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Atoms in intense electric fields
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We develop a technique for solving the time-dependent three-dimensional Schrodinger equation
by expanding in terms of a set of Volkov functions and converting to a system of first-order tem-
poral equations. Solutions are obtained through standard multivalue propagation schemes. We
apply the method to several cases including the interaction of an intense, oscillating electric field
with a model three-dimensional atomic system, observing the above-threshold ionization structure.

The advent of the new high-intensity lasers has focused
considerable theoretical attention on the interactions of
intense electromagnetic (EM) fields with atoms. ' When
the electric field is much weaker than the atomic binding,
the usual time-dependent (TD) perturbation expansion in
terms of the stationary states of the atomic Hamiltonian
appears adequate. On the other hand, for extremely in-
tense fields, a more natural expansion basis becomes the
Volkov states with the atomic potential serving as a per-
turbation. In the intermediate regime corresponding to
the intensity range of many current lasers, the two com-
ponents are comparable in strength, and we must treat the
EM and atomic fields on equal footing. In this case, we
are usually forced to solve the full TD Schrodinger equa-
For one spatial dimension (1D), we encounter a particu-
larly rich collection of methods, ranging from TD finite-
difference ' and finite-element approaches to Floquet
methods, to Fourier-transform techniques, to integral
equations formulations (a more complete listing appears
elsewhere ). However, full temporal treatments of three-
dimensional (3D) systems are much rarer and have basi-
cally been confined to finite-difference (FD) prescrip-
tions and Floquet analysis, ' both of which bring
powerful computational tools to bear on this difficult prob-
lem. In searching for other possible entries into this
realm, we have explored a promising candidate in which
we convert to a set of first-order temporal equations by ex-
panding the wave function in 3D Volkov states. The
method represents an extension of an earlier procedure"
and has some similarities with the 1D approach of Dorr
and Shakeshaft. ' The basic electric field interaction is
removed by the analytical basis leaving the atomic poten-
tial to provide the dominant coupling. Expansions in
terms of Volkov states ' have formed the basis of
numerous other approaches, most notably the so-called
Keldysh-Faisal-Reiss forinulations (KFR). ' While the
various renditions of the KFR formulations can be iterat-
ed to an exact solution of the TD Schrodinger equation,
the form usually employed involves various approxima-
tions and represents but a single iteration. ' Our par-
ticular approach corresponds to a fully converged iterative
solution in the Volkov basis and is comparable to the 3D
Floquet and FD results. For the multiphoton ionization of
atoms, the Volkov expansion has possible advantages. As
time passes, the distribution in momentum space concen-

V~(r ) t) E(r ) t) r, (2)

with the electric field described by E(r I t) Ep(t)f(r'I t)
such that Ep(t) =Epcos(tot)e. W— e let Ep, tp, and T repre-
sent the maximum field strength, the frequency, and the
period (2~/co) of the oscillating electric field, respectively,
f(r (t) determine the spatial and temporal behavior of
this field, and e represent the unit vector in the field direc-
tion. Since this particular model has become a cynosure
for studying an atom in an intense laser field, ' we feel
justified in its use to demonstrate our approach.

We now expand the total system wave function in a
basis j&1,(r ) t )j of a complete set of states as

(3)

trates around a few well-defined peaks, the usual signa-
tures of "above-threshold ionization (ATI)." Therefore,
we can selectively tighten the mesh about these isolated
areas. On the other hand, in configuration space, we must
enlarge the area spanned by the basis in order to follow
the ever spreading wave packet. Like its 1D counter-
part, " our approach is quite flexible and can handle gen-
eral temporal and spatial dependencies of the field, being
ideal for investigating various pulse shapes and other fu-
gacious effects. Another advantage rests with the simpli-
city of the propagation algorithm. Since we need only ad-
vance first-order temporal equations, our highest-order
processes are matrix-vector multiplications, which are
particularly well suited to vector computers and the new
multiprocessors. While the method is very general, we
choose to illustrate its mechanics on a standard model '

of atom intense-field interactions.
We begin by following the commonly trod path of con-

verting second-order differential equations, depending on
spatial and time coordinates (r, t), into a coupled, first-
order temporal set. We seek a solution to a 3D
Schrodinger equation that represents the motion of an
electron in an atomic potential V, subject to a TD interac-
tion V~..

[——,
' V +V, (r)+VE(r, t)]y(rIt) iD, y(r)t), (1)

where D, = rJ/Bt and V is—the usual Laplacian. In the di-
pole approximation for an oscillating electric field, the in-
teraction term VE has the form
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The square modulus I a (k I t ) I of an expansion
coefficient gives the probability of finding the system in
state k at time t. We select the basis to satisfy the follow-
ing equation:

[- —,
' v'+ v, (r I t) -iD, ]y, (r I t) -o. (4)

These solutions form a complete set of basis states with
the usual orthonormality property that (k'~ k) -b(k' —k)
and are labeled by a "momentum" vector k. We select
the potential to remove as much of the dominant interac-
tion as possible but to remain elementary enough to yield
analytical or simple numerical solutions.

