional roles in contrast to the Hopfield model where
neurons with excitatory and inhibitory synapses are postu-
lated. Only excitatory neurons are employed for storage
of information. Excitatory interactions, which are nonlo-
cal according to the common view in neuroanatomy,
yield a cooperative dynamics with resulting fault tolerance
and robustness for associative pattern storage and recall.
The inhibitory neurons serve as activity control elements.
They are arranged on a two-dimensional layer where each
neuron interacts with neighboring excitatory and inhibito-
ry neurons in a feedback loop. To model shunting effects
of inhibitory neurons and the preference of inhibitory
synapses to terminate at the cell body I have included a
nonlinear term in the inhibitory interaction. The local ar-
rangement of inhibitory cells allows an effective suppres-
sion of high activity fluctuations and emulates a fast inhi-
bitory response. The network architecture differs from
the center-surround organization of receptive fields found
in visual cortex and corresponds to anatomical observa-
tions in the cerebral cortex which assert local inhibition by
stellate cells. The model generalizes the concept of at-
tractor neural networks with fixed-point dynamics and in-
cludes limit cycles and stochastic oscillations as recall
modes for pattern association. The oscillations occurring
in the network result from circuit properties and are not
due to oscillatory behavior of individual neurons. Neural
firing rates in the network are low in agreement with ex-
perimental data.

II. DEFINITION OF THE MODEL

The model neural network consists of two types of logi-
cal neurons —N excitatory and N inhibitory neurons. The
internal state of excitatory (inhibitory) neurons are denot-
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ed by Boolean variables S (S ). S '
1 represents one

action potential of neuron i, S ' 0 represents neuron i in
the resting state. The patterns g" stored in the network
are randomly correlated N-bit words [1,0] . Patterns g"
are chosen according to the distribution with

fe ' g We-ig)'
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citatory neuron i is given by

(3)

p(g;") ab(gi" 1—)+ (1 —a)8(g;") Vv, i

where the spatial activity parameter a 6 [0, 1] determines
the percentage of 1's in g". Small values for a as chosen
in the following simulations, e.g., a ~ 0.1, correspond to
sparse coding information and yield very efficient associa-
tive storage in attractor neural networks. '

The interaction between excitatory neurons de6nes the
memory traces of the p patterns stored in the network.
Using Hebb's postulate, all neurons belonging to one pat-
tern fire in a correlated way and develop strong mutual
connections. The Hebb rule may be mathematically
de6ned by

with

h $ Wit, 'Sg —f' $ Wig'S$
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f'(x) -(1—rt')x+ rt'x',

g' being a nonlinearity parameter for the interaction
among inhibitory cells.

Inhibitory synapses ending at excitatory cells have the
strength W$' P/(amC). The resulting field h of an ex-
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If two neurons are both active in one pattern they are con-
nected by a synapse of strength W' ' 1/(amN). m is the
average temporal activity of neurons. Rule (1) forms sub-
sets of excitatorily connected cooperating neurons. Two
neurons which are not coactive in any pattern do not in-
teract and do not develop a synapse. "

Inhibitory neurons are introduced in the model to con-
trol the average temporal activity m, i.e., to stabilize the
network in a state where each neuron 6res once and then
stays silent for several Monte Carlo cycles (MCS). Inhi-
bitory neurons are not engaged in associative storage. The
effect of inhibition in biological networks strongly depends
on the location of inhibitory synapses. Synapses, ter-
minating at the cell body of an excitatory neuron, can play
the role of a logic switch and are able to totally suppress
any activity of the neuron. On the other hand, inhibitory
synapses terminating in the dendritic tree of excitatory
cells have a graded effect on the cell membrane potential.
Since the precise synaptic geometry is not known I intro-
duce an adjustable amount of nonlinearity in the inhibito-

ry postsynaptic potential.
An inhibitory neuron i is locally connected and receives

input from all excitatory and inhibitory neurons in its
neighborhood A; of size C. Synapses from excitatory
cells to inhibitory cells have the strength W~'z' a/(amC),
inhibitory cells are mutually connected by synapses of
strength W,"i,

' y/(amC). The local 6eld of inhibitory
neurons assumes the value

f'(x) (1 —rt')x+rt'x 2.

rt' controls the degree of nonlinearity for inhibition of ex-
citatory cells. The 6rst term in (3) describes the interac-
tion between excitatory neurons. The variable m "

(I/aN)g;g;"S measures the overlap of the network of
excitatory neurons with the stored pattern v. If the net-
work is in state S' g" we obtain m"-1 and
m"=aVp~v. The second term in (3) models the non-
linear inAuence of inhibitory neurons on excitatory neu-
rons.

