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Effects of optical gain and cavity-mode squeezing on the Mollovv spectrum
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A theoretical model for studying the effects of optical gain and the cavity-mode squeezing on
the spectrum of radiation produced by coherently driven two-level atoms is developed. The
squeezing of the cavity mode dramatically affects the central component leading to a spike in the
spectrum which becomes more pronounced with the increase in optical gain and squeezing. The
squeezing can also affect the three photon Rabi sideband and can facilitate laser oscillation at
such frequencies.

Mollow'2 considered how the radiative properties of a
system are changed dramatically if the system is driven by
an intense coherent field. These modifications can be
studied either by examining the spectrum of the spontane-
ously emitted radiation' or by monitoring the absorption
from a weak probe field. The spectrum is also sensitive to
the environment in which the atoms are radiating. For ex-
ample, recently considerable work has been done on how
the spectrum of the radiation emitted by a coherently
driven system is modified due to the optical-gain process-
es. Such processes may arise, say, from four-wave-
mixing processes in free space or one might consider gain
processes in a cavity. The latter case has also been studied
experimentally. The gain processes modify the widths and
heights of different resonances in Mollow spectrum and
also make the off-resonance spectrum asymmetric. A
question that arises is—what happens if the nature of the
vacuum in the cavity is changed; e.g. , one can replace the
vacuum by squeezed vacuum. Thus we investigate the
combined effects of optical gain and the squeezed cavity
mode on the Mollow spectrum. We specifically study the
radiation emitted by coherently driven atoms passing
through a squeezed cavity. We develop a theoretical mod-
el for studying the characteristics of the emitted radiation.
We demonstrate the spectral narrowing of the central
component of the Mollow spectrum. We show that in the
limit of good cavity and good degree of squeezing the cen-
tral component narrows from a width of the order of the
free-space atomic width y to a width of the order of x (or

even less), which is the loss rate from the cavity.
Consider an atomic beam of two-level atoms, which are

also pumped by a coherent field, passing through a
squeezed cavity (Fig. I). The mode of the cavity is
squeezed —the squeezing might be achieved by degen-
erate parametric processes or by other methods. It is as-
sumed that the atoms spend sufFicient time in the cavity so
that steady state is reached. The output of the cavity, i.e.,
the number of photons in the cavity mode, can be studied
as a function of the cavity detuning parameter. The
Hamiltonian for the dynamics of the two-level atom in a
squeezed cavity can be written in the form

H - copS'+ co,a ta+ [G(a t) e ' +G*a e "' ]

+(g,S+a+g, S at)+(gS+e '"' +H.c.)+
(I)

where the ellipsis denotes coupling to various heat baths
which would simulate the effects of losses from the cavity
and the effects of spontaneous emission by the atoms into
all other modes. Various terms in (I) have the following
obvious interpretation: (a) g terms describe the coherent
pumping of the atoms; (b) g, terms describe the interac-
tion of the atoms with the cavity mode; (c) G terms de-
scribe the generation of squeezed vacuum in the cavity,
to~ is the carrier frequency of the pump used to produce
squeezed light in the cavity; (d) terms involving co, and top

are the unperturbed terms. The total Hamiltonian is ob-
tained by summing over all the atoms. For simplicity, we
have not shown the phase factors such as exp(ikt rj ), etc.
The density matrix p for the combined atom-field system
obeys the master equation

—i [H,pl —x (a tap —2apa t+pa ta )

M/////
y(S S p —2S pS +pS S ) . (2)
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FIG. 1. Schematic illustration of the model with NL denot-
ing the nonlinear medium which is pumped by the field co~. The
atoms are pumped by coI.

Here x. is related to the quality factor Q (x co,/2Q) of
the cavity and y is half of the Einstein —2 coeKcient for
emission in free space. The master equation (2) is rather
complex; however, it can be simplified further by invoking
the physical situation. In this paper we consider the case
when y is large compared to x and

~
G ~. In such a case

we can derive the master equation' for the field density
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matrix p by adiabatically eliminating the atomic degree offreedom. Our calculations show that the field density matrix
p (from now onwards p will represent the field density matrix) obeys

i—[boa ta, p] —i [G (a t) +G a,p] —x (a tap —2apa +pa a )

—[R,(b)(aa p —a pa)+R, (8)(pata —apat)+H. c.l, b co, —tot, bp
COp (3)

Here R(b)'s are defined by

h OO

R, (b) R,'+iR," g N due ' ' lim [(S+(t+r)s (t)) —(S (t))(S (t))],ap f~oo
(4)

R, (b) R'+iR," g N) dre ' ' lim [(S (t)S+(t+ r)) —(S (t))(S+(t+r))],
0 g~ oo

(5)

where N is the total number of atoms. The derivation as-
sumes that different atoms are uncorrelated. We have
also dropped the so-called interference terms under the
condition that y is much bigger than x and G. The two
time-correlation functions in (4) and (5) are to be ob-
tained from the solution of the master equation for the
coherently driven two-level atom in free space, i.e., from

photons in the steady state is

R,'+f
x+R,' —R,' —2f

i80f- I G I' ~ R.-R.+x I-
y x

+c.c. '.