We derive an expression for the expansion coefficients
by (i) substituting Eq. (3) into (1), (ii) multiplying
through by fir (r I t), (iii) integrating over the spatial
coordinates dr, and (iv) employing the orthonormality
properties of the basis. The results of these manipulations
yield

D,a(k'I t) -„M(k', kI t)a(kit)dk,
where

(5)

~(k', k I t) = i„yi,—(r I
t)—'[v. (r)+&v(r I t)]

x p„(r I t)dr, (6)

where hv (VE —Vi). Therefore, by determining the
temporal evolution of the coefficients from Eq. (5), we can
construct the solution at any time from Eq. (3).

For the intense field case, we choose the basis by setting
V~ to Eo(t) r. The solutions to Eq. (4) are the familiar
Volkov states, pz(r I t), and have a precise analytical ex-
pression. ' The coupling term now becomes the atomic
potential and the difference between Eo and the actual
form of the electric field [Av (f 1)EO r]. Fo—r the case
in which the field is uniform in space and purely oscillato-
ry in time (f 1), the difference term vanishes, and the
atomic potential alone provides the coupling. A similar
condition arises for a spatially uniform field that can be
considered constant over a prescribed time step. Since we
can approximate any general temporal function by a
series of such time steps, we can accurately represent real-
istic pulses by this simpler form of Eq. (6). We choose to
operate in cylindrical coordinates [r (z,p, p)] since for
the choice of the field polarization in the direction of the
quantization axis z, the interaction term assumes a partic-
ularly simple form, namely Eocos(cot)z. In this case, the
Volkov states become

g(rit)= y„, (zppit)-g.—(z, t)g, (p, t)g (v», (7)

where g, (z, t) is the 1D Volkov solution, gq (p, t) is pro-
portional to the bessel function J (qp) exp( iq t/2), —
and g (p) has the usual form exp(imp). The states are
labeled by three momentum components k (K,q, m), two
continuous and one discrete, according to their associated
spatial cylindrical coordinates. The total system wave
function is then given in terms of this basis by Eq. (3)
with expansion coefficients a v (t). Since g„has a precise
1D analogue, we gain valuable insight into the 3D case by
investigating models with but one spatial dimension, espe-
cially in matters of mesh size, basis, and phenomenology.

In order to solve Eq. (5), we approximate the integrals
by discrete quadratures and evaluate the coefficients at
these prescribed points, thus converting to a set of matrix
equations. Using n„quadrature points for the x dimen-
sion and nq in q, we obtain the following system of equa-
tions, whose solutions are the expansion coefficients:

D, tI(t) -M(t)a(t) . (8)

the standard Yukawa expression. The strength of the ex-
ponential coefficient only increases the effort in evaluating
the spatial integrals in Eq. (6) but does not change the

The matrix M is of order N& n„nqn, where n is the
number of m values, with elements given by Eq. (6). The
interaction term is V„ the atomic potential, and the basis
consists of the Volkov states [Eq. (7)]. The vector g is of
length N, with components a„~ . For the case of a spheri-
cally symmetric potential, these equations become block
diagonal in the quantum number m. Therefore, for a
given value of m, we need only solve a two-dimensional
problem in momentum space (N, n„n~) In p.ractice, we
usually propagate bz(t) -az(t)g(t), where the function
g(t) removes much of the oscillatory part. For this case,
the off-diagonal coupling matrix elements become time in-
dependent and therefore need be calculated only once.
We have made several basic simplifications to the general
method: (i) the electric field is along the atomic quantiza-
tion axis; (ii) the atomic potential is spherically sym-
metric; (iii) the spatial dependence of f(r, t) is uniform;
and (iv) the dipole approximation is invoked. We em-
phasize that these conditions can all be relaxed and in no
way circumscribe the general procedure, although possi-
bly leading to greater computational time.

We are now left with a coupled system of first-order
temporal equations [Eq. (8)]. Since we are primarily in-
terested in photoionization, we start the solution in a
prescribed bound state of the atomic system, p, (r I to), at
time t to. From this initial condition, we determine the
starting values of the expansion coefficients az(to) by in-
verting Eq. (3). Once the initial values are known, we can
use standard first-order propagation schemes to evolve the
coefficients in time. We have tested a number of tech-
niques including the Adams-Bashford, ' the Bulirsch-
Stoer, ' the Gear, ' and the second-order difference. '

All perform effectively and efficiently with the Gear em-
ployed as a standard since stiff equations are sometimes
encountered. The spatial integrals in the matrix elements
are constructed by Simpson's rule and when appropriate
by a judicious application of the Filon technique. The
momentum meshes are selected as Gauss-Legendre quad-
ratures and usually require between 20 and 50 points in
each dimension. Therefore, we typically propagate first-
order temporal equations of the order of 2000 for 10-20
cycles of the electric field. Such solutions generally re-
quire from 3 to 10 min of central processing unit time on a
Cray-XMP computer, depending on the level of accuracy
sought.