The neurons are updated asynchronously. A randomly
chosen neuron i with local 6eld h '(t) fires with probabili-
ty

P (t) [1+exp[—(h" —U")/7"'l'Ii
at time t+ r/N, otherwise it is silent. The parameters U"
and T" are the threshold potentials and the network tem-
peratures for excitatory and inhibitory neurons, respec-
tively. The asynchronous update of logical neurons estab-
lishes a characteristic time scale of i/N for one spin flip
where i corresponds to one MCS. The average update
time has to be compared with the average interval be-
tween two impulses of an active cortical neuron. A neuron
reaching the threshold potential needs approximately 1 ms
for the action potential, 3-5 ms for the absolute refractory
period, 2-5 ms for the relative refractory period, and ad-
ditional 1-3 ms for integration of inputs until it reaches
the threshold value again. In total, we have about 7-14
ms as the equivalent physiological time for one MCS de-
pending on the cell type and the local neuroanatomy and
neurochemistry.

The network composed of excitatory and inhibitory
neurons has a much more complex connectivity pattern
than the standard model. The connections between exci-
tatory and inhibitory cells are nonsymmetric; dynamics of
the system is not dominated by an energy function, i.e., we
can expect stochastic oscillations.

III "FERROMAGNETIC" NETWORK WiTH
LOCAL INHIBITION

Before we discuss the behavior of the network with
several patterns stored we will study the much simpler
case of a network with complete connectivity between ex-
citatory neurons. One can consider such a system as a
neural network with only one pattern stored. The network
is formally equivalent to a long-range ferromagnet with
local inhibition.

To monitor the network behavior and to measure the
average temporal activity of a neuron, we introduce the
variables x" (1/aN)g;(S '). x" measure the average
activity of excitatory and inhibitory neurons (( )
denotes temporal averaging). These values have to be
compared with the variables q" (I/aN)g;(S ') ~, which
measure the degree of freezing. Low average temporal
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FIG. 1. Power spectral density of the excitatory activity in a
ferromagnet with local inhibition (N 1000, C 81, a 1,
P 1.5, y 1, U' 0.2, U' 0.6, T' T' 0.1, g' rl' 0).

IV. ASSOCIATIVE MEMORY WITH LOCAL
INHIBITION

Let us now discuss the general case of many patterns
stored in the network. What does pattern recall mean in a
network with oscillating neural activity? In attractor

6ring rate of all neurons, the desired behavior of the net-
work, is indicated by q"=(x") . The opposite casex"=q" stands for the high 6ring rates of a few neurons
(x"percent) and no activity of the rest. This case corre-
sponds to low spatial activity networks.

The global behavior of the network depends on the
synaptic values, the thresholds and the noise levels. For
very high temperature (T"»U") the network is in the
paramagnetic state. For vanishing noise (T" 0) and
positive thresholds U", the network state with zero activi-
ty x" 0 is always a stable 6xed point of the dynamics.
A richer dynamical behavior than fixed-point relaxation
can be observed if the initial activity of excitatory neurons
exceeds a lower bound (m' & U'rn) and if the noise level
is reduced below a critical transition temperature. Monte
Carlo simulations of a ferromagnetic net with local inhibi-
tion (N 1000) show oscillations of the average activity
of neurons. After 100 MCS the values x' 0.186, q'
—(x') 4x10, x' 0.132, and q' —(x') gx10
clearly indicate low firing rates of excitatory and inhibito-
ry neurons. The power spectral density of activity oscilla-
tions is shown in Fig. 1. Stable oscillations in the system
are identified by a maximum around 0.4/MCS. If we in-
terpret a Monte Carlo step as 10 ms we get 40-Hz oscilla-
tions, as observed recently in visual cortex and in olfacto-
ry bulb. The oscillations in the ferromagnet with local
inhibition are quite stable for different parameter values.
The oscillation frequency varies around 0.3-0.6/MCS and
depends on the locality of inhibition, e.g., for nonlocal in-
hibition the excitatory pool oscillates with 0.7/MCS.