(8)

t)PA -—i[~s'+(gs'+g*s-), p, ]

—y(S+S pg —2S pgs++pgs+S ) .

Note that optical Bloch equations follow from (6). The
two-time correlations for a two-level system have been
calculated by many authors. ' Note that Re[R, (b)/
g N] is just the Mollow spectrum; i.e., the incoherent part
of the spectrum of the radiation emitted by a coherently
driven two-level atom in free space. The interpretation of
R's is also clear from our fundamental Eq. (3) if we ex-
amine the rate at which the number of photons in the cav-
ity mode changes. We find from (3)

(a ta) ~ —2(a ta) [x'+R,'(b') —R,'(b)]

+2R,'(8) —2iG((a t) )+2iG (a ) . (7)

Clearly 2[R,'(b) —R,'(b)] gives the rate of absorption (by
the atoms) of the cavity photons and 2R,'(8) gives the rate
of spontaneous emission into the cavity mode. The term
involving x gives the rate of loss from cavity mirrors. The
number of photons in the cavity is influenced by the
phase-sensitive coupling terms G. Note that if the atoms
were pumped incoherently to the excited state, then R, (h)
will be zero. We are considering a coherently driven sys-
tem and thus we have a mixed state involving ground and
excited states and hence both R and R, enter our calcu-
lations.

The master equation (3) can be solved exactly and all
the physical quantities can be calculated. In what follows
we examine the modifications" in the Mollow spectrum
due to gain processes and the squeezing of the cavity
mode. Using (7) and the equations for (a ) and ((at) )
that follow from (3), we have proved that the number of

It should be remembered that all R's are functions of
b to, —tot. These R's also depend on the strength of the
coherent field pumping the atoms, the pump atom detun-
ing 6, and the density of atoms. The derivation of (8) as-
sumes that the steady state exists. The condition for the
existence of steady state can be obtained by examining the
eigenvalues of the drift matrix formed from equations for
(a) and (at). Calculations show that the steady state ex-
ists if

x+R,' —R,' & 0, ( x+R, —R, —i80 ) )4 ( G ( (io)

ao~Ng, /y. (i2)

otherwise the cavity field grows and no steady state exists.
In such a case one has the possibility of laser oscillation
which can be discussed by generalizing (3) to include non-
linear terms in a and at. The condition for the existence
of the steady state and laser oscillation depends on the pa-
rameters x, G, g, 4, b, and g, N/xy.

The free-space result is recovered if we set ( G
~

0 and
take the limit of large x whence (ata) R,'(b')/x. For

( G
~ 0, (8) reduces to the result obtained by Holm et al.

for the unsqueezed cavity. In this case gain processes are
most significant if x- )R,' —R,'( and when R,' —R,'&0.
This will be the case when the absorption spectrum exhib-
its regions of amplification. In the absence of the atom
(R, R, 0),

(ata) 2
~
G ( /(x +b —4 ( G

~ )

Clearly, the effect of the squeezing parameter is important
when 4 ( G (

& (x +bj). The amount of squeezing in the
cavity itself depends on the parameter bo to, —to~/2.
We can make different choices of 80 depending on the fre-
quency region of Mollow spectrum under consideration.

We evaluate (8) numerically for a range of parameters.
Let ao be the optical gain parameter defined by
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Thus, from now on x and ) G ) would be taken in units of
ao. The external field parameters 6, g, and 6 will be ex-
pressed in units of y. We also need to know the relative
magnitudes of y and x.. Note that we have assumed a
good cavity and hence y» x. For computations we take
y 20m. We display the numerical results for a range of
parameters in Figs. 2-4. We plot total output of the cavi-
ty as a function of cavity detuning parameter h. For