In order to illustrate this approach, we consider the ion-
ization from an atomic potential of the form

V.(r) -Voexp( kr)/r, —
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basic form of the coupled temporal equations, which lie at
the heart of this approach. Therefore, we can examine the
most general features of the method by considering this
special case. We also tune X, such that the potential sup-
ports but one bound state with symmetry m 0. This con-
straint is in no way severe, and to demonstrate this point,
we have performed calculations on potentials with a
variety of bound states. We select A, 0.397 and Vo 1 to
yield a single bound s state at an energy s —0.200 har-
trees. Therefore, the solution at t 0 begins in this bound
state, pb(r). For this case, the ionization probability P; (t)
is given by the simple expression: 1 —[(pb ( y) ( . The
ionization probability per unit time then has the form
W;(t)= P;(t)/t—. We select the x and q meshes so as to
place a preponderance of points in the vicinity of the
suspected positions of the ATI peaks. Neglecting the shift
in the bound state, we expect the peaks to emerge at ener-
gies E„, given by neo —s —EJ, where the final term is the
famous jitter energy [(Eo/2r0) ). In order to test the pro-
cedure, we performed a series of calculations for a weak
field (Eo 0.007 a.u. ) for single-photon ionization
(c0 & 0.200) and compared with perturbation theory. We
found that W~(t) became a constant after about five cycles
of the field and was in excellent agreement with the per-
turbation results. For example, at t 10T we have from
the 2D calculations for co 0.21, 0.25, and 0.30 that

2.8X10, 5.5x10, and 4.0X10, respectively,
while perturbation theory yields 2.7X10, 5.9&10
and 4.1 x 10, respectively. These results were obtained
with about 30 points in the q mesh and 50 in the x. In
many ways, the weak-field calculations are a particularly
stringent test of this method. Since the expansion basis is
selected to remove the electric field component, leaving
the atomic potential to exert the principal coupling, the
best regime for this method occurs when the oscillating
electric field is comparable to, or stronger than, its atomic
counterpart. In the weak-field limit, just the opposite ex-
treme is reached with the atomic interaction playing the
dominant role. Therefore, we are quite encouraged by the
close agreement obtained in the field-perturbation limit.

We now present results in which the field becomes
significantly larger. ' We first investigate the case for

ro 0.25 (T 25.1 a.u. 0.6 fs), and Eo 0.075 a.u. (2.0
x10' W/cm ). By 6ve cycles of the 6eld (t-5T), the
system has almost completely ionized (P; & 0.90). At this
stage, the packet has effectively cleared the range of the
atomic potential. Since the atomic potential provides the
only coupling in this case, the expansion coefficients with
respect to the Volkov states no longer change —the system
remains in a 6xed distribution of the basis. In fact for this
case, we can easily demonstrate that at a time that is a
multiple of the 6eld period (t-nT), the probability of
6nding the system in a particular Volkov state is the same
as that to 6nd it in a free-particle state (Eo-V, 0).
Therefore, the square modulus of the expansion
coefficients at nT gives us important information on the
energy distribution of the ionized electron. In Fig. 1, we
plot the probability of finding the system in a given
momentum state, ( a(t) (, as a function of (x,q) at ten
periods into the ionization process. We note a particularly
strong concentration of probability in two annuli approxi-
mately centered at K=0.2 and 0.7, where K —= x +q .
In order to make this identi6cation more explicit, we per-
form a polar projection (K,8) of the probability onto asso-
ciated Legendre polynomials PI (8) with tan8—= x/q. In
Fig. 2, we display Px.(t), which is P+I(r)=

~ allo(t) [

summed over all I, at t 10T as a function of K. Not
surprisingly, we observe an ATI peak at K=0.18 whose
character is principally p(l 1) in nature, conforming to
the dipole selection rule for single-photon absorptions.
The slight additional lowering of the peak position (0.18
compared to 0.23) is usually ascribed to the ac Stark shift
involving the bound level. We also observe a second ATI
peak at K =0.72, which also has both s and d character.
As we increase the electric field further, we observe that
the ATI peaks shift to lower energies, and the first peak
eventually disappears, qualitatively resembling the 1D
findings.

In summary, we have developed a general procedure for
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FIG. 1. Probability density ( a,v(r) ~
at t 10T as a function

of the two momenta x and q for the Yukawa potential with
Eo 0.075 a.u. and co 0.25. The x axis extends from —0.8 to
0.8 in units of 0.2, while the q axis ranges from 0.0 to 0.8 in
units of 0.1.

FIG. 2. Polar projection P&,I(r) of the density in Fig. 1 for
I 1 (dashed line), I 2 (line with circles), and the sum over all
I values (solid line) as a function of K. Second ATI peak has
been enhanced by a factor of 3 in order to better display the
components.
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solving the three-dimensional, time-dependent Schroding-
er equation by expanding the total system wave function
in a basis designed to account for the dominant com-
ponent of the interaction. %'e have applied the technique
to an atom in an intense laser field and determined basic
ionization properties as well as the ATI structure.
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