The nonlinearity (ri') in the inhibition of excitatory
neurons increases the stability of the low-activity network
state. The nonlinearity, however, disturbs the regular os-
cillations. The fairly localized spectral density of a net
with linear (ri' 0) interaction is transformed into a
broad frequency band indicating that many competitive
oscillations occur in the network dynamics.
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FIG. 2. Evolution of overlap m (solid), inhibitory activity
gpS$/aN (dashed), and background activity /k' (1 —g )/aN
(dotted) during associative recall of pattern 1 (N 2000, p 20,
C 361, a 0.1, m 0.2, a y 1, P 0.9, U' 0.2, U' 0.6,
T' T' 0.05, g' 0.25, ri' 0).

neural networks, stable 6xed points of the dynamics are
interpreted as the memory output. Recall errors are
identi6ed as active neurons that are supposed to be silent
or as silent neurons that are supposed to be active. In the
present case of activity oscillations and low 6ring rates I
will identify an average impulse rate of a neuron exceed-
ing a certain threshold rate as a 1 bit and a very low or
vanishing impulse rate as a 0 bit. Recall errors occur due
to broadening effects of the distribution of impulse rates,
i.e., neurons active in a pattern state might fire too seldom
and, therefore, are classi6ed as silent. The opposite case
of activating a neuron which should be silent is also a pos-
sible source of recall errors.

The recall procedure in associative neural networks can
be de6ned in two different ways: (i) a disturbed or incom-
plete pattern is chosen as the initial network state and the
cooperative dynamics of the network provides the missing
information; (ii) a disturbed or incomplete pattern is
presented as constant input to the network over a
sufficiently long period (=5 MCS) and the network
evolves to a state or a sequence of states which correspond
to the complete pattern. I have successfully tested the os-
cillating network in both recall modes. Simulation results
of the 6rst mode are reported in this section; simulations
with a network operating in the second mode will be dis-
cussed elsewhere.

A typical evolution of the overlap m ' between the net-
work state and pattern 1 (solid line), the background ac-
tivity (dotted line), and the inhibitory activity (dashed
line) is shown in Fig. 2. The network (N 2000, p 20)
was prepared in the initial state S;, characterized by
probability P(S;(0) 1) m) +0.5m(;. After 4 MCS
the network relaxed to a phase-space region with
m' E [0.15,0.3), rn" arnVp & 1. The initial admixture
of the second pattern was quickly suppressed and the 6rst
pattern restored. The distribution of firing rates of active
excitatory neurons (g 1) is peaked around 0.2/MCS
with a width of 0.1/MCS indicating that a neuron 6res
approximately once every 5 MCS. Only very few back-
ground neurons (g 0) fire with rates exceeding the
value 0.025/MCS and cause recall errors. If associative
recall of a stored pattern fails, the network settles down in
the state of zero activity x" 0 which serves as an indica-
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tor of incomplete association.
The question of storage capacity in oscillating networks,

i.e, the ratio of stored patterns p to excitatory neurons N,
is subject of current research. A slight modi6cation of the
excitatory interaction (1) in the case p-N is necessary to
bias the mutual overlap of different patterns (structural
noise). The mean value of the structural noise can be
shifted to 0 by introducing inhibitory neurons with a glo-
bal connectivity. I expect a qualitatively comparable net-
work e%ciency, as for attractor neural networks with low
spatial activity.

roles of excitatory and inhibitory neurons, the network ar-
chitecture gives rise to oscillations of the average neural
activity, as are actually observed in the visual and olfacto-
ry cortex. These oscillations originate from the asym-
metric coupling between populations of excitatory and in-
hibitory neurons. The network also produces low firing
rates for all neurons active in a pattern state. Both prop-
erties, oscillations and low firing rates, bring the network
closer to biological observation and help to close the gap
between biological neural networks and their Boolean
counterparts.
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