) G
~ 0, we recover the known results for the effect of op-

tical gain on Mollow spectrum. As the parameter ao in-
creases (x decreases) the sidebands grow. In fact, the
sidebands become more intense than the central com-
ponent. We also find that the height of the central peak
scales as 1/x. Figures 2-4 give the eff'ect of the cavity-
mode squeezing. Here we have to make an appropriate
choice of the detuning parameter Bo ro, —co~/2. The
choice depends on the region of Mollow spectrum under
consideration. If we are examining the central component
of the Mollow spectrum, then we choose 80 close to zero.
This can be done by taking co~ 2roI and thus bo b

co, —mI which is close to zero. For Fig. 2 we choose a
value of x for which the eff'ects of optical gain are rather
unimportant. We find that as the squeezing parameter G
increases, the central component of the three-peak Mol-
low spectrum becomes more and more prominent leaving
the sidebands practically unaffected by the squeezing of
the cavity mode. As a matter of fact, as G approaches x/2
(note that G is always smaller than x/2 for 8—0) the cen-
tral part of the spectrum consists of a narrow spike riding
on top of a broad structure. For x. 0.02 (Fig. 3), the
case in which the optical-gain effects are very significant,
the squeezing of the cavity mode has a very dominant
effect on the central component of the Mollow spec-
trum —the spike is quite pronounced. The half-width of
the spike is approximately equal to x. and can become less
than x. We have also calculated the output when the field
driving the atoms is detuned from resonance. For G 0,
the spectra are asymmetric due to optical-gain processes.
For 6WO, the central peak grows in magnitude. Again for
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G approaching x/2 a spike appears on top of a broad reso-
nant background. Note that for 8 values close to the side-
band frequencies (5 +4 ( g ~

) '/, the denominator
(rc+R,' —R,')2+(R,"—b) is large and hence Eq. (8)
reduces to

(a ta) =R,'/( x+ R,' —R,') . (l3)
Thus, the parameter 6 has no effect on sidebands unless
2G-b. This is because for sidebands the cavity is too far
detuned from resonance and the squeezing is insignificant.

In order to make the squeezing more eff'ective at the
sidebands, we consider an alternate situation. We imag-
ine that the cavity mode is close to resonance with co~/2.
Note that co, itself is in the vicinity of sideband frequen-
cies, i.e., near ro + (d, +4~g ~

) '/ . We thus choose

bo co, —NI + (6+4
~ g [ ) ' (l4)

FIG. 3. Same as in Fig. 2 but for x/ap 0.02 and I G (/ap 0
[curve (a)], 0.005 [curve (b)], 0.0075 [curve (c)], and 0.0095
[curve (d)]. The actual values for curves (a)-(c) are —,

' of
those shown and the scale on x-axis is same as in Fig. 2.
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FIG. 2. Effect of squeezing the cavity mode on its output
S(b) (ata) as a function of detuning 8 (co, —cog)/y for
&/ap 0.1 and for I G ~/ap 0 [curve (a)], 0.02 [curve (b)l,
0.035 [curve (e)], 0.045 [curve (d)]. For I G

~
aO only the cen-

tral resonance is shown. The actual values for curves (a)-(c)
are half of those shown. The scale on x axis for curves (b) and
(c) [curve (d)] is —, [ —,', ] of that shown. The other parameters
are g 5y, mo cot.

FIG. 4. Cavity output when the cavity is tuned close to the
three-photon peak (14) for g 20y, cop —rol 10y, x O. lap,
and I G I/ap 0 [curve (a)], 0.01 [curve (b)], 0.02 [curve (c)],
and 0.025 [curve (d)]. The actual values in cases (b) and (c)
are half of those shown. The scale on x axis for G 0 is from
—40 to —42. The curve (e) gives the left-hand side of the in-

equality (15). The minimum (maximum) value for curve (e) in
the shown range is 0.307 x 10 2 (0.281).
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for studying the eff'ects of optical gain and cavity-mode
squeezing on the "three-photon" sideband. We show in
Fig. 4 the typical behavior of the cavity output when co, is
tuned in the neighborhood of the three-photon Rabi side-
band. The behavior that we observe is similar to that of
Figs. 2 and 3; i.e., as the radiation in the cavity becomes
more and more squeezed, the spike at the sideband fre-
quency becomes more and more pronounced. As a matter
of fact, the three-photon sideband experiences a lot of
gain and soon the system starts oscillating and the laser
action occurs. When this happens then one has to go
beyond the linearized theory on which the result (8) is
based. Note that the threshold condition for laser opera-
tion depends on the parameter I G I . Thus, one can have a

situation that optical-gain processes do not lead to an in-

stability (i.e., tc+R,' —R,' )0), but the cavity-mode
squeezing leads to laser oscillation, i.e.,

I(b) I tc+Ra R, f—bol' &4I G I'. (IS)

The left-hand side of this inequality is also plotted in Fig.
4, from which one can read the maximum value of I G I

beyond which the laser oscillation would occur.
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